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We consider a system of multicolour disordered lattice gas, following closely the (mono-
colour) introduced by Faggionato and Martinelli(3,4). We study the projection on the
monocolour system and we derive an estimate of the closeness between grand canonical
and canonical Gibbs measures.
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1. INTRODUCTION

Faggionato and Martinelli(3,4) have studied the hydrodynamic limit for a
dynamics on lattice gas which depends on a collection of real bounded i.i.d.
random variables α = (αx : x ∈ Zd ) corresponding to some external quenched
disorder field. The hydrodynamic limit was obtained for a monocolour particles,
an important byproduct of their study being the equivalence of ensembles shown
in Lemma A.4.(4)

The aim of our work is to give an equivalence of ensembles result with sharp
bounds for multicolour particles. Our proof uses the projection on the monocolour
system, and then the equivalence of ensembles result of the monocolour lattice
gas.(3) After, we study the variation of the canonical Gibbs measures of the mul-
ticolour problem with respect to the monocolour one, showing that it does not
add new terms. This is done by elementary computations. We point out that the
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equivalence of ensembles of multicolour is an important step towards obtaining
the hydrodynamic limit for the multicolour case. On the other hand, as it is shown
in ref. 5, the hydrodynamic limit for the multicolour case is necessary to obtain
propagation of chaos.

The model introduced in Refs. 3 and 4 has been previously extended to the
two colours in Refs. 1 and 2 and an equivalence of ensembles result was proven
by using similar techniques as those in Ref. 3 which are different from ours.

Let us introduce the problem. � ⊂ Z
d denotes a finite set of sites, each of the

sites could be empty or has a colour (or spin). The finite set of colours is denoted
by I and it is useful to consider the set I0 = I ∪ {0}, where we have added the
value 0 that expresses that the site has no colour (or that it is empty). We denote
|i | = 1(i ∈ I ) for i ∈ I0 (where we put 1(x ∈ A)=1 if x ∈ A, vanishing otherwise).
The set of configurations is I �

0 , and its elements are denoted by η = (ηx : x ∈ �).
For each x ∈ �

ηx =
{

i if there is a particle with colour i ∈ I at x
0 if there is no particle at x

We will use the notation |η| := (|ηx | : x ∈ �) ∈ {0, 1}�.

1.1. Gibbs Measures for Monocolour Lattice Gas

Let λ ∈ R and the disorder α be fixed. The Gibbs measure |µ| := µα,λ or the
monocolour problem is a probability measure on {0, 1}� characterized by: all the
projections ξ → ξx , x ∈ � are independent

|µ|(ξ̄ ) := |µ|(ξ : ξ = ξ̄ ) =
∏
x∈�

|µ|(ξ : ξx = ξ̄x ) for ξ̄ ∈ {0, 1}� ; (1.1)

and the marginals verify

|µ|(ξ : ξx = 1) = eλ+αx

1 + eλ+αx
. (1.2)

The measure |µ| is symmetric and invariant for the dynamics studied in
break Refs. 3 and 4. Briefly this dynamics is given by the following rate of change
cα

x,x+e(η) = fe(αx , ηx , αx+e, ηx+e) for η ∈ {0, 1}� and {x, x + e} ⊂ �. Here e is
an element of a symmetric neighbourhood ε of the origin and the functions ( fe : e ∈
ε) verify the conditions specified in Ref. 4 (symmetry, exclusion, lower uniform
boundedness and detailed balance). For ξ ∈ {0, 1}� put ξ̃ = {x ∈ � : ξx = 1}
and we denote by n(ξ ) = |ξ̃ | the number of elements of ξ̃ (that is, |A| denotes
the cardinality of A). Observe that for each 0 < N < |�| there exists a unique
λ = λ(N , α) ∈ R such that |µ| = |µ|α,λ verifies |µ|(n) = N (see Ref. 4).
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1.2. Gibbs Measures for the Multicolour Lattice Gas

Let ξ ∈ {0, 1}�. In the sequel a configuration η̄ ∈ I ξ̃ is naturally identified
with η ∈ I �

0 where ηx = η̄x 1(x ∈ ξ̃ ).
Let P(I ) be the simplex of probability measures on I and p = (pi : i ∈ I ) ∈

P(I ) be one of these measures. Let K ⊆ �,µK
p denotes the product measure on

I K given by

µK
p (η) =

∏
x∈K

pηx , for η = (ηx : x ∈ K ) ∈ I K .

If ξ ∈ {0, 1}� we set µ
ξ
p := µ

ξ̃
p, so that indeed µ

ξ
p is the product measure on I ξ̃

with marginals µ
ξ
p(η : ηx = i) = pi for x ∈ ξ̃ . Then

µξ
p(η) =

∏
i∈I

pni (η)
i , for η ∈ I ξ̃ ,

where ni (η) = |{x ∈ ξ̃ : ηx = i}|.
Now we are able to define our set of Gibbs measures. The probability measure

µ on I �
0 is a Gibbs one if it satisfies

µ(η ∈ I �
0 : |η| = ξ ) = |µ|(ξ ) for every ξ ∈ {0, 1}� (H1)

and

∃p ∈ P(I ) such that µξ := µ(· | |η| = ξ ) = µξ̃
p for every ξ ∈ {0, 1}�. (H2)

We will keep the term Gibbs measure only for those measures verifying (H1)
and (H2). We notice that they are symmetric and invariant with respect to the
dynamics defined in Refs. 1 and 2, which is an extension of the monocolour one,
where the rate of change cα

x,x+e(η) = fe(αx , |ηx |, αx+e, |ηx+e|). But they are not
the unique measures satisfying these properties. Indeed, if µ verifies (H1) and for
some probability measure Q defined on the simplex P(I ) it holds

µ(η) =
∫
P(I )

µξ
p(η)d Q(p) =

∫
P(I )

∏
i∈I

pni (η)
i d Q(p) for η ∈ I ξ̃ ,

then µ is symmetric and so invariant for the dynamics defined in Refs. 1 and 2. We
recall that such µ is exchangeable, that is invariant under coordinate permutations.

When µ is a Gibbs measure µξ is a measure on I �
0 that gives strictly positive

weights to the configurations vanishing at � \ ξ̃ and taking values in I at ξ̃ . So,
with the above identification µξ can be also seen as a probability measure on
I ξ̃ . With this notation µ|η|(·) = µ(· | |η|) is a measure concentrated on the set
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{η′ : |η′| = |η|}. It follows that for every g : I �
0 → R

µ(g) =
∑
η∈I �

0

g(η)µ(η) =
∑
η∈I �

0

g(η)µ|η|(η)|µ|(|η|) =
∑

ξ∈{0,1}�


 ∑

η:|η|=ξ

g(η)µξ (η)


|µ|(ξ ).

Therefore

µ(g) = |µ|(Sµ(g)) with Sµ(g)(ξ ) =
∑

η:|η|=ξ

g(η)µξ (η) for ξ ∈ {0, 1}�.

(1.3)

Notice that Sµ(g) depends on µ via the set of conditional measures (µξ:
ξ ∈ {0, 1}�).

1.3. Canonical Gibbs Measures for the Multicolour Lattice Gas

Let 0 < N < |�| be fixed. Recall n(ξ ) = |ξ̃ |. Let (n = N ) = {ξ ∈ {0, 1}� :
n(ξ ) = N } and µ is a Gibbs measure for the multicolour lattice gas. The mono-
colour canonical Gibbs measure is the following conditional measure on {0, 1}�:

|ν|(·) = |µ|(· | n = N )

Let (Ni > 0 : i ∈ I ) be fixed with
∑

i∈I Ni = N . Recall ni (η) = |{x ∈ ξ̃ : ηx =
i}|. Let (ni = Ni : i ∈ I ) = {η ∈ I �

0 : ni (η) = Ni , i ∈ I }. The canonical Gibbs
measure for the multicolour lattice gas is the following conditional measure on
I �
0 :

ν(·) = µ(· | ni = Ni : i ∈ I ).

Before giving our main result we need the following background. For η ∈ I �
0

and � ⊆ � put η� = (ηx : x ∈ �). Let g : I �
0 → R. The function g depends on

� if for any couple η, η′ ∈ I �
0 such that η� = η′

�, it holds g(η) = g(η′). This is
equivalent to the existence of a function g� : I �

0 → R such that g(η) = g�(η�). If
g depends on �1 and on �2, then it is easy to show that g depends on �1 ∩ �2. Let
D(g) = {� ⊆ � : g depends on �}, and put �(g) = ∩�∈D(g)�. Then g depends
on �(g) and this set is the smallest one verifying this property and we call it the
support of g. So, η�(g) = η′

�(g) implies g(η) = g(η′) and by abuse of notation we
put g(η) = g(η�(g)).

Lemma 1.1. Let µ be a Gibbs measure. Then for every g : I �
0 → R it holds

�(Sµ(g)) ⊆ �(g) and ||Sµ(g)||∞ ≤ ||g||∞.

Proof: From Sµ(g)(ξ ) = ∑
η:|η|=ξ g(η)µξ (η) the inequality between the norms

|| · ||∞ is direct. Let us show the inclusion of the supports. Observe that µξ = µ
ξ
p

for all ξ ∈ {0, 1}�, for a fixed probability vector p = (pi : i ∈ I ) ∈ P(I ). Put
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� = �(g) and partition η = (η�, η�\�), ξ = (ξ�, ξ�\�). Since µ
ξ
p is a product

measure and g(η) = g(η�) we have

Sµ(g)(ξ ) =
∑

η�:|η�|=ξ�

g(η�)µξ�

p (η�)


 ∑

η�\�:|η�\�|=ξ�\�

µ
ξ�\�
p (η�\�)




=
∑

η�:|η�|=ξ�

g(η�)µξ�

p (η�) .

Therefore Sµ(g)(ξ ) only depends on ξ�, and the result is shown. �

Now we can announce our main result.

Theorem 1.2. Let p = (pi : i ∈ I ) with pi = Ni/N , i ∈ I , µ be a Gibbs
measure such that µξ = µ

ξ
p, and |µ|(n) = N. Suppose that min{Ni : i ∈ I } :=

ψ(N ) ≥ 1 for every N. Then, for any L > 1 fixed, there exists constant C =
C(|I |, L) such that for all g : I �

0 → R verifying |�(g)| ≤ ψ(N )/L it holds

||ν|(Sµ(g)) − ν(g) | ≤ C ||g||∞ |�(g)|
ψ(N )

. (1.6)

More precisely

||ν|(Sµ(g)) − ν(g) | ≤ C ||g||∞
ψ(N )


 ∑

ξ∈{0,1}�:n(ξ )=N

(|�(g) ∩ ξ̃ |)|µ|(ξ | n = N )



(1.7)

In particular, we get that, in the framework of the Theorem, there exists a
constant D = D(|I |, L) such that

||ν|(Sµ(g)) − ν(g)| ≤ D
||g||∞|�(g)|

ψ(N )
(1.8)

From (1.3), µ(g) = |µ|(Sµ(g)). We deduce

µ(g) − ν(g) = |µ|(Sµ(g)) − |ν|(Sµ(g)) + |ν|(Sµ(g)) − ν(g). (1.9)

Now, Lemma 1.1. gives the inclusion �(Sµ(g)) ⊆ �(g). Then, from Lemma A.4
in Ref. 4, we get that: for any γ ∈ (0, 1) and any g with support �(g) ⊂ � and
such that |�(g)| ≤ |�|1−γ , for large � it holds

|µ|(Sµ(g)) − |ν|(Sµ(g)) ≤ C ||g||∞ |�(g)|
|�| . (1.10)

Therefore, by combining Theorem 1.2 with (1.8), (1.9) and (1.10), we get the
following result.
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Corollary 1.3. Let p = (pi : i ∈ I ) with pi = Ni/N, i ∈ I , and µ a Gibbs
measure such that µξ = µ

ξ
p. Suppose that there exists δ > 0 such that min{Ni :

i ∈ I } ≥ δN for every N. Then, for any γ ∈ (0, 1) there exists constant C ′ =
C ′(|I |, γ, δ) such that for all g : I �

0 → R verifying |�(g)| ≤ N 1−γ it holds

|µ(g) − ν(g)| ≤ C ′ ||g||∞|�(g)|
N

. (1.12)

The rest of this paper is consecrated to the proof of Theorem 1.2. We point
out that the main technical point is the control of |ν|(Sµg) − ν(g). From (2.1) and
(2.3) below, we are led to study a quotient that is dominated by the usual entropy
estimates, see the proof of Lemma 2.6.

2. PROOF OF THE MAIN RESULT

Let µ be a Gibbs measure for the multicolour lattice gas. Recall that the
monocolour canonical Gibbs measure is defined on {0, 1}� by

|ν|(·) = |µ|(· | n = N ) ,

so |ν|(ξ ) = 1(n(ξ ) = N ) |µ|(ξ )
|µ|(n=N ) for ξ ∈ {0, 1}�. Therefore,

|µ|( f ) − |ν|( f ) =
∑

ξ∈{0,1}�
f (ξ )|µ|(ξ )

(
1 − 1(n(ξ ) = N )

|µ|(n = N )

)
for f : {0, 1}� → R .

The canonical Gibbs measure for the multicolour lattice gas is defined on I �
0 by

ν(·) = µ(· | ni = Ni : i ∈ I ).

Hence,

ν(g) =
∑
η∈I �

0

g(η)µ(η)
1(ni (η) = Ni : i ∈ I )

µ(ni = Ni : i ∈ I )
for g : I �

0 → R ,

so,

µ(g) − ν(g) =
∑
η∈I �

0

g(η)µ(η)

(
1 − 1(ni (η) = Ni : i ∈ I )

µ(ni = Ni : i ∈ I )

)
.

Let us first establish some general relations which do not depend on the fact
that p verifies the requirements of the Theorem. The hypothesis on p will be only
used at the end of the proof, in Lemma 2.3.

We have

|ν|(Sµ(g)) =
∑

ξ∈{0,1}�


 ∑

η:|η|=ξ

g(η)µξ (η)


 1(n(ξ ) = N )

|µ|(n = N )
|µ|(ξ ) .
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Since {η ∈ I �
0 : ni = Ni , i ∈ I } ⊆ {η ∈ I �

0 : n(|η|) = N } and µ(η : n(|η|) =
N ) = |µ|(ξ : n(ξ ) = N ), we deduce

ν(g) =
∑

ξ∈{0,1}�


 ∑

η:|η|=ξ

g(η)µξ (η)
1(ni (η) = Ni : i ∈ I )

µ(ni = Ni , i ∈ I | n = N )


1(n(ξ ) = N )

|µ|(n = N )
|µ|(ξ ).

Therefore

|ν|(Sµ(g)) − ν(g) =
∑

ξ∈{0,1}�: n(ξ )=N

(
�

g
1 (ξ ) − �

g
2 (ξ )

) |µ|(ξ | n = N ) , (2.1)

where

�
g
1 (ξ ) =

∑
η:|η|=ξ

g(η)µξ (η) and �
g
2 (ξ )

=
∑

η:|η|=ξ,ni (η)=Ni ,i∈I

g(η)
µξ (η)

µ(ni = Ni , i ∈ I | n = N )
.

From now on, we fix µξ = µ
ξ
p with p = (pi : i ∈ I ) a probability vector in I.

Since for every η ∈ I �
0 such that ni (η) = Ni for i ∈ I , it holds µξ (η) = ∏

i∈I pNi
i ,

we get

�
g
2 (ξ ) =

∏
i∈I pNi

i

µ(ni = Ni , i ∈ I | n = N )

∑
η:|η|=ξ,ni (η)=Ni ,i∈I

g(η) .

Let
(

N
Ni , i∈I

)
= N !∏

i∈I Ni !
. We have

µ(ni = Ni , i ∈ I | n = N ) =
(

N

Ni , i ∈ I

) ∏
i∈I

pNi
i ,

so, ∏
i∈I pNi

i

µ(ni = Ni , i ∈ I | n = N )
=

(
N

Ni , i ∈ I

)−1

.

Then,

�
g
2 (ξ ) =

∑
η:|η|=ξ,ni (η)=Ni ,i∈I

g(η)ρ(η) with ρ(η) =
(

N

Ni , i ∈ I

)−1

.

In the sequel, for every ξ ∈ {0, 1}� with n(ξ ) = N we put �ξ = �(g) ∩ ξ̃ and
∂ξ = ξ̃ \ �(g). Then ξ̃ = �ξ ∪ ∂ξ is a partition. Every η ∈ I �

0 with |η| = ξ can
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be represented by η = (η�ξ
, η∂ξ

). In fact in the complement we have ηx = 0 for
x ∈ � \ ξ̃ . With this notation and since g(η) = g(η�(g)), we obtain

g(η) = g(η�ξ
) for every η ∈ I �

0 with |η| = ξ .

Then, by using µ
ξ
p is a product measure we get

�
g
1 (ξ ) =

∑
η:|η|=ξ

g(η)µξ
p(η) =

∑
η�ξ

∈I �ξ

∑
η∂ξ

∈I ∂ξ

g(η�ξ
)µ

ξ�(g)
p (η�ξ

)µ
ξ�\�(g)
p (η∂ξ

)

=
∑

η�ξ
∈I �ξ

g(η�ξ
)µ

ξ�(g)
p (η�ξ

) .

In a similar way, we find

�
g
2 (ξ ) =

∑
η�ξ

∈I �ξ

g(η�ξ
)

∑
η∂ξ

∈I ∂ξ :ni (η∂ξ
)=Ni −ni (η�ξ

), i∈I

(
N

Ni , i ∈ I

)−1

=
∑

η�ξ
∈I �ξ

g(η�ξ
)

(
N − |�ξ |

Ni − ni (η�ξ
), i ∈ I

)(
N

Ni , i ∈ I

)−1

.

Then,

�
g
1 (ξ )−�

g
2 (ξ ) =

∑
η�ξ

∈I �ξ

g(η�ξ
)

(
µ

ξ�(g)
p (η�ξ

) −
(

N − |�ξ |
Ni − ni (η�ξ

), i ∈ I

)

×
(

N

Ni , i ∈ I

)−1
)

(2.2)

and we obtain,

|�g
1 (ξ ) − �

g
2 (ξ )| ≤ ||g||∞Mξ with (2.3)

Mξ =
∑

η�ξ
∈I �ξ

∣∣∣∣∣µξ�(g)
p (η�ξ

)−
(

N − |�ξ |
Ni − ni (η�ξ

), i ∈ I

)(
N

Ni , i ∈ I

)−1
∣∣∣∣∣ .

We observe that Mξ = ||q − r || is the total variation of two probability mea-
sures q and r defined on I �ξ by

q(η�ξ
) = µ

ξ�(g)
p (η�ξ

) and r (η�ξ
) =

(
N − |�ξ |

Ni − ni (η�ξ
), i ∈ I

)(
N

Ni , i ∈ I

)−1

.
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Therefore,

Mξ = 2


 ∑

η�ξ
∈I �ξ : r (η�ξ

)>q(η�ξ
)

(r (η�ξ
) − q(η�ξ

))


 .

Let us denote �ξ = |�ξ | and Jξ = {
l = (li : i ∈ I ) ∈ N
I : li ≥ 0 for i ∈

I,
∑

i∈I li = �ξ }. To every η�ξ
we associate 
l(η�ξ

) = (li : i ∈ I ) ∈ Jξ with li =
ni(η�ξ

) = |{x ∈ �ξ : ηx = i}|. We observe that q(η�ξ
) = q(
l(η�ξ

)) and r (η�ξ
) =

r (
l(η�ξ
)). Then, by defining

q(
l) =
∏
i∈I

pli
i and r (
l) =

(
N − �ξ

Ni − li , i ∈ I

)(
N

Ni , i ∈ I

)−1

(2.4)

we find,

Mξ = 2


 ∑


l∈Jξ : r (
l)>q(
l)
q(
l)

(
r (
l)
q(
l) − 1

)
 . (2.5)

The proof of the Theorem 1.2 will be deduced from the following result.

Lemma 2.3. Let p = (pi : i ∈ I ) with pi = Ni/N , i ∈ I . Assume that

min{Ni : i ∈ I } := ψ(N ) ≥ 1, and |�(g)| ≤ L−1ψ(N )

for some L > 1. Then

Mξ ≤ e�∗(ξ )

(
1 − �ξ

ψ(N )

)−|I |/2

− 1 (2.7)

where

�∗(�ξ ) = �ξ

11N (N − �ξ )
(2.8)

Proof: From relation (2.5) it suffices to show that

max

{
r (
l)
q(
l) : 
l ∈ Jξ

}
≤ e�∗(ξ )

(
1 − �ξ

ψ(N )

)−|I |/2

. (2.9)

From (2.4) we have

r (
l)
q(
l) = N �ξ (N − �ξ )!

∏
i∈I Ni !

N !
∏

i∈I

(
(Ni − li )!Nli

i

) . (2.10)
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By using the Stirling formula

m! = em(log m−1)(2πm)1/2eθ(m) with
1

12m + 1
< θ (m) <

1

12m
,

we find,

r (
l)
q(
l) = Z (
l)eH (
l)e�(
l) ,

where

Z (
l) =
(

(N − �ξ )
∏

i∈I Ni

N
∏

i∈I (Ni − li )

)1/2

=
(

1 − �ξ

N

)1/2 ∏
i∈I

(
1 − li

Ni

)−1/2

,

�(
l) = θ (N − �ξ ) − θ (N ) +
∑
i∈I

(θ (Ni ) − θ (Ni − li )) ,

H (
l) = �ξ log N + (N − �ξ )(log(N − �ξ ) − 1) − N (log N − 1)

+
∑
i∈I

(Ni (log Ni − 1) − (Ni − li )(log(Ni − li ) − 1) − li log Ni ).

Then, H (
l) = (N − �ξ ) log(1 − �ξ

N ) − ∑
i∈I (Ni − li ) log(1 − li

Ni
). Let us consider

the maximization problem

max
(

H (
l) : 
l ∈ �ξP(I )
)

where �ξP(I ) = {
l ∈ R
I
+ : li ≥ 0, i ∈ I,

∑
i∈I

li = �ξ }.

It is easy to show that the maximum is attained at li/Ni = χ a constant, then by
the constraints

∑
i∈I li = �ξ we find that li/Ni = �ξ/N for all i ∈ I , and at this

point H (
l) = 0. Since Jξ ⊂ �ξP(I ), we deduce max
(

H (
l) : 
l ∈ Jξ

)
≤ 0.

On the one hand from min(Ni : i ∈ I ) ≥ ψ(N ) and li ≤ �ξ , we have

∏
i∈I

(
1 − li

Ni

)−1/2

≤ (1 − �ξ

ψ(N )
)−|I |/2

then Z (
l) ≤ (1 − �ξ

ψ(N ) )
−|I |/2. A simple computation shows that

θ (N − �ξ ) − θ (N ) ≤ 1

12(N − �ξ )
− 1

12N + 1
= 1 + 12�ξ

12(N − �ξ )(12N + 1)

≤ 13�ξ

144(N − �ξ )N
≤ �ξ

11(N − �ξ )N

On the other hand for all i, θ (Ni ) − θ (Ni − li ) = 0 for li = 0, and for li ≥ 1,

θ (Ni ) − θ (Ni − li ) ≤ −12li + 1

12Ni (12(Ni − li ) + 1)
) ≤ 0 .
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From the latter estimates we get

�(
l) ≤ �ξ

11N (N − �ξ )
= �∗(�ξ ) .

This shows (2.9), and the Lemma follows. �

Let us finish the proof of Theorem 1.2. From relations (2.1), (2.3) and (2.7),
and by using the hypothesis of the Theorem, we obtain

||ν|(Sµ(g)) − ν(g) | ≤
∑

ξ∈{0,1}�: n(ξ )=N

||g||∞ Mξ |µ|(ξ | n = N )

≤ ||g||∞
∑

ξ∈{0,1}�: n(ξ )=N

(
e�∗(ξ )

(
1 − �ξ

ψ(N )
)

)−|I |/2

− 1

)
|µ|(ξ | n = N) .

From |�(g)| ≤ L−1ψ(N ) and ψ(N ) ≤ N we have �ξ ≤ L−1 N . Below we use
(1 − x)−1 ≤ 1 + hx when 0 ≤ x ≤ (h − 1)/h, to deduce that

�∗(�ξ ) ≤ (2L − 1)�ξ

11(L − 1)N 2
.

From the inequality �ξ ≤ L−1ψ(N ), we get

(
1 − �ξ

ψ(N )

)−|I |/2

=
(

(1 − �ξ

ψ(N )
)−1

)|I |/2

≤
(

1 + L�ξ

(L − 1)ψ(N )

) |I |
2

≤ 1 + |I |2 |I |
2 −1L�ξ

2(L − 1)ψ(N )

Finally(
e�∗(ξ )

(
1 − �ξ

ψ(N )

)−|I |/2

− 1

)
= |I |2 |I |

2 −1L�ξ

2(L − 1)ψ(N )
+ O

(
(2L − 1)�ξ

11(L − 1)N 2

)

The theorem follows directly from all these bounds.
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