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Abstract

A circular-arc graph is the intersection graph of arcs on a circle. A Helly circular-arc
graph is a circular-arc graph admitting a model whose arcs satisfy the Helly prop-
erty. A clique-independent set of a graph is a set of pairwise disjoint cliques of the
graph. It is NP-hard to compute the maximum cardinality of a clique-independent
set for a general graph. In the present paper, we propose polynomial time algo-
rithms for finding the maximum cardinality and weight of a clique-independent set
of a 3K2-free CA graph. Also, we apply the algorithms to the special case of an
HCA graph. The complexity of the proposed algorithm for the cardinality problem
in HCA graphs is O(n). This represents an improvement over the existing algorithm
by Guruswami and Pandu Rangan, whose complexity is O(n2). These algorithms
suppose that an HCA model of the graph is given.
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1 Introduction

The aim of this work is to describe algorithms for finding the clique-indepen-
dence number for certain classes of graphs. We consider both the cardinality
and weighted versions of the problem. The classes of graphs here considered
are subclasses of circular-arc graphs: Helly circular-arc graphs and 3K2-free
circular-arc graphs.

Helly circular-arc graphs form an important class of circular-arc graphs. Some
properties of interval graphs are captured more closely by Helly circular-arc
graphs than by other classes of circular-arc graphs. On the other hand, the
class of 3K2-free circular-arc graphs contains that of Helly circular-arc graphs.
Furthermore, the cliques of the 3K2-free circular-arc graphs preserve some of
the properties of those of the Helly circular-arc graphs.

The first NP-hardness result for clique-independent sets appears in [7]. The
following are some classes of graphs admitting polynomial time algorithms
for the problems of determining a maximum clique-independent set: strongly
chordal graphs [5], [14]; chordal graphs with bounded clique size [14]; dually
chordal graphs [4]; comparability graphs [1]; balanced graphs [3], [6]; distance
hereditary graphs [16]; short-chorded graphs with no 3-fans nor 4-wheels [10];
Helly circular-arc graphs [14].

Let G be an undirected connected graph, V (G) and E(G) its vertex and edge
sets, respectively, |V (G)| = n and |E(G)| = m. For v ∈ V (G), denote by N(v)
the set of neighbours of v, and N [v] = N(v) ∪ {v}. Say that v is universal
when N [v] = V (G). A complete set of G is a set of pairwise adjacent vertices.
A clique is a maximal complete set. An independent set is a set of pairwise non
adjacent vertices. A clique-independent set is a set of pairwise disjoint cliques.

The clique graph K(G) of G is the intersection graph of the cliques of G. Let
M1, . . . , Mk and v1, . . . , vn be the cliques and vertices of a graph G, respec-
tively. We define AG, a clique matrix of G, as a 0-1 matrix whose entry (i, j)
is 1 if vj ∈ Mi, and 0 otherwise.

A circular-arc (CA) model for G is a pair (C,A), where C is a circle and A is
a collection of arcs of C, such that each arc Ai ∈ A corresponds to a vertex
vi ∈ V (G), and Ai, Aj intersect precisely when vi, vj are adjacent, i 6= j. A
circular-arc (CA) graph is one admitting a CA model. When traversing the
circle C, we will always choose the clockwise direction. If s, t are points of C,
write (s, t) to mean the arc of C defined by traversing the circle from s to t.
Call s, t the extremes of (s, t), while s is the start and t the end of the arc.
For Ai ∈ A, write Ai = (si, ti). Without loss of generality, all arcs of C are
considered as open arcs, no two extremes of distinct arcs of A coincide and no
single arc entirely covers C.
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Circular-arc graphs have a variety of applications in a lot of fields (see for
example [12]). The first characterization of circular-arc graphs is due to Tucker
[20], who also gave an O(n3) algorithm for their recognition [21]. Recently,
McConnell [17] improved this to O(n+m). Different subclasses of circular-arc
graphs have been studied in the literature, such as Helly circular-arc graphs,
proper circular-arc graphs and unit circular-arc graphs.

A Helly circular-arc (HCA) graph G is a CA graph admitting a CA model
whose arcs satisfy the Helly property. That is, every pairwise intersecting
subfamily of arcs of A contains a common point. Such a model is called a Helly
circular-arc (HCA) model for G. Gavril [11] has characterized HCA graphs
as exactly those admitting a clique matrix having the circular 1′s property
for columns. This characterization leads to an algorithm for recognizing HCA
graphs, which builds an HCA model in O(n3) time if that model exists.

We employ the following notation. Let G be a graph:

• αc(G), maximum cardinality of a clique-independent set of G,
the clique-independence number

• α̃c(G), maximum weight of a clique-independent set of G
• α(G), maximum cardinality of an independent set of G,

the independence number
• α̃(G), maximum weight of an independent set of G

In the present paper, we propose algorithms for solving the following problems.
For Helly circular-arc graphs G, we describe algorithms for determining αc(G)
and α̃c(G). The algorithm for the cardinality version of this problem requires
O(n) time, while for the weighted version it requires O(n2). For 3K2-free
circular-arc graphs, the proposed algorithm determines αc(G) in O(m) time
and α̃c(G) in O(m log log n+n2). Besides clique-independent sets, the method
also leads to the description of an algorithm for constructing the clique graph
of a Helly circular-arc graph. The proposed algorithm runs in O(n2) time.
Clique graphs of Helly circular-arc graphs were considered in [8,2].

An algorithm for solving the cardinality problem on Helly circular-arc graphs
has been previously described by Guruswami and Pandu Rangan [14]. The
complexity of this algorithm is O(n2). Algorithms for the remaining above
problems have not been reported so far, to our knowledge.

As usual for many algorithms on circular-arc graphs, we assume that the graph
is given by its circular-arc model, with the extremes of the arcs circularly
sorted. If they are not sorted we would need to add an extra O(n log n) time
for the sorting. The Helly circular-arc graphs are assumed to be represented
by a Helly model. All weights here considered are non negative real values.

Let G be a graph admitting a CA model (C,A). For A ∈ A, denote by V (A)
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the vertex of G corresponding to A. Similarly, forA′ ⊆ A, V (A′) = {V (A)|A ∈
A′}. If V (A) is a universal vertex then A is a universal arc. If an arc A ∈ A
contains some point p ∈ C then say that A is an arc of p. Denote by A(p) the
collection of arcs of p. Clearly, V (A(p)) is a complete set of G. For p, p′ ∈ C
say that p (properly) dominates p′ when A(p) (properly) contains A(p′). When
A(p) = A(p′) then p, p′ are equivalent. Say that p ∈ C is a complete point when
no point of C properly dominates p. In addition when V (A(p)) is a clique of G
then p is a clique point of C. Such a clique is called a Helly clique. Clearly, G
might contain cliques that are not Helly. However, if (C,A) is a Helly model
then all its cliques are Helly. In this case, there is a one-to-one correspondence
between cliques of G and non equivalent clique points of C. On the other hand,
any non Helly clique contains at least three vertices. Furthermore, among the
arcs of A corresponding to the vertices of a non Helly clique there exist always
three of them which together cover the entire circle.

The plan of the paper is as follows. In Section 2, we describe methods for
determining sets of complete and clique points, which are employed in the
proposed algorithms. Algorithms for clique-independence problems are con-
sidered in Section 3. Further remarks form the last section. Preliminary results
of this work appear published in [9].

2 Intersection Segments

In this section, we describe a method for finding sets of complete points of a
CA graph. These sets will be employed in the algorithms proposed in the next
section. The following concepts are central for our methods.

Let G be a graph admitting a CA model (C,A). DenoteA = {A1, . . . , An} and
Ai = (si, ti), 1 ≤ i ≤ n. A segment is an arc of C formed by two consecutive
extremes of the arcs of A, when traversing C. Clearly, there are 2n segments,
which exactly cover C, except for their extreme points. Also, each arc of A
corresponds to a sequence of consecutive segments. All points belonging to a
same segment are equivalent. An intersection segment is a segment of the type
(si, tj), that is, its start point is the start point of some arc arc Ai ∈ A, while its
end point is the end point of an arc Aj ∈ A. Write Ii = (si, tj). A point pi ∈ Ii

is called an intersection point. There are at most n intersection segments. The
following theorem relates complete points to intersection segments.

Theorem 1 : Every complete point is an intersection point.

PROOF. Let G be a graph having a model (C,A) and p a complete point of
C. Denote I = (x, y) as the segment of C which p belongs to. We show that
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I must be an intersection segment.

Case 1: x = ti, for some i
Clearly A(p) is formed by the arcs of A which contain I. Since x = ti, no arc of
A starts at x. Consequently, all arcs of A(p) also contain the segment I ′, which
immediately precedes I in C. Let p′ ∈ I ′. Then A(p′) ⊇ A(p). Furthermore,
Ai ∈ A(p′) \ A(p). That is, the inclusion is proper, meaning that p is not a
complete point.

Case 2: x = si and y = sj, for some i 6= j
The situation is similar to Case 1, except that I ′ becomes the segment that
immediately succeeds I in C.

Case 3: x = si and y = tj
Since neither Case 1 nor 2 can occur then Case 3 must apply.

Consequently, I = (si, tj), meaning that I is an intersection segment, i.e., p is
indeed an intersection point. 4

The converse of the above theorem does not necessarily hold. In order to relate
intersection points to complete points, we employ the following additional
notation. An intersection segment Ii = (si, tj) is simple when Ai ∪ Aj 6= C,
and universal otherwise. That is, Ii is universal when Ai and Aj cover the
entire circle. A point belonging to a simple segment is a simple point, whereas
one inside a universal segment is a universal point.

Theorem 2 Let Ii = (si, tj) be an intersection segment and p ∈ Ii. Then

(2.1) If p is simple then p is complete.
(2.2) If p is universal then p is either complete or it is properly dominated by
some intersection point p′ ∈ (sj, ti).

PROOF. We know that Ai, Aj ∈ A(p), because Ii = (si, tj) and p ∈ Ii.
Suppose that (2.1) is not true. Then there exists a point p′ ∈ C, such that
A(p′) properly contains A(p). Clearly, p′ 6∈ Ii. If i = j, then Ii = Ai, implying
that Ai ∈ A(p) \ A(p′), contradicting A(p′) ⊇ A(p). Consequently, i 6= j.
The latter implies Ai, Aj ∈ A(p) ∩ A(p′). In this situation, Ai ∪ Aj = C,
contradicting Ii to be simple. Then p is indeed a complete point and (2.1)
holds.

In the sequel, we prove (2.2). By hypothesis, p is universal. If p is not complete
then there exists p′ ∈ C which properly dominates p. Consequently, Ai, Aj ∈
A(p)∩A(p′). Since p′ 6∈ Ii, the latter implies p′ ∈ (sj, ti). We can choose p′ to
be maximal, i.e. complete. By Theorem 1, p′ is an intersection point. 4
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Next, we consider some special subsets of points of C which are of interest. De-
fine the following four subsets. A complete (simple) (universal) (clique) point
representation of C is a maximal set of complete (simple) (universal) (clique)
non equivalent points of C. Represent these sets by P, S, U,Q, respectively.
We describe how to construct them.

Let P ′, P ′′ ⊆ C be two subsets of points of C. Then P ′, P ′′ are isomorphic
when there exists a bijection f between these sets such that p′ and f(p′)
are equivalent, for all p′ ∈ P ′. Clearly, any two complete (simple) (universal)
(clique) point representations are isomorphic. That is, P, S, U,Q are all unique,
up to isomorphism. Consequently, we can write P = S ∪U ′, for some U ′ ⊆ U .
Also, Q ⊆ P , with Q = P precisely when (C,A) is a Helly model. Clearly, Q
corresponds to the set of Helly cliques of G. Moreover, the Helly cliques can
be further bipartitioned, as follows. Let Mi be a Helly clique of G and pi the
clique point of Q corresponding to Mi. Then Mi is a simple clique or universal
clique, according whether pi is a simple or universal point, respectively.

Theorems 1 and 2 lead to an algorithm for constructing a complete point
representation P of C, given a CA model (C,A) for a graph G. In fact, the
algorithm constructs explicitly the simple point representation S and then
finds U ′ ⊆ U , such that P = S ∪ U ′. The algorithm is divided into two
steps. Step 1 constructs S and a set U ′′ ⊇ U , which contains U and possibly
some additional equivalent points. Step 2 determines U ′ by including in it one
universal point (the one with lowest index), for each collection of equivalent
complete points. The algorithm employs a list L to contain this collection.

Algorithm 1 CONSTRUCTING A COMPLETE POINT REPRESENTA-
TION OF A CA GRAPH

STEP 1: Identify the segments of C. Define S = U ′′ = ∅. For each segment
(x, y) of C, if x is the start of some arc Ai ∈ A and y the end of Aj ∈ A
then let pi be a point of (x, y) and perform the following additional test: if
Ai ∪ Aj 6= C, include pi in S, otherwise include pi in U ′′.

STEP 2: Define U ′ = ∅. For each universal point pi ∈ U ′′, let Ii = (si, tj)
be its corresponding universal segment. For each pi ∈ U ′′, apply the following
procedure. Compute A(pi). Define L = {i}. Traverse the arc (sj, ti) ⊆ C,
segment by segment, in the order as they appear. In case of an intersection
segment (sk, tl) ⊆ (sj, ti), choose a point pk ∈ (sk, tl), compute A(pk), and if
A(pi) = A(pk) then include k in L. After all segments contained in (sj, ti)
have been traversed then include pr in U ′ precisely in the case where pi is not
properly dominated by any pk, and r = min{k ∈ L}. At the end, P = S ∪ U ′.

It is simple to verify that the algorithm is correct. Let Ii be a simple segment
of C. By (2.1) of Theorem 2, pi ∈ Ii must be a complete point and by Theorem
1, Ii is an intersection segment. Furthermore, no two simple points in distinct
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intersection segments can be equivalent. Because, if Ii = (si, tj) and Ik, i 6= k,
are two simple segments, while pi ∈ Ii and pk ∈ Ik are equivalent simple
points then Ai and Aj must cover the entire circle, contradicting Ii and Ik to
be simple. Consequently, Step 1 correctly constructs S and therefore U ′′. For
Step 2, assume that (si, tj) is a universal segment, and pi ∈ (si, tj). By (2.2)
of Theorem 2, pi is complete or there exists some pk ∈ (sj, ti) which properly
dominates pi. In the latter situation, pi 6∈ U ′, which corresponds exactly to the
action taken by the algorithm. When pi is complete, U ′ must contain exactly
one among the set of (complete) points equivalent to pi. By Theorem 1, all
such complete points must be intersection points. Step 2 chooses the one with
the lowest index, and correctly constructs U ′.

Now, we determine the complexity of the algorithm. In Step 1, the operations
of deciding if a segment is an intersection segment and partitioning the inter-
section segments into simple and universal are all straightforward and can be
answered in constant time, per segment. Consequently, Step 1 requires O(n)
time. In Step 2, we analyse each iteration i. It takes O(n) time to construct
A(pi) and A(pk), for the first intersection segment Ik ⊆ (sj, ti) reached in the
traversal of (sj, ti). For the remaining ones, consider two consecutive segments
(not necessarily intersection segments) Ik, Ik′ inside (sj, ti) and let p be the end
point of Ik. Then, if p = sb for some arc Ab ∈ A, construct A(pk′) from A(pk),
just by including in A(pk) the arc Ab; otherwise, p = tb, and obtain A(pk′) by
removing Ab from A(pk). Since each arc is manipulated at most twice in the
entire traversal, we conclude that the construction of all A(pk) can be done
in O(n) time. Checking the containments conditions and the minimality also
require O(n) time. Consequently, the complexity of Step 2 is O(n2). Therefore
Algorithm 1 constructs S and U ′′ in O(n) time and U ′ ⊆ U in O(n2) time.
Consequently, we require O(n2) time for constructing P .

For determining U , possibly we need to eliminate equivalent points from the
subset U ′ constructed in Step 1. It can be easily performed in overall O(n2)
time.

Finally, consider the determination of the clique point representation Q of C.
To obtain Q ⊆ P , we need to remove from P those points p ∈ P , such that
V (A(p)) is not a clique. With this purpose, apply the following algorithm.

Algorithm 2 CONSTRUCTING A CLIQUE POINT REPRESENTATION
OF A CA GRAPH

Define Q := P . For each complete point p ∈ P , perform the following oper-
ations. Denote by (si, tj) the intersection segment corresponding to p. Define
so := sj. Traverse the arc (tj, ti), identifying the extreme points q of the arcs
Ak ∈ A, such that q is the first extreme of Ak, in the traversal. For each such
extreme q, do the following: if q = sk and tk ∈ (s0, si) then Q := Q \ {p} and
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terminate the iteration corresponding to p (p is not a clique point); if q = tk
and sk ∈ (s0, si) then assign s0 := sk. At the end, Q is the required clique
point representation.

Theorem 3 The set Q constructed by Algorithm 2 is a clique point represen-
tation.

PROOF. Let p ∈ P be a complete point of C. We prove that Algorithm
2 excludes p from Q precisely when p is not a clique point of C. Let (si, tj)
be the intersection segment corresponding to p. Label as white the arcs of A
containing (si, tj), and as black the remaining arcs. Observe that p is not a
clique point if and only if there exists a black arc intersecting all white ones.
Furthermore, in a traversal of C, starting from tj, and arc (sk, tk) is white if
tk precedes sk in the traversal, and black otherwise.

Suppose p is a clique point. Then for any black arc (sk, tk), where sk ∈ (tj, ti),
there is a white arc (sh, th) not intersecting Ak. Consequently, th ∈ (tj, sk)
and sh ∈ (tk, si), meaning that th precedes sk in the traversal. When the
algorithm considers sk, the extreme s0 defined by the algorithm belongs to
[sh, si). Consequently, tk 6∈ (s0, si), implying that the algorithm would not
exclude p from Q during the computation of sk. Therefore, after considering
the last extreme of the arc (tj, ti), p is still in Q.

Alternatively, suppose p is not a clique point. Then there exists a black arc Ak

intersecting all white ones. Clearly, sk ∈ (tj, ti). When the algorithm considers
the extreme sk, it follows that tk ∈ (s0, si), otherwise there exists a white arc
(sh, th) satisfying s0 = sh, and such an arc does not intersect Ak, a contra-
diction. Therefore, the algorithm terminates the iteration corresponding to p
and excludes it from Q. 4

To determine the complexity of the algorithm, observe that for each complete
point p ∈ P , the number of steps performed is at most the number of extremes
contained in the arc (tj, ti), which is less than twice the degree of the vertex
of the graph corresponding to arc Ai. Consequently, it takes O(n) time to
decide if a complete point p ∈ P is a clique point. Furthermore, given P the
algorithm constructs Q in O(m) time.

3 Algorithms for clique-independent sets

In this section, we describe algorithms for finding the maximum cardinality
and weight of a clique-independent set of a 3K2-free CA graph. Also, we apply
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the algorithms to the special case of an HCA graph. First, we introduce some
additional notation.

Let G be a graph admitting a CA model (C,A). Let Ii = (si, tj) be an intersec-
tion segment and pi ∈ Ii. The arc reduction of pi is the arc Ri = (si, ta) ⊆ C,
where (pi, ta) ⊇ (pi, tl), for all Al ∈ A(pi). That is, for Ii = (si, tj), select
the arc Aa = (sa, ta) ∈ A(pi), such that ta is as far as possible from tj, when
traversing C. Then Ri = (si, ta) ⊆ Aa. Let Q be the clique point representa-
tion of C, and Q′ ⊆ Q. Denote by GR(Q′) the intersection graph of the arc
reductions of the clique points of Q′. On the other hand, denote by K̂(Q′) the
intersection graph of the family of subsets of arcs {A(pi)|pi ∈ Q′}. Clearly,
K̂(Q′) is an induced subgraph of the clique graph K(G) of G. The following
theorem relates GR(Q′) with K̂(Q′).

Theorem 4 Let G be a graph admitting a CA model (C,A), Q the clique
point representation of C and Q′ ⊆ Q. Then GR(Q′) ∼= K̂(Q′).

PROOF. Let pi, pk ∈ Q′ be non equivalent clique points of C, with Ii =
(si, tj), Ik = (sk, tl) the intersection segments containing pi, pk, and Ri, Rk

their corresponding arc reductions, respectively. We show that Ri ∩Rk 6= ∅ if
and only if A(pi) ∩ A(pk) 6= ∅, implying the theorem.

Suppose that A(pi) ∩ A(pk) 6= ∅. Examine the arc reductions Ri, Rk and
compare them to an arc Ac ∈ A(pi) ∩ A(pk). Clearly, in C the extremes of Ii

and Ik appear in the circular ordering si, tj, sk, tl, si. Include the extremes of
Ac in this ordering. Because Ac ∈ A(pi) ∩ A(pk), there are two possibilities:
si, tj, tc, sc, sk, tl, si or si, tj, sk, tl, tc, sc, si. In the first situation, (si, tc) ⊆ Ri ∩
Rk and in the second (sk, tc) ⊆ Ri∩Rk. Consequently, Ri∩Rk 6= ∅, as required.

Conversely, suppose Ri ∩ Rk 6= ∅. Let Ri = (si, ta) and Rk = (sk, tb). Since
Ri ∩ Rk 6= ∅, there are again two possibilities. Either Ii ⊆ Ri ∩ Rk or Ik ⊆
Ri ∩ Rk. In the former alternative, Ab ∈ A(pi) ∩ A(pk), while in the latter
Aa ∈ A(pi) ∩ A(pk). Consequently, A(pi) ∩ A(pk) 6= ∅, completing the proof.

4

We observe that all the arc reductions can be easily computed, as follows.
First, remove all arcs of A which are properly contained in some other arc of
A. Afterwards, choose an arbitrary arc Ak ∈ A and traverse C starting from
sk. In the traversal, each time we meet an intersection segment Ii = (si, tj),
the arc reduction Ri is precisely the arc (si, ta), where Aa is the last arc of A
which started before Ii. Clearly, the above procedure can be implemented in
O(n) time.

Let M′ be the set of cliques of G corresponding to Q′ ⊆ Q, and let K(G)
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be the clique graph of G, that is, the intersection graph of the cliques of G.
We remark that GR(Q′) is also isomorphic to the induced subgraph of K(G)
corresponding to the cliques of M′. This observation together with Theorem 4
imply a simple algorithm for constructing the clique graph of an HCA graph
G, given by its HCA model (C,A), as follows. First, we find Q and then
all arc reductions Ri ⊆ C. Let R = ∪{Ri}. It is clear that (C,R) is a CA
model of the clique graph of G, after adjusting the extremes of the arcs of
R, which may have possibly coincided. As for the complexity, we need O(n2)
time for the construction of Q, while all the arc reductions require O(n) time.
Therefore the construction of K(G), the clique graph of G, takes O(n2) time.

There is a straightforward relation between clique-independent sets of a graph
G and independent sets of its clique graph.

Theorem 5 Let G be a CA graph, Q its clique point representation, Q′ ⊆ Q,
V ′ ⊆ V (K̂(Q′)) and M′ the set of cliques of G corresponding to those clique
points of Q′ associated to the vertices of V ′ in K̂(Q′). Then M′ is a clique-
independent set of G if and only if V ′ is an independent set of K̂(Q′).

For the purpose of the problem of clique-independence in CA graphs, it would
be useful to know whether two cliques could possibly be disjoint. The next
theorem describes conditions which would force the cliques to intersect.

Theorem 6 Let G be a graph with a CA model (C,A), and M,M ′ cliques of
it. If M,M ′ satisfy any of the conditions below then M ∩M ′ 6= ∅.

(6.1) M is Helly and M ′ is universal
(6.2) M is non Helly and M ′ is Helly
(6.3) M and M ′ are both non Helly and G is 3K2-free

PROOF. (6.1): Since M ′ is universal, it contains two vertices whose corre-
sponding arcs in A cover the entire circle. Then any Helly clique contains at
least one of these vertices. Consequently, M ∩M ′ 6= ∅.

(6.2): Because M ′ is a Helly clique, there is a clique point p′ ∈ C representing
it. Since M is non Helly, it contains three vertices whose corresponding arcs
cover the entire circle. Consequently, one of these arcs must contain p′. That
is, M ∩M ′ 6= ∅.

(6.3): By hypothesis, G is 3K2-free and M,M ′ are non Helly cliques. Suppose
M ∩ M ′ = ∅. No arc associated to some vertex v ∈ M can contain an arc
of M ′. Otherwise v ∈ M ′, contradicting M ∩M ′ = ∅. Since M is non Helly,
there is a subset {A1, A2, A3} of three arcs associated to M , covering the
entire circle. For each of these arcs Ai, there is a corresponding arc A′

i of M ′

satisfying Ai ∩ A′
i = ∅, otherwise the vertex vi corresponding to Ai would be
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part of M ′, a contradiction. Examine A′
1, with respect to A2 and A3. Because

A′
1∩A1 = ∅, A′

1 must intersect A2 or A3. In addition, A′
1 can not be contained

in A2, nor A3. Hence A′
1 ∩ A2 6= ∅ and A′

1 ∩ A3 6= ∅. Similarly, there exists
A′

2, A
′
3 corresponding to vertices of M ′, such that A′

2 ∩ A2 = A′
3 ∩ A3 = ∅,

while A′
2 ∩A1, A

′
2 ∩A3, A

′
3 ∩A1, A

′
3 ∩A2 6= ∅. In addition, A′

1, A
′
2, A

′
3 pairwise

intersect, because M ′ is a clique. Therefore the subgraph of G induced by the
vertices corresponding to the arcs A1, A2, A3, A

′
1, A

′
2, A

′
3 is a 3K2, contradicting

the hypothesis. Hence M ∩M ′ 6= ∅. 4

The above results lead to the following equation for computing the clique-
independence number of a 3K2-free CA graph.

Theorem 7 Let G be a 3K2-free CA graph, S and Q the simple and clique
point representations, relative to some CA model of G, respectively. Then

αc(G) =





1, if S ∩Q = ∅
α(GR(S ∩Q)), otherwise

PROOF. Assume G contains two disjoint cliques M, M ′. By applying the
conditions (6.3),(6.2) and (6.1), we conclude that M and M ′ must be simple
cliques. If S∩Q = ∅ there are no simple cliques and therefore no disjoint cliques
can exist. Consequently, αc(G) = 1. Consider S∩Q 6= ∅. By Theorem 6, αc(G)
equals the cardinality of a maximum set of pairwise disjoint simple cliques.
By Theorem 5, αc(G) = α(K̂(S ∩ Q)) and by Theorem 4, α(K̂(S ∩ Q)) =
α(GR(S ∩Q)). 4

The proposed algorithm for determining αc(G) corresponds to the computa-
tion of the equation given by Theorem 7. Let G be a 3K2-free graph with a
given CA model.

Algorithm 3 CLIQUE-INDEPENDENCE NUMBER OF A 3K2-FREE CA
GRAPH

First, construct the simple representation S. Then we can generate S ∩ Q
applying Algorithm 2 to S ⊆ P . If S ∩Q = ∅ then αc(G) = 1. Otherwise, find
all arc reductions and construct a CA model for the graph GR(S∩Q). Finally,
find the maximum independent set of GR(S ∩Q), as αc(G) = α(GR(S ∩Q)).

Next, we determine the complexity of the algorithm. Finding S requires O(n)
time by Algorithm 1, but the determination of S ∩Q (by Algorithm 2) takes
O(m) time. The construction of all arc reductions and finding the CA model
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of GR(S ∩ Q) can be done in O(n) time. Finally, the maximum independent
set of GR(S ∩ Q) can also be computed in O(n) time, using the algorithms
given in [13] or [15]. Therefore the overall complexity is O(m).

In particular, if the given model is an HCA model then S ∩Q = S and S can
be found O(n) time, then the complexity of the algorithm reduces to O(n).

The solution of the weighted clique-independence problem is similar. Let G
be a 3K2-free CA graph, where there is a weight assigned to each vertex.
For a clique M of G, define its weight M̃ as the sum of the weights of the
vertices which form M . The equation below determines the maximum weight
of a clique-independent set of G.

Theorem 8 Let G be a 3K2-free CA graph, S and Q the simple and clique
point representations, relative to some CA model of G, respectively. Denote
by M̃1 the maximum weight of a single clique of G. Then

α̃c(G) =





M̃1, if S ∩Q = ∅
max{M̃1, α̃(GR(S ∩Q))}, otherwise

PROOF. It is analogous to that one of Theorem 7. The only remark we
have to do is that in this case, by Theorem 6, α̃C(G) equals the maximum
between the maximum weight of a set of pairwise disjoint simple cliques and
the maximum weight of a single clique (which could be a non simple clique).4

The algorithm for computing the above formula is as follows. Let G be a
3K2-free graph with a given CA model.

Algorithm 4 MAXIMUM WEIGHT OF A CLIQUE-INDEPENDENT SET
OF A 3K2-FREE CA GRAPH

Select the clique M1 of G having maximum weight M̃1. Construct S and S ∩
Q. If S ∩ Q = ∅ then α̃c(G) = M̃1. Otherwise, construct the CA model of
GR(S ∩Q) and α̃c(G) = max{M̃1, α̃(GR(S ∩Q))}.

Finally, we evaluate the complexity of the algorithm. The maximum weight
clique problem on circular-arc graphs can be solved in O(n log n+m log log n)
time [18]. The weighted independent set of a CA graph can be determined
in O(n2) time [19]. The remaining operations require O(m) time. The overall
complexity is therefore O(m log log n + n2).

When G admits an HCA model, G has at most n cliques. Furthermore, the
maximum weight M̃1 among all cliques can be determined in linear time (using
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the same idea of Step 2 of Algorithm 1) , as M̃1 equals to the maximum weight
among the sets of arcs corresponding to every intersection segment of G. The
dominating operation is that of determining α̃(GR(S∩Q)). Consequently, the
complexity of the algorithm is O(n2).

4 Conclusions

The table below summarizes the problems that have been considered in this
paper, together with the complexities of the corresponding proposed algo-
rithms.

Problem Graph Class Version Proposed alg. Prev. alg.

Clique- HCA cardinality O(n) O(n2) [14]

independence weighted O(n2) -

number 3K2-free CA cardinality O(m) -

weighted O(m log log n + n2) -

In all cases, the algorithms determine the cardinality or the weight of the co-
rresponding maximum clique-independent set. There is no difficulty to modify
them so as to compute the actual maximum sets.

It remains open to determine whether the clique-independence number of a
general CA graph can be found in polynomial time.
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