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using neural networks

Abstract The behavior of a multivariable predictive
control scheme based on neural networks applied to a
model of a nonlinear multivariable real process, con-
sisting of a pressurized tank is investigated in this paper.
The neural scheme consists of three neural networks; the
first is meant for the identification of plant parameters
(identifier), the second one is for the prediction of future
control errors (predictor) and the third one, based on the
two previous, compute the control input to be applied to
the plant (controller). The weights of the neural net-
works are updated on-line, using standard and dynamic
backpropagation. The model of the nonlinear process is
driven to an operation point and it is then controlled
with the proposed neural control scheme, analyzing the
maximum range over the neural control works properly.
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1 Introduction

The artificial neural networks (ANN) is a technique
which is able to approximate relationships between
multiple inputs and multiple outputs of a system [1–3].

The network is trained to approximate these relation-
ships using appropriate input–output data. For this
reason the ANN have received considerable attention
lately in multivariable control systems [4–6].

The control techniques based on models have been
developed to obtain a more precise control. Among
them, the control with predictive model has been suc-
cessfully used in several industrial plants. In most
applications of techniques with predictive model, a lin-
ear model is used to predict the behavior of the process
on the horizon of interest [7, 8]. The majority of the real
processes show a nonlinear behavior and some works
have extended the techniques of the predictive control
incorporating nonlinear models [9–11].

The most difficult part in the realization of a predic-
tive nonlinear control scheme is the derivation of a
mathematical model. In many cases, it is even impossible
to obtain a satisfactory model of the process physically
based, due to its complexity. A promisory way of
avoiding these problems is the use a neural network like
a nonlinear black-box model of the process behavior
[12–14].

During the past decade, several application and theo-
retically oriented work has been developed in the area of
predictive control using neural networks. It is interesting
tomention the applications to chemical plants [15–19] and
metallurgical processes [20–22] amongst others. Also, it is
worth to mention some theoretical developments using
multistep models [23], robust predictive control using re-
gional knowledge [24], structured predictive control for
constrained models [25], neural predictive control for
nonlinear systems [26, 27] and generalized predictive
control based on neural networks [28].

Recently, a predictive neural control strategy has
been developed [29, 30] by the authors, which is briefly
described in Sect. 3 for continuity. In this paper, the
behavior of the control strategy proposed in [29, 30] is
evaluated on a dynamical model of a multivariable plant
consisting of a cylindrical tank containing a water col-
umn pressurized by air and compared with control
techniques used in [31]. The control objective is to
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maintain the level of the liquid and the pressure of the
air contained in the cylinder, in desired reference points.
The most relevant dynamics is described through a
nonlinear model of the process. First, the model is re-
duced to its linear equivalent in an operation point and
is controlled with the neural control scheme proposed in
[29]. Later on, the nonlinear models of the process is
directly controlled using the proposed technique.

The paper is organized so that in Sect. 2 the nonlinear
model of the pressurized tank is briefly explained. Section
3 is devoted to the description of the multivariable neural
predictive control scheme and the characteristics of the
neural networks used in the control scheme are presented
in Sect. 4. Simulation results under different operating
conditions are given in Sect. 5 while in Sect. 6 some con-
clusions are drawn.

2 Pressurized tank

The process consists of a cylindrical tank containing a
water column pressurized by air. Figure 1 shows a
simplified diagram of the process. A centrifugal pump P
feeds water into the tank through the pneumatic valve
v1, and a compressor C feeds air through the pneumatic
valve v2. The liquid can drain from the tank through a
manual valve v3 while air can leave the tank through a
discharge valve v4. Measurements of the process out-
puts; the level of the liquid column y1 and the gauge
pressure y2 of the inner air, are obtained by means of
pressure transducers. The valves v1 and v2 are handled
through electro-pneumatic transducers by voltage sig-
nals u1 and u2. The total height of the tank is L=1.05 m
and the diameter is D=0.075 m.

The nonlinear model describing the plant dynamics
has been thoroughly studied in [29, 31, 32] and can be
expressed in terms of the following state variables:

– x1 level of the liquid (m)
– x2 air pressure (bar gauge)

– x3 opening of the water valve 1 (o/1) (v1)
– x4 opening of the air valve 2 (o/1) (v2) The differential

equations, describing the dynamic behavior of the
system (see Appendix for numerical values) are the
following:

dx1
dt
¼ 1

qlS
ðqlf � qldÞ; ð1Þ

dx2
dt
¼ 1

ðL� x1Þ
ð1þ x2Þ

dx1
dt
þ

RT qg

SNt
ðqgf � qgdÞ

� �
; ð2Þ

dx3
dt
¼ 1

s1
ðklu1 � x3Þ; ð3Þ

dx4
dt
¼ 1

sg
ðkgu2 � x4Þ: ð4Þ

The variables qij denote the feed (j=f) and discharge
(j=d) flows rates of the liquid (i=l) and gas or air (i=g)
streams. Equations (1) and (2) are obtained from the
mass balance principle and the ideal gas law. L and S are
the height and surface of the tank, ql and qg are the
liquid and air densities respectively, R is the universal
gas constant and T is the air temperature. Nt is the
conversion constant from (Nw/m2) to (atm). Equations
(3) and (4) result from a first-order dynamics charac-
terization of valves v1 and v2 using experimental obser-
vations. sl and sgare the time constants of valves v1 and
v2, respectively, and kl and kg are proper constants of
valves v1 and v2, respectively.

The liquid flow rates (qlf, qld) and air flow rates (qgf, qgd)
are modeled according to the square root of the differen-
tial pressure across the valves and they are given by

qlf ¼ x3Klf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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qld ¼ xldKld

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ

qlG
Nt
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Nt
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qgf ¼ x4KgfðPgf � x2Þ0:65; ð7Þ

qgd ¼ xgdKgd
ffiffiffiffiffi
x2
p

; ð8Þ

where xld and xgd are the valves openings for valves v3
and v4 respectively, and Kij are proper constants of
valves v1, v2, v3 and v4.

The numerical values of all parameters and constants
of the model are given in the Appendix. The states and
inputs satisfy the following constraints:

0 � x1 � �x1; 0 � x2 � �x2;
0 � x3 � 1; 0 � x4 � 1;
0 � u1 � �u1; 0 � u2 � �u2;

ð9Þ

where �u1 ¼ �u2 ¼ 1ðV Þ (maximum voltage signal) and
�x1; y �x2 are bounds established by the designer. The
bounds on the components of the output vector are
identical to the states x1 and x2 since y1=x1 and y2=x2.

Fig. 1 Pressurized tank system used in the experimental study



The dynamics of the air pressure x2 and air valve x4
are much faster than the dynamics of the liquid level x1
and water valve x3. Indeed, open-loop step-response
experiments with the liquid level, under zero air gauge
pressure, reveal a time constant between 50 and 70 s for
x1, depending on the operation point, whereas, the time
constant for the air pressure x2 is approximately 1.3 s. A
sample period of h=0.1 s. was chosen to adequately
sample the pressure signals.

3 Multivariable control schemes

The configuration of multivariable control used in this
study corresponds to the neural scheme based on model
with and without prediction of the control error de-
scribed in references [29, 30]. Figure 2 shows both
MIMO schemes adapted to the process variables of the
plant described in Sect. 2.

The central idea is to improve the direct control ap-
proach with model (Fig. 2a), by optimizing the neural
network controller with respect to the present as well as
the future control errors. In order to obtain the future
errors, a predictive network with d step ahead is pro-
posed (Fig. 2b).

The predictive neural control scheme is designed for
a MIMO plant, where u(t) Rp and y(t) 2Rm are the
input and output variables, respectively. The NN de-
noted as NI corresponds to the identifier which gives
us an estimation ŷðtÞof output variable y(t). This is
based on a series-parallel identification scheme using
as input data the plant input and the plant output
collected on-line at time k and some delayed instants
of time. The identifier parameters (weights) are ad-
justed using static backpropagation of the identifica-
tion error eiðtÞ ¼ yðtÞ � ŷðtÞ 2 <m; with the aim of
minimizing some criteria function of the identification
error.

The NN denoted as NC represents the controller and
provides the control variable u(t) 2Rm to be applied to
the plant. This is done using as input data the reference
signal and the plant output at time k and at some de-
layed instants of time. The controller parameters
(weights) are adjusted using dynamic backpropagation
[29, 30] of the control error ec(t) = y(t) � r(t) 2Rm,
through the identified model (since the plant is un-
known) and with the objective of minimizing some cri-
teria function of the control error at time k and up to d
step ahead, ec(k), ec(k+1), …, ec(k+d), such that the
following criterion function is minimized:

JðtÞ ¼ 1

2

Xi¼d

i¼0
kie2cðt þ iÞ; with ki ¼

1

1þ d

Finally, the NN denoted by NP provides a prediction
of the future control errors (prediction errors) using as
input data the reference signal, the plant input and the
plant output at time k and at some delayed instants of
time. Notice that the reference input is not needed in
advance. The parameters (weights) of the prediction NN
are updated in two stages; during the training phase the
weights of the NP are updated using past information
with the objective of minimizing a criterion function
depending on past known predicted errors, and then
based on these weights, the future values of the control
errors are computed (prediction phase).

4 Neural networks characteristics

In this section the main characteristics of the neural
networks used in the control scheme are described. After
a series of previous tests the signals, delays and struc-
tures of the neural networks considered to control the
model of the nonlinear process described in Sect. 2 were
chosen as follows:

(a) Controller network

• – Four layers (Input, two hidden and output)
• – Input layer is conformed by:

(a) • – Two references with four delays each. [r1(k�1),
r1(k�2), r1(k�3), r1(k�4), r2(k�1), r2(k�2),
r2(k�3), r2(k�4)]

Fig. 2 Configuration of control scheme using a neural scheme based
onmodel. aWithout prediction network. bWith prediction network.
(Nc Controller network Ni Identifier network. Np Predictor
network)



(a) • – Two feedback outputs with four delays each.
[x1(k�1), x1(k�2), x1(k�3), x1(k�4), x2(k�1),
x2(k�2), x2(k�3), x2(k�4)]

• – First hidden layer with 10 neurons and activation
function tanh.

• – Second hidden layer with 5 neurons and activation
function tanh.

• – Output layer with 2 neurons and activation func-
tion tanh (output u1(k) and u2(k)).

• – Sample period 0.2 s

(b) Identifier network

• – Four layers (Input, two hidden and output)
• – Input layer is conformed by:

(b) • – Two inputs with four delays each. [u1(k�1),
u1(k�2), u1(k�3), u1(k�4), u2(k�1), u2(k�2),
u2(k�3), u2(k�4)]

(b) • – Two feedback outputs with four delays each.
[x1(k�1), x1(k�2), x1(k�3), x1(k�4), x2(k�1),
x2(k�2), x2(k�3), x2(k�4)]

• – First hidden layer with 10 neurons and activation
function tanh.

• – Second hidden layer with 5 neurons and activation
function tanh.

• – Output layer with 2 neurons and linear activation
function. (output ŷ1ðkÞ and ŷ2ðkÞÞ

• – Sample period 0.2 s

(c) Predictor network

• – Four layers (Input, two hidden and output)
• – Input layer is conformed by:

(c) • – Two inputs with four delays each. [u1(k�1),
u1(k�2), u1(k�3), u1(k�4), u2(k�1), u2(k�2),
u2(k�3), u2(k�4)]

(c) • – Two outputs with four delays each. [x1(k�1),
x1(k�2), x1(k�3), x1(k�4), x2(k�1), x2(k�2),
x2(k�3), x2(k�4)]

(c) • – Two references with four delays each. [r1(k�1),
r1(k�2), r1(k�3), r1(k�4), r2(k�1),
r2(k�2),r2(k�3), r2(k�4)]

• – First hidden layer with 10 neurons and activation
function tanh.

• – Second hidden layer with 5 neurons and activation
function tanh.

• – Output layer with 6 neurons and linear activation
function. (output three prediction periods
[e1(k+1), e1(k+2), e1(k+3), e2(k+1), e2(k+2),
e2(k+3)])

• – Sample period 0.2 s

5 Simulation results

In this section the simulation results of the control
strategy applied to the nonlinear model of the plant are

presented. When the control of the nonlinear model was
done using neural networks with linear activation
functions it was impossible to achieve a stable control.
Therefore, only results with nonlinear activation func-
tions are shown.

The control scheme used in this case is shown in
Fig. 2. In this scheme the nonlinear model of the pres-
surized tank, described by (1) to (8) and the nonlinear
networks in the controller, identifier and predictor units
described in Sect. 4 were used. In the simulations, two
kinds of control schemes were considered; with and
without prediction network.

Figures 3 and 4 illustrate the behavior of the system
when it is carried out the transference from manual
control to the neural automatic control at t=0. It is
observed a transient of adaptation during a short period
of time, so that the neural networks are adjusted to the
new operation point. In Fig. 4 the evolution of control
variables can be observed for this case.

Figures 5 and 6 show the system response when the
neural control without prediction is used. In Fig. 5a
and b the responses of x1 and x2 for changes in their
references are illustrated. In Fig. 5b, when changing
the reference of x2 at the instant 800 s, from 0.1 to 0.2
(bar) and at instant 1,100 s, from 0.2 at 0.1 (bar), a
low degree of interaction between x2 and x1 is
appreciated, both in stationary and in transient
regimes. An oscillatory effect in the transient stage
appears in the output x2. Also, from Fig. 5a when
varying the level reference at instant 200 s, from 0.4 to
0.6 (m) and at instant 500 s, from 0.6 to 0.4 (m), a
small interaction between the level x1 and the pressure
x2 is observed.

In Fig. 6 the evolution of control variables u1 and u2
are shown, which have a suitable behavior.

Figures 7 and 8 show the response of the neural
control system with predictive effects. The responses
for changes in references of x1 and x2 are illustrated in
Fig. 7. From this, a small interaction of x2 with x1 is
appreciated, both in stationary and in transient re-
gime. This is because the predictor network needs
more training time due to the large number of weights
to adjust. Increasing the learning ratio in the predic-
tive scheme can increase the adjustment speed. The
oscillatory effects of the transient stage observed in the
case without predictor network, are minimized; be-
cause the predictive effect makes more stable the
system.

In Fig. 8 the evolution of control variables u1 and
u2 is shown in this control scheme using predictive
effect.

6 Conclusions

A new strategy of neural control with predictive effects
has been presented and applied at simulation level to a
process consistent in a pressurized tank. This control



strategy offers a simple control method since only
a reduced number of parameters should be initially
chosen. The weights of the networks can be

initially trained off-line using process data or can be
trained on-line if the process is brought to an operation
point.

Fig. 4 Variations of the input variables when the control is passed
from manual to neural automatic

Fig. 3 Variations of the output variables when the control is passed
from manual to neural automatic. a Tank level b Air pressure

Fig. 5 Tank control applying neural control without predictive
effects, nonlinear model and nonlinear NN case. a Tank level x1
b Air pressure x2

Fig. 6 Tank control applying neural control without predictive
effects, nonlinear model and nonlinear NN case. Control variables
of the valves v1 and v2



Comparing the results obtained in this study with
those of the work [31] (although in this reference the
tests are carried out in a real process) it can be observed
that the controlled variables are properly decoupling
and quick and stable response is gotten.

A comparison of the control strategies with and
without predictive effects, maintaining the rest of the
parameters without changes, was analyzed. The
predictive effect makes the control more stable.
However, the transient stage is slower, which can be
improved by increasing the learning ratio of the
networks.

Considering the linear model of the tank in an opera-
tion point it is possible to conclude that the control using
nonlinear networks is more effective in decoupling the
variables then that using linear networks. The simulations
using linear neural networks was not presented in this
work for the sake of space, but from the simulations
carried out it was concluded that it is very difficult to
satisfy the control objectives under those conditions.

Acknowledgments The research contained in this paper was sup-
ported by CONICYT under grants FONDECYT 1970351 and
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Fig. 7 Tank control applying
neural control with predictive
effects, nonlinear model and
nonlinear NN case. a Tank level
x1 b Air pressure x2
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29. AMSuárez (1998)Nueva arquitectura de control predictivo para
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