
char-
lar-arc

rs

c

nysb.edu

eering
.

Polynomial time recognition
of unit circular-arc graphs

Guillermo Durána,1,∗, Agustín Gravanob,2, Ross M. McConnellc,
Jeremy Spinradd, Alan Tuckere

a Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas,
Universidad de Chile, Santiago, Chile

b Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

c Computer Science Department, Colorado State University, Fort Collins, CO 80528, USA
d Department of Electrical Engineering and Computer Science, Vanderbilt University,

Nashville, TN 37235, USA
e Department of Applied Mathematics, State University of New York at Stony Brook,

Stony Brook, NY 11794-3600, USA

Abstract

We present an efficient algorithm for recognizing unit circular-arc (UCA) graphs, based on a
acterization theorem for UCA graphs proved by Tucker in the seventies. Given a proper circu
(PCA) graphG, the algorithm starts from a PCA model forG, removes all its circle-covering pai
of arcs and determines whetherG is a UCA graph. We also give anO(N) time bound for Tucker’s
3/2-approximation algorithm for coloring circular-arc graphs withN vertices, when a circular-ar
model is given.

* Corresponding author. Fax: (56) (2) 689-7895.
E-mail addresses:gduran@dii.uchile.cl (G. Durán), agravano@dc.uba.ar (A. Gravano),

rmm@cs.colostate.edu (R.M. McConnell), spin@vuse.vanderbilt.edu (J. Spinrad), atucker@notes.cc.su
(A. Tucker).

1 Partially supported by FONDECyT Grant 1030498 and Millennium Science Nucleus “Complex Engin
Systems”, Chile and “International Scientific Cooperation Program CONICyT/SETCIP”, Chile–Argentina

2 Partially supported by UBACyT Grant X127, Argentina.

G. Durán et al.

it

ts

d
t

h [11],
hs is

y,

graphs,

ty.
. This

fficient
Deng
PCA

idden
are a

essary
amount
een

rence

s

Keywords:Circular-arc graphs; Graph algorithms; Polynomial recognition; Proper circular-arc graphs; Un
circular-arc graphs

1. Introduction

Let G be a finite undirected graph, and letV (G) andE(G) the vertex and edge se
of G, respectively. Denote|V (G)| = N and|E(G)| = M .

A graphG is acircular-arc graphif there exists a family� of arcs around a circle an
a one-to-one correspondence between vertices ofG and arcs in�, such that two distinc
vertices are adjacent inG if and only if the corresponding arcs intersect in�. Such a family
of arcs is called anarc modelfor G.

Circular-arc graphs have a variety of applications in such fields as genetic researc
compiler design [16] and statistics [8]. The first characterization of circular-arc grap
due to Tucker [13], who also gave anO(N3) algorithm for their recognition [17]. Recentl
McConnell [9] improved this toO(N + M).

Circular-arc graphs admit some interesting subclasses, such as Helly circular-arc
proper circular-arc graphs and unit circular-arc graphs.

A family S of subsets satisfies the Helly property when every subfamily ofS consisting
of pairwise intersecting subsets has a common element. A graphG is aHelly circular-arc
(HCA) graph if there exists an arc model forG such that the arcs satisfy the Helly proper
Gavril [4] gave a characterization of these graphs using the clique matrix of a graph
characterization leads to anO(N3) algorithm for recognizing HCA graphs.

A graph G is a proper circular-arc (PCA) graph if there exists an arc model forG

such that no arc is included in another. Tucker [14] gave a characterization and an e
recognition algorithm, using matrix characterizations, for recognizing PCA graphs.
et al. [2] gave a recognition algorithm that runs in linear time, and also produces a
model within this time bound when the graph is a PCA graph.

A graphG is aunit circular-arc (UCA) graph if there exists an arc model forG such
that all the arcs are of the same length. Tucker [15] gave a characterization by forb
subgraphs for this class of graphs. This characterization shows that UCA graphs
proper subclass of PCA graphs. They can be useful in traffic control, when it is nec
that the green traffic lights for each lane at a street intersection are on for the same
of time [6,12]. A polynomial-time algorithm for recognizing UCA graphs has not b
given previously in the literature.

Let G = (V (G),E(G)) be a PCA graph, and� = {A1, . . . ,A|V (G)|} a proper circular-
arc model forG.

An (n, k)-circuit of G with respect to� is a set{x1, . . . , xn} of vertices (n � 1), such
thatxi andxi+1 are adjacent (1� i � n−1),xn is adjacent tox1, arcAi+1 starts clockwise
from the counterclockwise endpoint of arcAi , and the set of arcs wrapsk times around the
circle. To count the number of turns around the circle, we walk along the circumfe
starting at the counterclockwise endpoint ofA1, jumping fromA1 to A2, from A2 to A3,
and so on, and each time we pass by the starting point, we count a new turn.

An (m, l)-independent setis a set{x1, . . . , xm} of vertices (m � 1), such thatxi and
xi+1 are nonadjacent (1� i � m−1),xm is nonadjacent tox1, arcAi+1 is an arc that start

G. Durán et al.

before,
turns).

o a

lar-

[3]

ition

c-
t such
s.
tudy:

t

Fig. 1.CI(4,1) and its circular-arc model.

clockwise from the clockwise endpoint of arcAi , and the set of arcs wrapsl times around
the circle. We count the number of turns around the circle in the same manner as
but now we consider the last turn as complete (i.e., we add 1 to the total number of

We call an(n, k)-circuit C minimal if no (n′, k′)-circuit with n′/k′ < n/k is formed by
vertices inC (perhaps in another order). Ifk = 0 we assume that the quotient is equal t
big M . A maximal(m, l)-independent set is defined analogously.

The graphCI(n, k), with n > k, is the circular-arc graph corresponding to the circu
arc model built in the following way: letε be a positive real number, andr = 1 be the
radius of the circle. Drawn arcsA0,A1, . . . ,An−1 of length l1 = 2πk/n + ε such that
eachAi starts at 2πi/n and ends at 2π(i +k)/n+ ε (i.e.,Ai = (2πi/n,2π(i +k)/n+ ε)).
Afterward, drawn arcsB0,B1, . . . ,Bn−1 of lengthl2 = 2πk/n−ε, such that eachBi starts
at (2πi + π)/n and ends at(2π(i + k)+ π)/n − ε (i.e.,Bi = ((2πi + π)/n, (2π(i + k)+
π)/n − ε)). For example, the model of Fig. 1 generates the graphCI(4,1).

Tucker [15] introduced the definition of this family of graphs, and Durán and Lin
formalized this construction.

Theorem 1.1 [15]. Let G be a proper circular-arc graph. ThenG is a unit circular-arc
graph if and only ifG contains no CI(n, k) subgraphs, withn, k relatively prime and
n > 2k.

Theorem 1.1 does not trivially lead to a polynomial-time algorithm for the recogn
of this class, because we should show that a given PCA graph does not contain anyCI(n, k)

subgraph, withn, k relatively prime andn > 2k. However, the proof of the theorem impli
itly suggests an algorithm for recognizing UCA graphs. In this paper, we show tha
an algorithm can be implemented to run in polynomial time, and prove its correctnes

In the proof of Theorem 1.1, Tucker uses two lemmas that are also useful in our s

Lemma 1.1 [15]. LetG be a proper circular-arc graph and let� be a proper circular-arc
model forG. Then for any(n, k)-circuit C and(m, l)-independent setI (both with respec
to �), we havem/l � n/k.

G. Durán et al.

are

to

.

ex

ith no

s

g the
rithm
iscuss

ze its
rithm
Lemma 1.2 [15]. LetG be a proper circular-arc graph. For any relatively primen, k with
n > 2k, G contains a minimal(n, k)-circuit C and a maximal(n, k)-independent setI with
respect to any proper circular-arc model, if and only ifG contains the subgraph CI(n, k).
For n < 2k, or n, k not relatively prime, no such maximalI exists. Any(2,1)-circuit can
be eliminated by altering thePCA model.

Corollary 1.1. Let G be a proper circular-arc graph. Then the following statements
equivalent:

(1) G is not a unit circular-arc graph.
(2) G contains a CI(n, k) subgraph, withn, k relatively prime andn > 2k.
(3) G has a minimal(n, k)-circuit and a maximal(n, k)-independent set with respect

anyPCA model, withn, k relatively prime andn > 2k.

Proof. It follows directly from Theorem 1.1 and Lemma 1.2.�
The following lemmas are true for any model� of a proper circular-arc graphG. They

have easy proofs that can be deduced from the proof in [15] of Lemma 1.2.

Lemma 1.3. Let C = x1, . . . , xn be a minimal(n, k)-circuit, with the first vertex fixed
Then, we can order the other vertices ofC such that for eachi, Ai+1 is the farthest arc
adjacent toAi , in the clockwise direction(i.e., among all arcs adjacent toAi , Ai+1 is the
one which extends farthest fromAi , in the clockwise direction).

Lemma 1.4. Let I = x1, . . . , xm be a minimal(m, l)-independent set, with the first vert
fixed. Then, we can order the other vertices ofI such that for eachi, Ai+1 is the first arc
nonadjacent toAi , in the clockwise direction(i.e., among all arcs nonadjacent toAi , Ai+1
is the one which starts nearest toAi , in the clockwise direction).

The following theorem guarantees that every PCA graph can be represented w
circle-covering pairs of arcs.

Theorem 1.2 [6,15]. If G is a proper circular-arc graph, thenG has a proper circular-arc
model in which no pair of arcs covers all the circle(i.e., they do not intersect at both end).

In Section 2 we present a quadratic algorithm for recognizing UCA graphs, usin
results reviewed in this section and some ideas briefly introduced in [10]. This algo
receives as input a PCA model with no circle-covering pairs of arcs. In Section 3 we d
the complexity of constructing a UCA model.

2. Recognition of UCA graphs

In this section, we describe the algorithm for recognizing UCA graphs and analy
time complexity and correctness. The first step of the algorithm is to use the algo

G. Durán et al.

it if it

tain a
tails of

ce for
lest

r-arc

ar-
by

imal
d vice

k

f
value

se

f
lcu-

so far,

nd
o, by
um
of [2] to determine whether the input graph is a proper circular arc graph, rejecting
is not, and obtaining a proper circular-arc model if it is.

If the graph passes this test, we then modify the proper circular arc model to ob
new proper circular arc model that has no pair of arcs that covers the circle. The de
this step are given in Section 2.3.

It remains to search for upper and lower bounds for the length of the circumferen
any unit circular-arc model forG with arcs of length 1. The upper bound is the smal
n/k among all minimal(n, k)-circuits, and the lower bound is the largestm/l among all
maximal(m, l)-independent sets. These bounds will determine if such a unit circula
model can exist or not.

Let us put it in other words. LetΛ be the length of the circumference for a unit circul
arc model forG with arcs of length 1. ThenΛ has to be smaller than a value imposed
all minimal (n, k)-circuits, andΛ has to be greater than a value imposed by all max
(m, l)-independent sets. If that range is empty then a UCA model cannot exist, an
versa.

(1) SEARCH FOR THE LARGEST LOWER BOUND
For each arcAi in �:
(a) c ← Ai

(b) Mark c.
(c) While there are unmarked arcs nonadjacent toc:

(i) Find the first unmarked arc nonadjacent toc, in the clockwise direction. Mar
it and store it inc.

(ii) Calculatem/l, wherem is the number of marked arcs, andl is the number o
times we have traversed the circle (calculated as we said above). If this
is the greatest lower bound found so far, save it.

(2) SEARCH FOR THE SMALLEST UPPER BOUND
For each arcAi in �:
(a) c ← Ai

(b) Mark c.
(c) While there are unmarked arcs adjacent toc:

(i) Find the unmarked arc adjacent toc which extends farthest, in the clockwi
direction. Mark it and store it inc.

(ii) If we have completed a new turn, calculaten/k, wheren is the number o
marked arcs, andk is the number of times we have traversed the circle (ca
lated as we said above). If this value is the smallest upper bound found
save it.

(3) The upper and lower bounds are equal if and only ifG is not a UCA graph.

2.1. Correctness

First of all, the algorithm builds an(m, l)-independent set, starting at every arc a
choosing at each step the first nonadjacent arc (in the clockwise direction). S
Lemma 1.4, it visits every maximal(m, l)-independent set, and thus also the maxim

G. Durán et al.

el

at
o, by
is

o

n-
al
ns

ts

d arc
arc

p (2),
ckwise

stinct,
kwise

model

e-

tion is
ollow-
to a

tains
one. This yields a lower boundm/l for the length of the circumference of any UCA mod
for G, with arcs of length 1.

Next, the algorithm builds an(n, k)-circuit, starting at every arc and choosing
each step the neighbor arc which extends farthest (in the clockwise direction). S
Lemma 1.3, it visits every minimal(n, k)-circuit, and thus also the minimum one. Th
yields an upper boundn/k for the length of the circumference of any UCA model forG,
with arcs of length 1.

By Lemma 1.1,m/l � n/k. There are two possible cases to consider:

• m/l = n/k. Then, this model contains a minimal(n, k)-circuit and a maximal(n, k)-
independent set. Also,n, k are relatively prime andn � 2k because otherwise n
maximal(n, k)-independent set would exist (Lemma 1.2). Lastly,(n, k) �= (2,1) be-
cause the model has no circle-covering pairs. Therefore, by Corollary 1.1,G is not a
unit circular-arc graph.

• m/l < n/k. Since the(m, l)-independent set found is maximum and the(n, k)-
circuit is minimum, there cannot exist a maximal(m′, l′)-independent set and a mi
imal (n′, k′)-circuit, such thatm′/l′ = n′/k′. Therefore, there cannot exist a minim
(n′′, k′′)-circuit and a maximal(n′′, k′′)-independent set. By Corollary 1.1, this mea
thatG is a unit circular-arc graph.

As we have seen,m/l = n/k if and only if G is not a UCA graph. The algorithm outpu
the truth value of the former equality, thus answering whetherG is a UCA graph or not.

2.2. AnO(N2) implementation

The algorithm generates and checks 2N sequences of arcs, each of lengthN . To obtain
anO(N2) bound, when an arc is marked, we must be able to find the next unmarke
of the sequence inO(1) amortized time. For loop (1), this is the nearest unmarked
beginning clockwise from the clockwise endpoint of the last marked arc, and for loo
this is the unmarked arc that intersects the marked arc and extends farthest in the clo
direction.

Without loss of generality, we may assume that the endpoints of arcs are all di
since they can be perturbed slightly to make this true. Let us think of each countercloc
endpoint of an arc as abeginning point, and associate the letterB with it, and think of each
clockwise endpoint as anending point, and associate the letterE with it. This yields a
circular list of E’s andB ’s. We label eachB that begins an arc with a pointer to theE

that ends that arc (refer to Fig. 2). This gives a representation of the circular-arc
consisting of a circular list ofB ’s andE’s, with one pointer on eachB.

When an arc is marked, let us mark theB andE corresponding to the arc in this repr
sentation. To solve the problem of finding the next arc to mark, we use aunion-find data
type. This data type can be used to maintain a partition of a set, which in our applica
the set of marked and unmarked letters about the circle. In addition, it supports the f
ing operations: aunionoperation, which, given two partition classes, merges them in
single class, and afindoperation, which, given a letter, finds the partition class that con
the letter.

G. Durán et al.

boring
.

cutive
lass by
, or-
ked, a
ss
it

er-
ed

ts,

blocks
le

e un-
e
ra-

ts
of

t-hand
Fig. 2. The beginning point of each arc is represented by aB and the ending point by anE. EachB has a pointer
to the correspondingE. Initially, there is one union-find class for each consecutive block ofB ’s or E’s (middle
illustration). When all elements in a union-find class are marked, the class is merged with its two neigh
classes. The righthand illustration shows the union-find classes after{B0,E0,B4,E4,B6,E6} have been marked

We maintain the invariant that each union-find partition class consists of a conse
block of marked and unmarked letters about the circle. We also augment each c
labeling it with a pointer to a doubly-linked list of the unmarked letters in the block
dered according to their clockwise order on the circle. Because the list is doubly-lin
letter can be spliced out of its list inO(1) time when it is marked. In addition, each cla
is labeled with anext pointerto union-find class that lies immediately clockwise from
on the circle, and aprevious pointerto the union-find class that lies immediately count
clockwise from it. IfC is a class, let next(C) and previous(C) denote the classes point
to by its next and previous pointers.

For example, in the righthand illustration of Fig. 2, the class{E0,E1,B4,E2} at the
bottom of the figure would have the list(E1,E2) as its ordered list of unmarked elemen
anextpointer to{B5}, and apreviouspointer to{B2,B3}.

Initially, before any letters are marked, the union-find classes are the consecutive
of E’s and consecutive blocks ofB ’s about the circle. An example is given in the midd
illustration of Fig. 2. Therefore, whenC is such a class, next(C) and previous(C) contain
B ’s if C containsE’s and they containE’s if C containsB ’s. The classes ofE’s alternate
with the classes ofB ’s around the circle.

We wish to maintain the invariant that every union-find class contains at least on
marked letter. Therefore, when the last unmarked letter in a classC is marked, we merg
previous(C), C, and next(C) and into a single union-find class using two union ope
tions. The new class inherits itspreviouspointer from previous(C) and itsnext pointer
from next(C). Assigning these pointers takesO(1) time. The list of unmarked elemen
of the next class is obtained inO(1) time by appending the list of unmarked elements
next(C) to the end of the list of unmarked elements of previous(C). This concatenation
also takesO(1) time.

For example, in middle illustration of Fig. 2, marking{B0,E0} causes{E5}, {B0}, and
{E6} to merge. Marking{B4,E4} causes{E0,E1}, {B4}, and {E2} to merge. Marking
{B6,E6} causes no classes to merge. The situation at this point is depicted in the righ
illustration of Fig. 2. At that point, marking{B1,E1} causes{E5,B0,E6}, {B1}, and{E7}
to merge. Marking{B5,E5} causes{E0,E1,B4,E2}, {B5}, and{E3,E4} to merge. Mark-

G. Durán et al.

ed

iants

are

round

ing

from

e
e as
a

d

e
nds far-
)–(5).

-

d
(1)

since

st
whose
ations

, and
nt (3),
ing {B2,E2} causes no classes to merge. MarkingB7 causes{E0,E1,B4,E2,B5,E3,E4},
{B7,E7}, and {E5,B0,E6,B1,E7} to merge. At this point, there is only one unmark
element left to mark.

By induction on the number of marked letters, this maintains the following invar
for as long as there is at least one unmarked arc left:

(1) Every class contains at least one unmarked letter.
(2) A class can contain a mixture ofB ’s andE’s, but the unmarked elements of a class

either allE’s or all B ’s.
(3) Every union-find class is a consecutive block of (marked and unmarked) letters a

the circle.
(4) Classes containing undeletedB ’s alternate around the circle with classes contain

undeletedE’s. That is, ifC is a class, then next(C) and previous(C) contain unmarked
B ’s if and only if C contains unmarkedE’s.

(5) The list of unmarked letters in each class is ordered in clockwise order, starting
the beginning of the block of letters occupied by the class.

For loop (1) above, when the beginning letterB of an arc to be marked is found, w
retrieve the ending letterE of the arc, and mark them, updating the union-find structur
described above. To find the beginning letter of the next arc to mark, we may performfind
operation on theE to obtain the classC that contains it, get next(C) from C ’s pointer, and
then get the first unmarked letter in next(C) from the beginning of its list of its unmarke
elements. For loop (2), the algorithm is the same, except that we get the nextB from the
end of the list of unmarked members of previous(C); this is the lastB that occurs inside th
marked arc, hence the beginning of the arc that intersects the marked arc and exte
thest in the clockwise direction. The correctness is immediate from the invariants (1

The union-find data type can be implemented so thatO(N) unionandfind operations
on a ground set of sizeO(N) takesO(Nα(N)) time [1], whereα() is an extremely slow
growing, but unbounded, inverse of Ackermann’s function. Together with theO(1)-time
operations to mark letters, update thepreviousandnextpointers and the lists of unmarke
elements after eachunionor findoperations, the total time for executing loop (c) of loop
or loop (2) isO(Nα(N)). Since loop (c) is executedN times, this gives anO(N2α(N))

time bound for an implementation of the algorithm.
O(N2) is the best bound one can hope for an implementation of the algorithm,

it generates and checksΩ(N) of lists of Ω(N) elements each. TheO(N2α(N)) bound
leaves open the theoretical question of whether the best bound achievable isO(N2α(N))

or O(N2). We now show thatO(N2) is possible.
When certain constraints can be placed in advance on the allowedunionoperations, the

union-find data structure given by Gabow and Tarjan [5] allowsO(N) union andN find
operations on a set ofN elements to be carried out inO(N) time. The constraints that mu
be satisfied are that the data structure is initialized in advance with an unrooted tree
vertices are theN elements of the ground set, such that the subsequent union oper
will only produce union-find classes that induce connected subgraphs of this tree.

Let G be the graph obtained by letting each letter around the circle be a vertex
letting letters be adjacent if they are neighbors in the cyclic order. Because of invaria

G. Durán et al.

ree.
to re-
e a tree.

d edge.
ure to

point

t

ion of
rather

PCA
ering

le of

an

overs
o not
refore,

s

e

we would like to be able to initialize Gabow–Tarjan withG. However, sinceG is a cycle,
it has one too many edges to be used to initialize Gabow–Tarjan, which requires a t

Nevertheless, is not hard to solve this problem with Gabow–Tarjan. The trick is
move one of the edges of the cycle so that the remainder of the cycle is a path, henc
Initializing the Gabow–Tarjan structure with this path permits all of theunionoperations
we need, except those that involve union-find classes on opposite sides of the delete
When such a union is called for, we refrain from calling on the Gabow–Tarjan struct
perform it, and instead, simulate the union by letting the two Gabow–Tarjan classes
to each other. A subsequentfind operation can then be simulated by a Gabow–Tarjanfind,
followed by a pointer traversal. This addsO(1) to the cost of afind, so the additional cos
can be ignored in the asymptotic analysis.

(Alternatively, since a cycle is a planar graph, we can also use a generalizat
Gabow–Tarjan, due to Gustedt, that can be initialized with an arbitrary planar graph,
with just a tree [7].)

This gives the cost of theO(N) unionandO(N) find operations toO(N). Multiplying
this by the number of iterations of the outer loop yields a total running time ofO(N2).

2.3. An algorithm for eliminating (2,1)-circuits

The algorithm for recognizing UCA graphs uses the algorithm of [2] to produce a
model. It remains to describe how to modify this model to eliminate any circle-cov
pairs of arcs, in order to satisfy the preconditions of loops (1) and (2) of Section 2.

Here we present an algorithm for eliminating all pairs of arcs that cover all the circ
a PCA model. This algorithm is based on the proof of Theorem 1.2 [6].

(1) From the PCA model, generate a sequenceσ of letters, where each letter represents
endpoint of a circular arc. So, every arcAx has two related letters:x andx̂, represent-
ing its counterclockwise and clockwise endpoints, respectively.

(2) Circularly find a subsequence inσ :

a . . . b̂
︸ ︷︷ ︸

τ

. . . b . . . â . . .
︸ ︷︷ ︸

ρ

(3) Replaceτ with τ1τ2, whereτ1 are the letters inτ with ∧, andτ2 are the letters inτ
without ∧, always preserving their relative order.

(4) Jump to step (2), until there are no more such subsequences inσ .

Let us analyze the idea of the algorithm. At step (2), it looks for a pair of arcs that c
all the circle, and eliminates it with the reorderings of step (3). These reorderings d
generate new circle-covering pairs of arcs, and does not break the PCA model. The
repetition of this process will leave the PCA model free of such pairs.

2.3.1. Time complexity
Let N be the number of arcs of the input PCA model, and letM be the number of edge

of the corresponding graph. This algorithm can be implemented using an arrayL of length
2N to represent the sequenceσ of letters. Each element ofL is formed by two values: on

G. Durán et al.

be

p 3, if
l.

s

circle-

l
dding
d in

c-
se
p 5

t. Is it
tions

case

ppose
letter (with or without∧) and the index inL of its opposite letter. The algorithm can
written in the following way:

1. For i = 0 to 2N-1
2. If L[i] has no ^ then
3. If i < L[i].opposite

Find the largest j such that
i < j < L[j].opposite < L[i].opposite

Else
Find the largest j such that

L[i].opposite < i < j < L[j].opposite
4. If such a j is found then
5. Rearrange L[i..j]: put the letters with ^

before the ones without ^, preserving their
relative order and updating the indices
to the opposite letters.

6. Increase i so that it points again to the
same element in L.

The operation of step 5 is performed in a circular fashion around the array. In ste
such aj is found, thenL[j] must have∧, because the algorithm works on a PCA mode

Suppose that arcAa hask double overlapping arcsAb1, . . . ,Abk
. In other words, there i

a sequence of lettersa . . . b̂1 . . . b̂2 . . . b̂k . . . b1 . . . b2 . . . bk . . . â In step 3, the algorithm
searches forAa ’s last double overlapping arc (the one corresponding tobk , or L[j]), if
there is any. It is easy to see that by breaking this circle-covering pair, every other
covering pair containingAa is also broken.

In order to do so, step 5 rearranges the subsequencea . . . b̂k , maintaining the interna
indices ofL and the relative order of the letters. This can be done in linear time, by a
an auxiliary field in each element ofL. The search of step 3 can also be accomplishe
linear time. Therefore, the algorithm can be run inO(N2).

The main cycle stops only at letters without∧, skipping the other ones. Step 6 is ne
essary because the letter inL[i] is moved to the right in step 5. However, this will cau
no trouble because no letters without∧ are skipped, since the rearrangement of ste
preserves their relative order.

It remains to see whether the beginning letter of every arc is processed or no
possible that a beginning letterc (not processed yet) advances from one of the last posi
of L to one of the first positions when an arc at an earlier position is handled? If this
were possible, the outer loop would quit before reachingc. But can it really happen?

This situation would be possible if at some iteration of the algorithm,τ could begin at
the end ofL and finish at the beginning of the array. But this case is not possible. Su
the following situation, and that lettera is going to be processed:

b̂
︸︷︷︸

. . . b . . . â . . .
︸ ︷︷ ︸

a c
︸︷︷︸
τ ρ τ

G. Durán et al.

dled

phs.
d
s
roof

ounds
one

cess
th-
unit
roper
nit arc

ce can

nip-
re, this
l with
uch a

here,
ity
r-arc

odel

f an
er
unds

f
duces
e

tech-
Arcs Aa andAb cover all the circle. Thus, letterc would pass from position 2N − 1 to
position 0 inL. But these two arcs, which cover all the circle, would have been han
when the outer loop reached letterb.

3. Construction of a UCA model

In this paper, we presented a polynomial time algorithm for recognizing UCA gra
The time complexity of the whole algorithm isO(N2), starting from a PCA model, an
this model can be constructed inO(M + N) time [2]. Unfortunately, this algorithm doe
not lead directly to an algorithm for constructing a UCA model. However, Tucker’s p
for Theorem 1.1 actually constructs a unit circular-arc model for a graphG, and thus gives
us a recognition algorithm, which we outline here very briefly.

The circumference of the circle is set to a length between the lower and upper b
dictated by the recognition algorithm. The algorithm works by successively fixing
more arcA to be unit length, while maintaining a proper circular-arc model. The pro
involves shrinking or lengtheningA; to maintain the proper model, other arcs are leng
ened or shortened together withA. However, arcs which have already been set to be
length must maintain unit length; if such an arc must be modified to maintain the p
circular-arc model, it is rotated rather than shrunk or expanded. The rotation of a u
may cause other unit arcs to be rotated; fundamentally, we end up rotating(i, j)-circuits
and/or(g,h)-independent sets, and the algorithm works because the circumferen
handle the bounds forced by any such circuit or independent set.

Analyzing the time complexity of this algorithm is tricky, because it involves ma
ulation of large integers, which cannot be assumed to take constant time. Therefo
leaves two open problems. Is it always possible to construct a unit circular-mode
endpoints corresponding to integers of polynomial size? If so, how efficiently can s
model be constructed?

4. Conclusions and open problems

No better time bound is possible for an implementation of the algorithm we give
since it generates and testsN sequences of lengthN . This does not preclude the possibil
that some other algorithm could yield a faster time bound for recognizing unit circula
graphs.

As observed in Section 3, a polynomial bound for producing a unit circular-arc m
when an input graph is a unit circular arc graph remains an open problem.

Tucker [16] has given an approximation algorithm for finding a proper coloring o
arbitrary circular-arc graph that uses at most�3/2� times the minimum possible numb
of colors, providing that no three arcs cover the entire circle. New approximation bo
for the algorithm have recently been shown by Valencia-Pabon [18]. In particular, ic is
the minimum number of arcs in the model that cover the circle, the algorithm pro
a coloring that uses at most�(c − 1)/(c − 2)	 times the optimum number of colors. Th
algorithm is a slight variant of the loop (1)(c) of the algorithm of Section 2, and the

G. Durán et al.

oints

work.

ston,

proper

0) 201–

ystem

Sci. 203

ximate
53.

2003)
nique we develop in Section 2.2 for implementing this loop efficiently also gives anO(N)

bound for the coloring algorithm, provided that the circular-arc model gives the endp
in sorted cyclic order.

Acknowledgment

We thank Flavia Bonomo for her comments and suggestions, which improved this

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, McGraw–Hill, Bo
2001.

[2] X. Deng, P. Hell, J. Huang, Linear time representation algorithms for proper circular-arc graphs and
interval graphs, SIAM J. Comput. 25 (1996) 390–403.

[3] G. Durán, M. Lin, On some subclasses of circular-arc graphs, Congressus Numerantium 146 (200
212.

[4] F. Gavril, Algorithms on circular-arc graphs, Networks 4 (1974) 357–369.
[5] H.N. Gabow, R.E. Tarjan, A linear time algorithm for a special case of disjoint set union, J. Comput. S

Sci. 30 (1985) 209–221.
[6] M. Golumbic, Algorithm Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[7] J. Gustedt, Efficient union-find for planar graphs and other sparse graph classes, Theoret. Comput.

(1998) 123–141.
[8] L. Hubert, Some applications of graph theory and related non-metric techniques to problems of appro

seriation: the case of symmetry proximity measures, British J. Math. Statist. Psych. 27 (1974) 133–1
[9] R.M. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica 37 (2) (2003) 93–147.

[10] J. Spinrad, Representations of Graphs, book manuscript, 1997.
[11] F. Stahl, Circular genetic maps, J. Cell Physiol. 70 (Suppl. 1) (1967) 1–12.
[12] K. Stouffers, Scheduling of traffic lights—a new approach, Transportation Res. 2 (1968) 199–234.
[13] A. Tucker, Characterizing circular-arc graphs, Bull. Amer. Math. Soc. 76 (1970) 1257–1260.
[14] A. Tucker, Matrix characterizations of circular-arc graphs, Pacific J. Math. 38 (1971) 535–545.
[15] A. Tucker, Structure theorems for some circular-arc graphs, Discrete Math. 7 (1974) 167–195.
[16] A. Tucker, Coloring a family of circular-arc graphs, SIAM J. Appl. Math. 29 (1975) 493–502.
[17] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput. 9 (1980) 1–24.
[18] M. Valencia-Pabon, Revisiting Tucker’s algorithm to color circular arc graphs, SIAM J. Comput. 32 (

1067–1072.

