Polynomial time recognition
of unit circular-arc graphs

Guillermo Durar**, Agustin Gravan®?, Ross M. McConnet,
Jeremy Spinra#] Alan Tucker

a Departamento de Ingenieria Industrial, Facultad de Ciencias Fisicas y Matematicas,

Universidad de Chile, Santiago, Chile
b Departamento de Computacién, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina
€ Computer Science Department, Colorado State University, Fort Collins, CO 80528, USA
d Department of Electrical Engineering and Computer Science, Vanderbilt University,
Nashville, TN 37235, USA

€ Department of Applied Mathematics, State University of New York at Stony Brook,

Stony Brook, NY 11794-3600, USA

Abstract

We present an efficient algorithm for recognizing unit circular-arc (UCA) graphs, based on a char-
acterization theorem for UCA graphs proved by Tucker in the seventies. Given a proper circular-arc
(PCA) graphG, the algorithm starts from a PCA model f6r, removes all its circle-covering pairs
of arcs and determines wheth@ris a UCA graph. We also give afl(N) time bound for Tucker’s
3/2-approximation algorithm for coloring circular-arc graphs wihvertices, when a circular-arc
model is given.

* Corresponding author. Fax: (56) (2) 689-7895.
E-mail addressesgduran@dii.uchile.cl (G. Duran), agravano@dc.uba.ar (A. Gravano),
rmm@cs.colostate.edu (R.M. McConnell), spin@vuse.vanderbilt.edu (J. Spinrad), atucker@notes.cc.sunysh.edu
(A. Tucker).
1 partially supported by FONDECyT Grant 1030498 and Millennium Science Nucleus “Complex Engineering
Systems”, Chile and “International Scientific Cooperation Program CONICyT/SETCIP”, Chile—Argentina.
2 Ppartially supported by UBACYT Grant X127, Argentina.

G.Duranetal.

Keywords:Circular-arc graphs; Graph algorithms; Polynomial recognition; Proper circular-arc graphs; Unit
circular-arc graphs

1. Introduction

Let G be a finite undirected graph, and E{G) and E(G) the vertex and edge sets
of G, respectively. Denotg/ (G)| = N and|E(G)| = M.

A graphG is acircular-arc graphif there exists a family of arcs around a circle and
a one-to-one correspondence between vertica&s ahd arcs ino, such that two distinct
vertices are adjacent i@ if and only if the corresponding arcs intersecpirSuch a family
of arcs is called aarc modelffor G.

Circular-arc graphs have a variety of applications in such fields as genetic research [11],
compiler design [16] and statistics [8]. The first characterization of circular-arc graphs is
due to Tucker [13], who also gave an(N3) algorithm for their recognition [17]. Recently,
McConnell [9] improved this ta (N + M).

Circular-arc graphs admit some interesting subclasses, such as Helly circular-arc graphs,
proper circular-arc graphs and unit circular-arc graphs.

A family S of subsets satisfies the Helly property when every subfamily@insisting
of pairwise intersecting subsets has a common element. A graplaHelly circular-arc
(HCA) graph if there exists an arc model f6rsuch that the arcs satisfy the Helly property.
Gavril [4] gave a characterization of these graphs using the clique matrix of a graph. This
characterization leads to ah(N?) algorithm for recognizing HCA graphs.

A graph G is a proper circular-arc (PCA) graph if there exists an arc model f6r
such that no arc is included in another. Tucker [14] gave a characterization and an efficient
recognition algorithm, using matrix characterizations, for recognizing PCA graphs. Deng
et al. [2] gave a recognition algorithm that runs in linear time, and also produces a PCA
model within this time bound when the graph is a PCA graph.

A graphG is aunit circular-arc (UCA) graph if there exists an arc model f6r such
that all the arcs are of the same length. Tucker [15] gave a characterization by forbidden
subgraphs for this class of graphs. This characterization shows that UCA graphs are a
proper subclass of PCA graphs. They can be useful in traffic control, when it is necessary
that the green traffic lights for each lane at a street intersection are on for the same amount
of time [6,12]. A polynomial-time algorithm for recognizing UCA graphs has not been
given previously in the literature.

Let G = (V(G), E(G)) be a PCA graph, and = {Az1, ..., Ajv(c)} a proper circular-
arc model forG.

An (n, k)-circuit of G with respect to is a set{x1, ..., x,} of vertices > 1), such
thatx; andx; 1 are adjacent (X i <n—1), x, isadjacentta, arcA; 1 starts clockwise
from the counterclockwise endpoint of atg, and the set of arcs wrapgimes around the
circle. To count the number of turns around the circle, we walk along the circumference
starting at the counterclockwise endpoint4df, jumping fromA4 to Az, from A, to As,
and so on, and each time we pass by the starting point, we count a new turn.

An (m,l)-independent seb a set{x1, ..., x,} of vertices {» > 1), such thaty; and
x;4+1 are nonadjacent (& i < m —1), x,, is nonadjacent t@1, arcA; 1 is an arc that starts

G.Duranetal.

V5

s /F \\0

V8 Ve

V4 V3

\

v7

Fig. 1.CI(4, 1) and its circular-arc model.

clockwise from the clockwise endpoint of aAg, and the set of arcs wrapsimes around
the circle. We count the number of turns around the circle in the same manner as before,
but now we consider the last turn as complete (i.e., we add 1 to the total number of turns).

We call an(n, k)-circuit C minimalif no (n’, k’)-circuit with n’ /K’ < n/k is formed by
vertices inC (perhaps in another order).&f= 0 we assume that the quotient is equal to a
big M. A maximal(m, [)-independent set is defined analogously.

The graphCl(n, k), with n > k, is the circular-arc graph corresponding to the circular-
arc model built in the following way: let be a positive real number, and= 1 be the
radius of the circle. Draw: arcsAg, A1, ..., A,—1 of lengthly = 2wk/n + ¢ such that
eachA; startsat 2i/n and ends at2(i +k)/n+¢ (i.e.,A; = 2ri/n, 2n(i +k)/n +¢)).
Afterward, drawn arcsBy, B1, - .., B,—1 oflengthl; = 2wk /n — €, such that eacl; starts
at(2ni+m)/nandends a2z (i +k)+m)/n—e (i.e., Bi=(2ri+m)/n, 2r@i +k) +
w)/n — ¢)). For example, the model of Fig. 1 generates the g@iiH, 1).

Tucker [15] introduced the definition of this family of graphs, and Duran and Lin [3]
formalized this construction.

Theorem 1.1 [15]. Let G be a proper circular-arc graph. The is a unit circular-arc
graph if and only ifG contains no C{n, k) subgraphs, withu, k relatively prime and
n > 2k.

Theorem 1.1 does not trivially lead to a polynomial-time algorithm for the recognition
of this class, because we should show that a given PCA graph does not cont@irjrarky
subgraph, withe, k relatively prime and: > 2k. However, the proof of the theorem implic-
itly suggests an algorithm for recognizing UCA graphs. In this paper, we show that such
an algorithm can be implemented to run in polynomial time, and prove its correctness.

In the proof of Theorem 1.1, Tucker uses two lemmas that are also useful in our study:

Lemma 1.1 [15]. LetG be a proper circular-arc graph and let be a proper circular-arc
model forG. Then for any(n, k)-circuit C and (m, [)-independent set (both with respect
to o), we haven/l <n/k.

G.Duranetal.

Lemma 1.2 [15]. LetG be a proper circular-arc graph. For any relatively primee k with
n > 2k, G contains a minimain, k)-circuit C and a maximalxn, k)-independent sdtwith
respect to any proper circular-arc model, if and onlydfcontains the subgraph @i, k).
For n < 2k, or n, k not relatively prime, no such maximalexists. Any2, 1)-circuit can
be eliminated by altering theCA model.

Corollary 1.1. Let G be a proper circular-arc graph. Then the following statements are
equivalent

(1) G is nota unit circular-arc graph.

(2) G contains a Cin, k) subgraph, withz, k relatively prime and: > 2k.

(3) G has a minimal(n, k)-circuit and a maximalr, k)-independent set with respect to
anyPCA model, withn, k relatively prime and: > 2k.

Proof. It follows directly from Theorem 1.1 and Lemma 1.20

The following lemmas are true for any mogebf a proper circular-arc grapti. They
have easy proofs that can be deduced from the proof in [15] of Lemma 1.2.

Lemma 1.3. Let C = x1, ..., x, be a minimal(n, k)-circuit, with the first vertex fixed.
Then, we can order the other vertices®@fsuch that for eachi, A;,1 is the farthest arc
adjacent toA;, in the clockwise directiofi.e., among all arcs adjacent t4;, A; 1 is the
one which extends farthest fros, in the clockwise direction

Lemmald. Letl =x,...,x, be aminimal(m,l)-independent set, with the first vertex
fixed. Then, we can order the other verticed aluch that for each, A;,1 is the first arc
nonadjacent to4;, in the clockwise directiofi.e., among all arcs nonadjacent#y, A; 11

is the one which starts nearest 49, in the clockwise direction

The following theorem guarantees that every PCA graph can be represented with no
circle-covering pairs of arcs.

Theorem 1.2[6,15]. If G is a proper circular-arc graph, the has a proper circular-arc
model in which no pair of arcs covers all the cirglee., they do not intersect at both efds

In Section 2 we present a quadratic algorithm for recognizing UCA graphs, using the
results reviewed in this section and some ideas briefly introduced in [10]. This algorithm
receives as input a PCA model with no circle-covering pairs of arcs. In Section 3 we discuss
the complexity of constructing a UCA model.

2. Recognition of UCA graphs

In this section, we describe the algorithm for recognizing UCA graphs and analyze its
time complexity and correctness. The first step of the algorithm is to use the algorithm

G.Duranetal.

of [2] to determine whether the input graph is a proper circular arc graph, rejecting it if it
is not, and obtaining a proper circular-arc model if it is.

If the graph passes this test, we then modify the proper circular arc model to obtain a
new proper circular arc model that has no pair of arcs that covers the circle. The details of
this step are given in Section 2.3.

It remains to search for upper and lower bounds for the length of the circumference for
any unit circular-arc model fo& with arcs of length 1. The upper bound is the smallest
n/k among all minimak(n, k)-circuits, and the lower bound is the largest! among all
maximal (m, [)-independent sets. These bounds will determine if such a unit circular-arc
model can exist or not.

Let us putitin other words. Let be the length of the circumference for a unit circular-
arc model forG with arcs of length 1. Them has to be smaller than a value imposed by
all minimal (n, k)-circuits, andA has to be greater than a value imposed by all maximal
(m, I)-independent sets. If that range is empty then a UCA model cannot exist, and vice
versa.

(1) SEARCH FOR THE LARGEST LOWER BOUND
For each ard4; in o:
(a) c < A;
(b) Markec.
(c) While there are unmarked arcs nonadjacemt to

(i) Find the first unmarked arc nonadjacenttan the clockwise direction. Mark
it and store it inc.

(i) Calculatem/1, wherem is the number of marked arcs, ahi$ the number of
times we have traversed the circle (calculated as we said above). If this value
is the greatest lower bound found so far, save it.

(2) SEARCH FOR THE SMALLEST UPPER BOUND
For each ard; in o:
(@) ¢ < A;
(b) Markec.
(c) While there are unmarked arcs adjacent:to

(i) Find the unmarked arc adjacentdavhich extends farthest, in the clockwise
direction. Mark it and store it im.

(iiy If we have completed a new turn, calculatg¢k, wheren is the number of
marked arcs, anklis the number of times we have traversed the circle (calcu-
lated as we said above). If this value is the smallest upper bound found so far,
save it.

(3) The upper and lower bounds are equal if and only i not a UCA graph.

2.1. Correctness

First of all, the algorithm builds ain, /)-independent set, starting at every arc and
choosing at each step the first nonadjacent arc (in the clockwise direction). So, by
Lemma 1.4, it visits every maximdln, [)-independent set, and thus also the maximum

G.Duranetal.

one. This yields a lower bound/ ! for the length of the circumference of any UCA model
for G, with arcs of length 1.

Next, the algorithm builds arin, k)-circuit, starting at every arc and choosing at
each step the neighbor arc which extends farthest (in the clockwise direction). So, by
Lemma 1.3, it visits every minimalz, k)-circuit, and thus also the minimum one. This
yields an upper bound/ k for the length of the circumference of any UCA model @y
with arcs of length 1.

By Lemma 1.1/l < n/k. There are two possible cases to consider:

e m/l =n/k. Then, this model contains a minim@i, k)-circuit and a maximain, k)-
independent set. Alsas, k are relatively prime and > 2k because otherwise no
maximal (n, k)-independent set would exist (Lemma 1.2). Lasthy,k) # (2, 1) be-
cause the model has no circle-covering pairs. Therefore, by Corollarglisinot a
unit circular-arc graph.

e m/l < n/k. Since the(m,l)-independent set found is maximum and the k)-
circuit is minimum, there cannot exist a maxinal’, /’)-independent set and a min-
imal (n’, k’)-circuit, such thain’/l’ = n’/k’. Therefore, there cannot exist a minimal
(n”, k")-circuit and a maximair”, k”)-independent set. By Corollary 1.1, this means
thatG is a unit circular-arc graph.

As we have seem; /I = n/k ifand only if G is not a UCA graph. The algorithm outputs
the truth value of the former equality, thus answering whethé a UCA graph or not.

2.2. AnO(N?) implementation

The algorithm generates and checRé 2equences of arcs, each of lengthTo obtain
an O(N2) bound, when an arc is marked, we must be able to find the next unmarked arc
of the sequence i (1) amortized time. For loop (1), this is the nearest unmarked arc
beginning clockwise from the clockwise endpoint of the last marked arc, and for loop (2),
this is the unmarked arc that intersects the marked arc and extends farthest in the clockwise
direction.

Without loss of generality, we may assume that the endpoints of arcs are all distinct,
since they can be perturbed slightly to make this true. Let us think of each counterclockwise
endpoint of an arc aslzeginning pointand associate the lettBrwith it, and think of each
clockwise endpoint as aanding point and associate the letté with it. This yields a
circular list of E’'s and B’s. We label eachB that begins an arc with a pointer to tlie
that ends that arc (refer to Fig. 2). This gives a representation of the circular-arc model
consisting of a circular list oB’s and E’s, with one pointer on eacB.

When an arc is marked, let us mark tBeand E corresponding to the arc in this repre-
sentation. To solve the problem of finding the next arc to mark, we wseam-find data
type This data type can be used to maintain a partition of a set, which in our application is
the set of marked and unmarked letters about the circle. In addition, it supports the follow-
ing operations: ainion operation, which, given two partition classes, merges them into a
single class, andfind operation, which, given a letter, finds the partition class that contains
the letter.

G.Duranetal.

Union—find classes

Fig. 2. The beginning point of each arc is represented Byaad the ending point by afi. EachB has a pointer

to the corresponding . Initially, there is one union-find class for each consecutive blocB'sfor E’s (middle
illustration). When all elements in a union-find class are marked, the class is merged with its two neighboring
classes. The righthand illustration shows the union-find classeq &feEq, Ba, E4, Bg, Eg} have been marked.

We maintain the invariant that each union-find partition class consists of a consecutive
block of marked and unmarked letters about the circle. We also augment each class by
labeling it with a pointer to a doubly-linked list of the unmarked letters in the block, or-
dered according to their clockwise order on the circle. Because the list is doubly-linked, a
letter can be spliced out of its list i@ (1) time when it is marked. In addition, each class
is labeled with anext pointerto union-find class that lies immediately clockwise from it
on the circle, and @arevious pointetto the union-find class that lies immediately counter-
clockwise from it. If C is a class, let nex€) and previougC) denote the classes pointed
to by its next and previous pointers.

For example, in the righthand illustration of Fig. 2, the cléBs, E1, B4, E2} at the
bottom of the figure would have the ligk1, E2) as its ordered list of unmarked elements,
anextpointer to{ Bs}, and apreviouspointer to{ B2, B3}.

Initially, before any letters are marked, the union-find classes are the consecutive blocks
of E’s and consecutive blocks d’s about the circle. An example is given in the middle
illustration of Fig. 2. Therefore, whe@ is such a class, next) and previougC) contain
B’s if C containsk’s and they contairE’s if C containsB’s. The classes of’s alternate
with the classes oB’s around the circle.

We wish to maintain the invariant that every union-find class contains at least one un-
marked letter. Therefore, when the last unmarked letter in a ¢lassmarked, we merge
previougC), C, and nextC) and into a single union-find class using two union opera-
tions. The new class inherits itgeviouspointer from previou€) and itsnext pointer
from next{C). Assigning these pointers takéx(1) time. The list of unmarked elements
of the next class is obtained if1(1) time by appending the list of unmarked elements of
next(C) to the end of the list of unmarked elements of previ@)s This concatenation
also takes0) (1) time.

For example, in middle illustration of Fig. 2, markid&o, Eo} causeq Es}, { Bo}, and
{Eg} to merge. Marking{B4, E4} causes{Eg, E1}, {Ba}, and {E2} to merge. Marking
{Bs, Eg} causes no classes to merge. The situation at this point is depicted in the right-hand
illustration of Fig. 2. At that point, markin¢B1, E1} causedEs, Bo, Eg}, {B1}, and{E7}
to merge. Markind Bs, Es} caused Eo, E1, Ba, E2}, {Bs}, and{E3, E4} to merge. Mark-

G.Duranetal.

ing { B2, E2} causes no classes to merge. Markygcauses Eo, E1, Ba, E2, Bs, E3, Ea},
{B7, E7}, and{Es, Bo, Eg, B1, E7} to merge. At this point, there is only one unmarked
element left to mark.

By induction on the number of marked letters, this maintains the following invariants
for as long as there is at least one unmarked arc left:

(1) Every class contains at least one unmarked letter.

(2) Aclass can contain a mixture 8fs andE’s, but the unmarked elements of a class are
either allE’s or all B’s.

(3) Every union-find class is a consecutive block of (marked and unmarked) letters around
the circle.

(4) Classes containing undelet®ds alternate around the circle with classes containing
undeletedE’s. That is, ifC is a class, then ne¢@) and previou&C) contain unmarked
B’s if and only if C contains unmarked’s.

(5) The list of unmarked letters in each class is ordered in clockwise order, starting from
the beginning of the block of letters occupied by the class.

For loop (1) above, when the beginning letirof an arc to be marked is found, we
retrieve the ending lettet of the arc, and mark them, updating the union-find structure as
described above. To find the beginning letter of the next arc to mark, we may perfomin a
operation on thek to obtain the clas€ that contains it, get ne¢€') from C’s pointer, and
then get the first unmarked letter in n@xy from the beginning of its list of its unmarked
elements. For loop (2), the algorithm is the same, except that we get th&riexn the
end of the list of unmarked members of previ@ty this is the lasi3 that occurs inside the
marked arc, hence the beginning of the arc that intersects the marked arc and extends far-
thest in the clockwise direction. The correctness is immediate from the invariants (1)—(5).

The union-find data type can be implemented so thé@v) unionandfind operations
on a ground set of sizé (N) takesO (Na(N)) time [1], wherex() is an extremely slow-
growing, but unbounded, inverse of Ackermann’s function. Together wittOtte-time
operations to mark letters, update fireviousandnextpointers and the lists of unmarked
elements after eaamionor find operations, the total time for executing loop (c) of loop (1)
or loop (2) isO(Na(N)). Since loop (c) is executel times, this gives am (N2a(N))
time bound for an implementation of the algorithm.

O(N?) is the best bound one can hope for an implementation of the algorithm, since
it generates and check3(N) of lists of £2(N) elements each. Thé (N2« (N)) bound
leaves open the theoretical question of whether the best bound achievail¥3s (N))
or O(N?2). We now show thaO (N?) is possible.

When certain constraints can be placed in advance on the allamiedoperations, the
union-find data structure given by Gabow and Tarjan [5] alléw@v) unionand N find
operations on a set & elements to be carried out @(N) time. The constraints that must
be satisfied are that the data structure is initialized in advance with an unrooted tree whose
vertices are thev elements of the ground set, such that the subsequent union operations
will only produce union-find classes that induce connected subgraphs of this tree.

Let G be the graph obtained by letting each letter around the circle be a vertex, and
letting letters be adjacent if they are neighbors in the cyclic order. Because of invariant (3),

G.Duranetal.

we would like to be able to initialize Gabow-Tarjan with However, sinces is a cycle,
it has one too many edges to be used to initialize Gabow-Tarjan, which requires a tree.

Nevertheless, is not hard to solve this problem with Gabow-Tarjan. The trick is to re-
move one of the edges of the cycle so that the remainder of the cycle is a path, hence a tree.
Initializing the Gabow-Tarjan structure with this path permits all ofuh@n operations
we need, except those that involve union-find classes on opposite sides of the deleted edge.
When such a union is called for, we refrain from calling on the Gabow-Tarjan structure to
perform it, and instead, simulate the union by letting the two Gabow-Tarjan classes point
to each other. A subsequdinid operation can then be simulated by a Gabow—Tdijad)
followed by a pointer traversal. This addgq 1) to the cost of dind, so the additional cost
can be ignored in the asymptotic analysis.

(Alternatively, since a cycle is a planar graph, we can also use a generalization of
Gabow-Tarjan, due to Gustedt, that can be initialized with an arbitrary planar graph, rather
with just a tree [7].)

This gives the cost of thé@ (V) unionand O (N) find operations ta) (N). Multiplying
this by the number of iterations of the outer loop yields a total running tin@(@¢2).

2.3. An algorithm for eliminating (2,1)-circuits

The algorithm for recognizing UCA graphs uses the algorithm of [2] to produce a PCA
model. It remains to describe how to modify this model to eliminate any circle-covering
pairs of arcs, in order to satisfy the preconditions of loops (1) and (2) of Section 2.

Here we present an algorithm for eliminating all pairs of arcs that cover all the circle of
a PCA model. This algorithm is based on the proof of Theorem 1.2 [6].

(1) From the PCA model, generate a sequencé letters, where each letter represents an
endpoint of a circular arc. So, every at¢ has two related letters; andx, represent-
ing its counterclockwise and clockwise endpoints, respectively.

(2) Circularly find a subsequencedn

a..b...b...a...
e e
T o

(3) Replacer with 7172, wheret; are the letters in with *, andt, are the letters it
without”, always preserving their relative order.
(4) Jump to step (2), until there are no more such subsequenees in

Let us analyze the idea of the algorithm. At step (2), it looks for a pair of arcs that covers
all the circle, and eliminates it with the reorderings of step (3). These reorderings do not
generate new circle-covering pairs of arcs, and does not break the PCA model. Therefore,
repetition of this process will leave the PCA model free of such pairs.

2.3.1. Time complexity

Let N be the number of arcs of the input PCA model, andebe the number of edges
of the corresponding graph. This algorithm can be implemented using an/aofdgngth
2N to represent the sequencef letters. Each element @f is formed by two values: one

G.Duranetal.

letter (with or without™) and the index in of its opposite letter. The algorithm can be
written in the following way:

1. For i =0 to 2N1
2. If L[i] has no ™ then
3. If i < L[i].opposite
Find the largest j such that
i <j < L[j].opposite < L[i].opposite
El se
Find the largest j such that
L[i].opposite <i < |j < L[j].opposite
4. If such aj is found then

5. Rearrange L[i..j]: put the letters with »
before the ones without ~, preserving their
rel ative order and updating the indices
to the opposite letters.

6. Increase i so that it points again to the
same el ement in L.

The operation of step 5 is performed in a circular fashion around the array. In step 3, if
such aj is found, thenL[j] must have®, because the algorithm works on a PCA model.

Suppose that ard, hask double overlapping arcs;,, . .., Ap, . In other words, there is
a sequence of lettets...by...by...by...b1...ba...b...4....Instep 3, the algorithm
searches ford,,’s last double overlapping arc (the one correspondingtoor L[/]), if
there is any. It is easy to see that by breaking this circle-covering pair, every other circle-
covering pair containing\, is also broken.

In order to do so, step 5 rearranges the subsequencé;, maintaining the internal
indices ofL and the relative order of the letters. This can be done in linear time, by adding
an auxiliary field in each element @f. The search of step 3 can also be accomplished in
linear time. Therefore, the algorithm can be rurdgnN?).

The main cycle stops only at letters withcutskipping the other ones. Step 6 is nec-
essary because the letterlifi] is moved to the right in step 5. However, this will cause
no trouble because no letters withgutare skipped, since the rearrangement of step 5
preserves their relative order.

It remains to see whether the beginning letter of every arc is processed or not. Is it
possible that a beginning lettefnot processed yet) advances from one of the last positions
of L to one of the first positions when an arc at an earlier position is handled? If this case
were possible, the outer loop would quit before reachinBut can it really happen?

This situation would be possible if at some iteration of the algorithrmould begin at
the end ofL and finish at the beginning of the array. But this case is not possible. Suppose
the following situation, and that letteris going to be processed:

b ...b...a... ac
—— ————— —
T p T

G.Duranetal.

Arcs A, and A, cover all the circle. Thus, letter would pass from position/2 — 1 to
position 0 inL. But these two arcs, which cover all the circle, would have been handled
when the outer loop reached letter

3. Construction of a UCA model

In this paper, we presented a polynomial time algorithm for recognizing UCA graphs.
The time complexity of the whole algorithm 8(N?), starting from a PCA model, and
this model can be constructed (M + N) time [2]. Unfortunately, this algorithm does
not lead directly to an algorithm for constructing a UCA model. However, Tucker's proof
for Theorem 1.1 actually constructs a unit circular-arc model for a géand thus gives
us a recognition algorithm, which we outline here very briefly.

The circumference of the circle is set to a length between the lower and upper bounds
dictated by the recognition algorithm. The algorithm works by successively fixing one
more arcA to be unit length, while maintaining a proper circular-arc model. The process
involves shrinking or lengthening; to maintain the proper model, other arcs are length-
ened or shortened together with However, arcs which have already been set to be unit
length must maintain unit length; if such an arc must be modified to maintain the proper
circular-arc model, it is rotated rather than shrunk or expanded. The rotation of a unit arc
may cause other unit arcs to be rotated; fundamentally, we end up rotatinecircuits
and/or (g, h)-independent sets, and the algorithm works because the circumference can
handle the bounds forced by any such circuit or independent set.

Analyzing the time complexity of this algorithm is tricky, because it involves manip-
ulation of large integers, which cannot be assumed to take constant time. Therefore, this
leaves two open problems. Is it always possible to construct a unit circular-model with
endpoints corresponding to integers of polynomial size? If so, how efficiently can such a
model be constructed?

4. Conclusions and open problems

No better time bound is possible for an implementation of the algorithm we give here,
since it generates and tedissequences of lengthi. This does not preclude the possibility
that some other algorithm could yield a faster time bound for recognizing unit circular-arc
graphs.

As observed in Section 3, a polynomial bound for producing a unit circular-arc model
when an input graph is a unit circular arc graph remains an open problem.

Tucker [16] has given an approximation algorithm for finding a proper coloring of an
arbitrary circular-arc graph that uses at mg3t2| times the minimum possible number
of colors, providing that no three arcs cover the entire circle. New approximation bounds
for the algorithm have recently been shown by Valencia-Pabon [18]. In particutais if
the minimum number of arcs in the model that cover the circle, the algorithm produces
a coloring that uses at moBtc — 1)/(c — 2)] times the optimum number of colors. The
algorithm is a slight variant of the loop (1)(c) of the algorithm of Section 2, and the tech-

G.Duranetal.

nigue we develop in Section 2.2 for implementing this loop efficiently also give @)
bound for the coloring algorithm, provided that the circular-arc model gives the endpoints
in sorted cyclic order.

Acknowledgment

We thank Flavia Bonomo for her comments and suggestions, which improved this work.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, McGraw—Hill, Boston,
2001.
[2] X. Deng, P. Hell, J. Huang, Linear time representation algorithms for proper circular-arc graphs and proper
interval graphs, SIAM J. Comput. 25 (1996) 390—-403.
[3] G. Durén, M. Lin, On some subclasses of circular-arc graphs, Congressus Numerantium 146 (2000) 201-
212.
[4] F. Gauvril, Algorithms on circular-arc graphs, Networks 4 (1974) 357-369.
[5] H.N. Gabow, R.E. Tarjan, A linear time algorithm for a special case of disjoint set union, J. Comput. System
Sci. 30 (1985) 209-221.
[6] M. Golumbic, Algorithm Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[7] J. Gustedt, Efficient union-find for planar graphs and other sparse graph classes, Theoret. Comput. Sci. 203
(1998) 123-141.
[8] L. Hubert, Some applications of graph theory and related non-metric techniques to problems of approximate
seriation: the case of symmetry proximity measures, British J. Math. Statist. Psych. 27 (1974) 133-153.
[9] R.M. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica 37 (2) (2003) 93-147.
[10] J. Spinrad, Representations of Graphs, book manuscript, 1997.
[11] F. Stahl, Circular genetic maps, J. Cell Physiol. 70 (Suppl. 1) (1967) 1-12.
[12] K. Stouffers, Scheduling of traffic lights—a new approach, Transportation Res. 2 (1968) 199-234.
[13] A. Tucker, Characterizing circular-arc graphs, Bull. Amer. Math. Soc. 76 (1970) 1257-1260.
[14] A. Tucker, Matrix characterizations of circular-arc graphs, Pacific J. Math. 38 (1971) 535-545.
[15] A. Tucker, Structure theorems for some circular-arc graphs, Discrete Math. 7 (1974) 167-195.
[16] A. Tucker, Coloring a family of circular-arc graphs, SIAM J. Appl. Math. 29 (1975) 493-502.
[17] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput. 9 (1980) 1-24.
[18] M. Valencia-Pabon, Revisiting Tucker’s algorithm to color circular arc graphs, SIAM J. Comput. 32 (2003)
1067-1072.

