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Abstract

The simulation of spatially correlated Gaussian random fields is widespread in geologic, hydrologic and environmental

applications for characterizing the uncertainty about the unsampled values of regionalized attributes. In this respect, the

turning bands method has received attention among practitioners, for it allows multidimensional simulations to be

generated at the CPU cost of one-dimensional simulations.

This work provides and documents a set of computer programs for (i) constructing three-dimensional realizations of

stationary and intrinsic Gaussian random fields, (ii) conditioning these realizations to a set of data and (iii) back-

transforming the Gaussian values to the original attribute units. Such programs can deal with simulations over large

domains and handle anisotropic and nested covariance models.

The quality of the proposed programs is examined through an example consisting of a non-conditional simulation of a

spherical covariance model. The artifact banding in the simulated maps is shown to be negligible when thousands of lines

are used. The main parameters of the univariate and bivariate distributions, as well as their expected ergodic fluctuations,

also prove to be accurately reproduced.
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1. Introduction

Geostatistical simulation is increasingly used in
earth and environmental sciences for assessing the
uncertainty about the unsampled values of a spatial
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attribute, either at a single location (local uncer-
tainty) or jointly over several locations (spatial
uncertainty). For instance, it is helpful to estimate
the probability that the average value of the
attribute over a given area exceeds a critical level,
a problem that arises in ore reserve evaluation,
agricultural land management, groundwater con-
tamination or polluted soil management.

Continuous attributes are often modeled by
nonlinear transforms of Gaussian random fields,
for which the spatial distribution is multivariate
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Gaussian (in short, multigaussian). The simulation
algorithms developed in this respect can be classified
in two families:
(1)
 Exact algorithms, for which the statistical
properties of the simulated field match that of
the desired model. This family comprises the LU
decomposition of the covariance matrix (Davis,
1987), convolution methods such as the auto-
regressive and moving average models (Black
and Freyberg, 1990; Chilès and Delfiner, 1999),
and spectral approaches based on discrete and
fast Fourier transforms (Pardo-Igúzquiza and
Chica-Olmo, 1993; Dietrich and Newsam, 1993,
1996; Wood and Chan, 1994; Chilès and
Delfiner, 1997). The LU algorithm is applicable
to any configuration of the simulated locations
and any covariance model, but CPU time
becomes prohibitive when more than a few
thousands locations are considered. Although
computationally efficient, the other aforemen-
tioned methods can simulate only gridded
locations and are not applicable to any covar-
iance model (in particular, the presence of large-
scale structures may be problematical); also,
memory storage requirements become important
when millions of locations have to be simulated.
(2)
 Approximate algorithms, which produce realiza-
tions of random fields whose spatial distribution
is close to multigaussian. In practice, they are
often the only alternative when dealing with
huge conditioning datasets or with simulation
domains containing millions of nodes. Approx-
imations take place because of algorithmic
simplifications (e.g. neighborhood restrictions)
or because the algorithm relies on the central
limit theorem and convergence to multinorm-
ality is only asymptotic. In general, this is a
minor concern for practical applications, but it
may be a crucial issue in studies that aim to
assess statistical procedures. To date, the most
widespread approximate algorithms are the
sequential Gaussian (Deutsch and Journel,
1992) and continuous spectral methods (Shino-
zuka and Jan, 1972). Another option is the
turning bands method (Matheron, 1973), which
achieves 2D or 3D simulations via a series of
one-dimensional simulations along lines that
sweep R2 or R3.
Although it is one of the oldest techniques for
simulating multidimensional random fields, the
turning bands method is still scarcely used in
geostatistical applications and the existing free
packages are often limited in their implementation
or applicability. As an example, the first GSLIB

version (Deutsch and Journel, 1992) offers a basic
program for simulating a regular grid in R3, based
on an earlier code by Journel and Huijbregts (1978,
pp. 538–545). However, apart from generating non-
conditional realizations, this program uses a re-
stricted number of lines (15) and allows only
isotropic spherical and exponential covariance
models to be reproduced.

A more complete free library is the R package
RandomFields by Schlather (2001). It uses either a
continuous spectral or a circulant-embedding algo-
rithm for line simulation. Also, a large number of
covariance models are available and the realizations
can be made conditional to a set of data, which
makes the package appealing. However its limita-
tions are twofold. The first one concerns the line
simulation process: the continuous spectral method
is not efficient for simulating covariances that are
not smooth at the origin (Lantuéjoul, 2002, p. 192),
while the circulant-embedding algorithm (Dietrich
and Newsam, 1993) requires discretizing each line
into regular intervals and therefore loses accuracy in
the covariance reproduction (see discussion in
Section 2.2). Second, several facilities that are
helpful for practical applications are not implemen-
ted, such as a back-transformation from normal
scores to original variable, the definition of a
moving neighborhood for conditioning kriging, or
the use of dual kriging to quicken calculations when
working in a unique neighborhood.

Such limitations have motivated the present
work, which aims at supplying and documenting
computer programs for simulating three-dimen-
sional Gaussian random fields via the turning bands
method. A second objective is to illustrate the
efficiency and reliability of this method, through an
analysis of the bivariate distributions and statistical
fluctuations of the simulated values. The proposed
programs are based on a former code published by
Lantuéjoul (1994, pp. 169–177), which has been
completed to include the following features:
�
 possibility to handle nested and anisotropic
covariance models,

�
 possibility to simulate either gridded or scattered

locations on large domains,

�
 accurate reproduction of the desired covariance

model (without approximation),
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�
 availability of the most commonly used covar-
iance models,

�
 conditioning to a set of existing data,

�
 definition of either a unique or a moving

neighborhood for conditioning kriging,

�
 back-transformation from normal values to

original units,

�
 change of support (upscaling) of the realizations,

�
 improvements in the simulation code to quicken

calculations.

In the following, the simulation of stationary or
intrinsic random fields is considered. In the intrinsic
case, the traditional covariance function does not
exist and one works with a generalized covariance;
also, the multivariate Gaussian assumption does not
concern the random field itself, but its increments or
generalized increments (Dimitrakopoulos, 1990;
Pardo-Igúzquiza and Dowd, 2003). Henceforth the
term ‘covariance’ will stand for either the traditional
or the generalized covariance; this function is
assumed invariant under translation of the coordi-
nates, i.e. it only depends on the separation vector
between the current locations.

2. The turning bands algorithm

2.1. General presentation

The principle of the turning bands method is to
simplify the simulation problem in Rd (with, in
general, d ¼ 2 or 3) into a problem in R, which
allows one to perform multidimensional simulations
at the CPU cost of one-dimensional simulations.
Let us consider a random field fX ðtÞ; t 2 Rg with
zero mean and continuous covariance function CX,
and a random vector U with a uniform distribution
over the unit sphere Sd of Rd . For any location
x 2 Rd , let us put:

8x 2 Rd ; Y ðxÞ ¼ X ðox;U4Þ, (1)

whereo,4is the standard inner product in Rd .
Eq. (1) defines a random field fY ðxÞ;x 2 Rd

g with
zero mean and isotropic covariance CY such that

CY ðrÞ ¼

Z
Sd

CX ðoh; u4Þ$d ðduÞ; (2)

where h is a vector of Rd , r its modulus and $d the
uniform distribution over Sd .

Matheron (1973, p. 462) proved that relation (2)
is a one-to-one mapping between the set of
continuous and isotropic covariances in Rd and
that of continuous covariances in R. This property
allows one to replace the simulation of a multi-
dimensional random field with covariance CY by the
simulation of a one-dimensional field with covar-
iance CX. The expression of CX as a function of CY

is often complicated when d ¼ 2 (planar simulation)
(Brooker, 1985; Gneiting, 1998), but it has a simple
solution in three dimensions, which is the frame-
work considered in this work. By using spherical
coordinates, formula (2) can be inverted as

CX ðrÞ ¼
d

dr
½rCY ðrÞ�, (3)

which determines the covariance CX associated with
a given isotropic covariance CY in R3.

2.2. Comments on the line simulation process

There exists a wide choice of methods for
simulating a one-dimensional random field with
prescribed covariance CX. Several options have been
proposed by Mantoglou and Wilson (1982), Man-
toglou (1987), Christakos (1987), Tompson et al.
(1989), Lantuéjoul (1994) and Dietrich (1995),
among others. Exact Gaussian simulation algo-
rithms such as the moving average and the circulant
embedding methods are suited to the simulation of
regularly spaced locations, which is usually not the
case for the projection of the nodes to be simulated
onto a line with random orientation, even if these
nodes are on a regular grid in R3. A discretization of
the line at a given mesh and a migration of the
projected nodes are therefore required to perform
the one-dimensional simulation. This procedure
provokes a bias in the reproduction of the
covariance model, as well as difficulties in memory
management (and increase in computing time) if the
discretization mesh is very small with respect to the
size of the projected three-dimentional domain.

These impediments can be avoided by resorting to
continuous simulation algorithms along the line. A
common example is the continuous spectral meth-
od, which provides an accurate simulation of the
target covariance without need for regularly spaced
locations. This method has been implemented in
program TBSIM.M for simulating covariance
models that are smooth at the origin. Regarding
other models, ad hoc algorithms have been pre-
ferred, allowing an efficient and accurate simulation
of the one-dimensional random field at any set of
irregularly spaced locations. Note that the use of
multigaussian simulation algorithms is needless
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since multivariate normality is lost anyway in the
spreading process from R to R3 [Eq. (1)].
2.3. Available covariance models

Fifteen models are implemented in program
TBSIM.M. Their definition and the way to obtain
the one-dimensional simulations are described here-
after.

(1) Spherical covariance with sill C and scale
factor (range) a:

CY ðrÞ ¼ C 1�
3

2

r

a
þ

1

2

r3

a3

� �
1rpa. (4)

The associated one-dimensional random field
fX ðtÞ; t 2 Rg is simulated in the following fashion
(Lantuéjoul, 1994, p. 157):
�

Fig

sph
choose an offset on the real axis at random
(uniformly in [0,a[) and divide this axis in
intervals with length a;

�
 within each interval, draw a linear function with

an equal probability of being increasing or
decreasing; the slope sign is independent from
one interval to another one (Fig. 1).

(2) Exponential covariance with sill C and scale
factor a (practical range 3a):

CY ðrÞ ¼ C exp �
r

a

� �
. (5)

The one-dimensional random field can be simu-
lated thanks to a Poisson point process in R

(Lantuéjoul, 1994, p. 156). Here, we use a faster
method, consisting in viewing the exponential
covariance as a scale mixture of spherical models.
. 1. Realization of a 1D random field associated with a 3D

erical model
Let us put

CY ðrÞ ¼

Z þ1
r

C 1�
3

2

r

u
þ

1

2

r3

u3

� �
f ðuÞ du (6)

for a probability density function f(.) in Rþ to be
determined. By differentiating with respect to r and
after simplification, one finds

8u40; f ðuÞ ¼
u

3 a2
exp �

u

a

� � u

a
þ 1

n o
. (7)

One recognizes the probability density function of
a gamma random variable G with parameters (3,a)
with probability 1/3 and (2,a) with probability 1

3
.

The simulation of a random field with an exponen-
tial covariance can therefore be performed in the
following fashion:
�
 simulate the random variable G;

�
 simulate a random vector U with a uniform

distribution over the sphere S3;

�
 divide the line with orientation U into intervals

with the same length G. Within each interval,
draw a linear function with positive or negative
slope with equal probability (Fig. 1).

(3) Gamma covariance with sill C, scale factor a

and parameter b40:

CY ðrÞ ¼ C 1þ
r

a

� ��b

. (8)

This model is simulated as a scale mixture of
exponential covariances [Eq. (5)]. The scale factors
are the reciprocals of gamma random variables
with shape parameter b (Chilès and Delfiner, 1999,
p. 70).

(4) Stable covariance with sill C, scale factor a and
parameter b A ]0,2]:

CY ðrÞ ¼ C exp �
r

a

� �b
� �

. (9)

When b41, this model is simulated as a scale
mixture of Gaussian covariances (see model type no

6 hereafter); the scale factors are the reciprocals of
square-rooted stable random variables with para-
meter b. Mixing Gaussian covariances is also valid
when bp1, but this approach is not efficient because
the covariance becomes convex at the origin. In this
case, it is preferable to see the stable model as a
mixture of exponential covariances with scale
factors inversely proportional to stable random
variables with parameter b. Note that the case b ¼ 1
corresponds to the exponential model and b ¼ 2 to
the Gaussian model.



ARTICLE IN PRESS
X. Emery, C. Lantuéjoul
(5) Cubic covariance with sill C and scale factor
(range) a:

CY ðrÞ ¼ C 1� 7
r2

a2
þ

35

4

r3

a3
�

7

2

r5

a5
þ

3

4

r7

a7

� �
1rpa.

(10)

This model is obtained in a way similar to the
spherical covariance, but with a cubic function
instead of a linear function on each interval (Chilès
and Delfiner, 1999, pp. 488, 649).

(6) Gaussian covariance with sill C and scale
factor a (practical range a

ffiffiffi
3
p

):

CY ðrÞ ¼ C exp �
r

a

� �2� �
. (11)

This covariance can be simulated by applying the
continuous spectral method, which constitutes a
particular case of the turning bands method. It
consists in putting

8x 2 R3;Y ðxÞ ¼
ffiffiffiffiffiffiffi
2C
p

cos ð2pox;T4þ FÞ, (12)

where F is a uniform phase in [0,2p[ and T a
random frequency distributed according to the
spectral measure of CY. In this case, T is a Gaussian
vector in R3.

(7) Cardinal sine covariance with sill C and scale
factor a:

CY ðrÞ ¼ C
a

r

� �
sin

r

a

� �
. (13)

Again, the continuous spectral method is used for
simulating this covariance. Here, the spectral
measure in R3 is uniform on the sphere centered
on 0 with radius 1/a.

(8) J-Bessel covariance with sill C, scale factor a

and parameter bX0.5:

CY ðrÞ ¼ C2bGðbþ 1Þ
r

a

� ��b

Jb

r

a

� �
. (14)

In R3, the spectral density of CY is

8t 2 R3; f ðtÞ ¼
Gðbþ 1Þa3ð1� a2jtj2Þb�3=2

Gðb� 1=2Þp3=2
1jtjo1=a.

(15)

If T is a random vector with this density, then a2

|T|2 is a beta random variable with parameters
(3/2,b�1/2). Note that the cardinal sine model
[Eq. (13)] belongs to the J-Bessel family and
corresponds to the particular case b ¼ 1=2. The
case bo1/2 is not allowed in three dimensions.
(9) K-Bessel covariance with sill C, scale factor a

and parameter b40:

CY ðrÞ ¼
C

GðbÞ
21�b r

a

� �b

Kb

r

a

� �
. (16)

This covariance is simulated as a mixture of
Gaussian covariances whose scale factors are
square-rooted gamma random variables with shape
parameter b. Indeed, by using the Sonine–Schläfli
representation of the K-Bessel function (Matheron,
1965, p. 290), Eq. (16) becomes

CY ðrÞ ¼
C

GðbÞ

Z þ1
0

exp �
r

2 a
ffiffiffi
u
p

� �2
( )

expð�uÞ ub�1 du.

(17)

The previous approach is not efficient when the
parameter b is less than 1/2, as the covariance is not
smooth at the origin. In this case, it is preferable to
view the K-Bessel covariance as a mixture of
exponential models whose scale factors are square-
rooted beta random variables with parameters
(b,1/2�b) (Matheron, 1965, p. 47):

CY ðrÞ ¼
2C

ffiffiffi
p
p

GðbÞGð1=2� bÞ

Z 1

0

exp �
r

au

� �
u2b�1ð1� u2Þ�b�1=2 du.

(18)

Also note that the case b ¼ 0:5 corresponds to the
exponential model.

(10) Generalized Cauchy covariance with sill C,
scale factor a and parameter b40:

CY ðrÞ ¼ C 1þ
r

a

� �2� ��b

. (19)

This model is a scale mixture of Gaussian
covariances. The scale factors are the reciprocals
of square-rooted gamma random variables with
shape parameter b.

(11) Exponential-sine covariance with sill C and
scale factor a:

CY ðrÞ ¼ C sin
p
2
exp �

r

a

� �n o
. (20)

By truncating a Gaussian random field with such
a covariance to the median threshold (y ¼ 0), one
obtains the indicator of a random set with
proportion 0.5 and exponential covariance (Lantué-
joul, 2002, p. 216). For the one-dimensional
simulation, the continuous spectral method is used.
The spectral density of the exponential-sine covar-
iance is a mixture of Gaussian densities with
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random variances:

8t 2 R3; f ðtÞ ¼

Z þ1
0

2a2u

2p

� �3=2

expð�a2jtj2uÞhðuÞ du,

(21)

where h(.) is a probability density function given by
a series expansion:

8u 2 Rþ; hðuÞ ¼
1ffiffiffiffiffiffi
pu
p

Xþ1
n¼0

ð�1Þn

ð2nÞ!

p
2

� �2nþ1

expf�ð2nþ 1Þ2ug:

(22)

Random variables with density h(.) are simulated
via an acceptance–rejection method (Lantuéjoul,
2002, p. 63), by noting that h(.) is an alternate series,
hence less than the term corresponding to n ¼ 0 in
Eq. (22), which is p/2 times the standard gamma
density with shape parameter 1/2.

(12) Linear generalized covariance with slope C

and scale factor a:

CY ðrÞ ¼ �C
r

a
. (23)

This covariance is simulated along the real axis by
drawing a random field that increases or decreases
by unit jumps at regularly spaced discontinuity
points (Chilès and Delfiner, 1999, p. 507). Another
option is to use a power covariance model (next
type) with exponent b ¼ 1.

(13) Power generalized covariance with slope C,
scale factor a and parameter b40:

CY ðrÞ ¼ ð�1Þ
kþ1C

r

a

� �b

, (24)

where k is an integer (order of the intrinsic random
field) such that 2kobp2k+2. This model is
invariant by the turning bands operator [Eq. (3)],
i.e. the corresponding covariance CX is also a power
model with the same exponent, but not the same
slope. When b is less than or equal to 1, a locally
stationary representation of the power covariance
can be simulated continuously along the real axis,
by means of a mixture of stationary triangular
covariances:

8r 2 ½0; a�; 1�
r

a

� �b

¼

Z 1

r=a

1�
r

au

� �
F ðduÞ, (25)

with 8u 2 ½0; 1½;F ðuÞ ¼ ð1� bÞub and F ð1Þ ¼ 1. The
triangular model is simulated by dividing the real
axis into regular intervals and assigning to each
interval a constant value drawn at random from a
given distribution, independently from one interval
to another one.
When b is greater than 1, an adaptation of
the continuous spectral approach is considered,
with a one-dimensional random field fX ðtÞ; t 2 Rg of
the form

8t 2 R;X ðtÞ ¼ yðRÞ cos ð2pRtþ FÞ, (26)

where F is a uniform phase in [0,2p[ and R is the
ratio between two independent gamma random
variables with shape parameter 0.5. Function y(.) is
defined by

8r 2 Rþ; yðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cp0:5�bGðbþ 2ÞGðbþ3

2
� kÞ

22k�3Gðk � b
2
ÞGðbþ 2� 2kÞ

1þ r

rbþ0:5

s
.

(27)

Note that Eq. (27) is undefined if b is an even
integer. In this particular case, the random field
fX ðtÞ; t 2 Rg is simply a monomial of degree k ¼ b=2.

(14) Mixed power generalized covariance with
slope C, scale factor a and parameter bA]0,2]:

CY ðrÞ ¼
C

lnðr=aÞ
1�

r

a

� �b
� �

. (28)

This model is a mixture of power covariances
whose exponents are random variables uniformly
distributed in ]0,b[.

(15) Spline generalized covariance with slope C,
scale factor a and parameter b ¼ 2k with k 2 N:

CY ðrÞ ¼ ð�1Þ
kþ1C

r

a

� �b

ln
r

a

� �
. (29)

The associated one-dimensional random field
fX ðtÞ; t 2 Rg is still given by Eq. (26), except that
function y(.) is now defined as

8r 2 Rþ; yðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp1�bGðbþ 2Þ

2b�1

1þ r

rbþ0:5

s
. (30)

This expression can be obtained by considering
the spline covariance with parameter b as the
derivative of the power covariance given in
Eq. (24) with respect to the exponent b (Chilès
and Delfiner, 1999, p. 264).

2.4. Ergodicity and multivariate normality

Formula (1) is not fully satisfactory as it leads to
non-ergodic three-dimensional random fields: each
realization exhibits a zonal anisotropy oriented
along vector U, so that its experimental covariance
does not match the theoretical isotropic model
(Chilès and Delfiner, 1999, p. 474). To solve this
issue, one has to repeat the spreading process many
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Fig. 2. A set of 300 equidistributed directions over the unit

sphere of R3 (van der Corput sequence).
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times, say N, and put

Y ðxÞ ¼
1ffiffiffiffiffi
N
p

XN

i¼1

X iðox;Ui4Þ; (31)

where {Ui, i ¼ 1... N} are independent directions
randomly distributed over the sphere S3 and {Xi,
i ¼ 1... N} are independent one-dimensional ran-
dom fields, each of them with covariance CX(.)
fulfilling Eq. (3). Given the realization {Ui ¼ ui,
i ¼ 1... N}, the covariance of fY ðxÞ; x 2 R3

g for a
separation vector h with modulus r is

CY ðrÞ ¼
1

N

XN

i¼1

CX ðoh; ui4Þ. (32)

This constitutes a discrete approximation of
Eq. (2): the theoretical covariance model (an
integral over the unit sphere S3) is reproduced
experimentally by Monte Carlo integration. Eq. (31)
explains the name of the method, as the simulated
random field is the sum of several random fields
generated along lines whose spatial orientation
scans the unit sphere of R3.

Provided that the simulation algorithm used
along the lines is accurate, the turning bands
method reproduces the theoretical covariance model
without bias, irrespective of the number N of lines
chosen by the user. Even so, it belongs to the class
of approximate methods because the spatial dis-
tribution of the simulated random field (or, in the
intrinsic case, of its increments) is neither ergodic
nor multigaussian. Such properties are only ensured
asymptotically, i.e. if N is infinitely large, by virtue
of the central limit theorem.

2.5. Simulation of nested and anisotropic models

A Gaussian random field with nested covariance
model can be simulated as the sum of independent
Gaussian random fields, each of them associated
with one basic structure of the nested model.
Program TBSIM.M also allows the simulation of
covariances with a geometric anisotropy, which can
be transformed into isotropic covariances via a
rotation and rescaling of the coordinate axes. For
the one-dimensional simulation, a different scale
factor is assigned to each line, according to its
orientation on the sphere S3. Extensions of the
turning bands method to the simulation of
more general anisotropic models (not implemented
in TBSIM.M) can be found in Lantuéjoul (2002,
p. 192).
2.6. How should the lines be distributed on the

sphere?

So far, the presentation assumed that the lines
had a uniform distribution over the sphere S3.
However, Eq. (32) ensures that the covariance is
also honored if the line directions form an
equidistributed (not necessarily uniform) sequence
over S3, i.e. if the proportion of directions falling in
a given sub-domain B � S3 converges to the
fraction of S3 covered by B when the number of
directions becomes infinite. In practice, the conver-
gence is faster when the lines are regularly
distributed, as it amounts to calculating the integral
in Eq. (2) by a regular discretization of the sphere
(Chilès and Delfiner, 1999, p. 476).

The maximal number of regular directions in the
three-dimensional space is equal to 15. This number
relies on the icosahedron approximation (Journel
and Huijbregts, 1978, p. 503) and has led several
authors to propose the use of 15 regular lines for the
turning bands algorithm. Actually, the lines do not
need to be regularly distributed (the previous
presentation assumes that U is a uniform random
vector over the sphere), so a number greater than 15
is by no means forbidden.

Freulon and de Fouquet (1991) examined several
sequences of line directions and showed that the
ergodic properties of the simulation substantially
improved by choosing the directions from a van der
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Corput sequence (Fig. 2) instead of uniform
directions. The construction of such a sequence is
explained in Lantuéjoul (1994, p. 164) and has been
implemented in subroutine VDC.M. The directions
are defined up to a random rotation in order to
avoid repeating the same set of directions for all the
realizations.

2.7. How many lines should be used?

Several factors should be considered when
choosing the number of lines to use for simulating
each structure of the nested model:
(1)
 The distribution of the lines over the sphere
(almost regular or purely random, see previous
discussion).
(2)
 The relative importance of the basic structure in
the covariance model: the greater the contribu-
tion of the structure (fraction of the total sill),
the more lines.
(3)
 The criterion used to decide whether the multi-
gaussian model is well reproduced or not.
Lantuéjoul (1994, p. 159) gives clues on how
to quantify the closeness of the simulated
spatial distribution to a multivariate Gaussian
distribution.
(4)
 The type of covariance and the associated
simulation technique along the lines
� The spectral method is suitable for simulating

covariance models whose spectral densities
rapidly vanish at infinity (e.g. a Gaussian
covariance); few lines are then needed to
sample correctly such densities.
� Concerning the simulation methods based on

a division of the lines into intervals (e.g. for
simulating the spherical and exponential
covariances), more lines should be used if
the scale factor increases. Indeed, the average
number of discontinuities (Fig. 1) within a
given segment [x,x0] of R3 is proportional to
the number of lines and inversely propor-
tional to the scale factor. If they are not
numerous enough, these discontinuities may
not compensate and provoke artifacts in the
simulated maps.
In two dimensions, Mantoglou and Wilson (1982)
suggest using 4 to 16 lines, Chilès (1977) recom-
mends the use of 180 lines (one per degree of angle),
while Gneiting (1999) has found that 64 lines lead to
an excellent covariance reproduction. In three
dimensions, the 15 regular lines are clearly insuffi-
cient and several hundreds of lines should be used,
say N ¼ 1000, as confirmed by the experience of
several authors (Tompson et al., 1989; Freulon
and de Fouquet, 1991). Lantuéjoul (2002, p. 198)
showed that hundreds of lines are necessary to make
sure that the moments up to order 4 of any weighted
average of the simulated values are close enough to
the expected Gaussian moments.

Actually, the number of lines is not the limiting
factor of the turning bands method, as the simula-
tion along the lines is very fast. In general, a greater
CPU time is devoted to post-process the realiza-
tions, in particular concerning the conditioning to a
set of existing data (see next section).

3. Conditioning the realizations to Gaussian data

To facilitate practical applications, program
TBSIM.M allows conditioning of the realizations
to a set of normal data. Non-conditional realiza-
tions are converted into conditional realizations
through a kriging step (Journel and Huijbregts,
1978, p. 495). Let fY SðxÞ;x 2 R3

g be a non-
conditional simulation. In the stationary case (finite
variance models), the random field defined by

8x 2 R3;Y CSðxÞ ¼ Y SðxÞ þ ½Y ðxÞ � Y SðxÞ�
SK (33)

constitutes a conditional simulation, i.e. it repro-
duces the distribution of fY ðxÞ; x 2 R3

g conditional
to the Y-data. In formula (33), the superscript SK

stands for a simple kriging (with mean zero and
covariance CY) from the values at the data
locations. To summarize, the conditional simulation
is constructed as follows:
(1)
 draw a non-conditional realization at the target
location x and at the data locations, via the
turning bands method;
(2)
 compute the deviations (residuals) between the
data values and simulated values at the data
locations;
(3)
 perform a simple kriging of the residual from its
values at the data locations
(4)
 add the result to the non-conditional realization,
in accordance with Eq. (33).
Although this approach is less straightforward
than the direct conditioning performed by the
sequential Gaussian method, its advantages are
threefold (Emery, 2004, p. 413). First, the kriging
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weights needed in step (3) are the same when several
realizations are required, hence only one kriging is
necessary to make all the realizations honor the
data. Second, the kriging matrix only involves the
original conditioning data, not the simulated values,
therefore it is smaller than in the sequential
algorithm and its inversion is faster. The dual
formulation of kriging advantageously reduces the
amount of calculations when a unique neighbor-
hood is used. Third, if the simulation is performed
on a fine grid, numerical instabilities in the kriging
systems are avoided.

In the intrinsic case (infinite variance models),
conditioning is ensured by substituting intrinsic
kriging for simple kriging in Eq. (33) (Dimitrako-
poulos, 1990, p. 369). The other steps of the
conditioning process are unchanged.
4. Program description

The proposed programs are ASCII files written in
MATLAB language (version 5.0 or later). The main
routine, called TBSIM.M, allows one to draw
several realizations of a Gaussian random field over
a regular grid or over scattered locations in R3

condition these realizations to Gaussian data, back-
transform the values from the Gaussian scale to that
of the original attribute, and regularize the simu-
lated values to a block support. The covariance
model can consist of several nested structures (see
Section 2.3 for a list of the available structure
types), each of them with a possible geometric or
zonal anisotropy. The nugget effect is treated apart
as it amounts to adding a white noise to the
simulated random field.

Regarding the back-transformation from Gaus-
sian values (y) to original values (z), a piecewise
interpolation is performed according to a conver-
sion table fðzi; yiÞ; i ¼ 1 . . . pg specified by the user:

8i 2 f1; :::p� 1g 8y 2 ½yi; yiþ1�; z ¼ ai þ biy, (34)

with

bi ¼
ziþ1 � zi

yiþ1 � yi

and ai ¼ zi � biyi.

For tail extrapolation, an exponential function is
used, which requires the definition of two positive
scalars l and l0, as well as the extreme values zmin
and zmax of the original attribute:

8y 2� �1; y1�; z ¼ zmin þ b0 expðlyÞ;

8y 2 ½yp;þ1½; z ¼ zmax þ bp expð�l
0yÞ:

(
(35)

with
b0 ¼ ðz1 � zminÞ expð�ly1Þ

bp ¼ ðzp � zmaxÞ expðl
0ypÞ

(
.

To quicken the algorithm, grid simulation is
performed row-wise. At each step, one or several
rows of the 3D grid are projected onto the lines and
their values are simulated, conditioned to the data,
back-transformed and written in the output file; the
maximum number of nodes to consider at each step
is defined by the user. This way, the 3D grid is not
loaded in the Matlab workspace and the program is
able to deal with large simulation domains. Two
options are available for the conditioning kriging
step: if the search radius is set to 1, a dual kriging
with a unique neighborhood is used, otherwise a
conventional kriging is performed in a moving
neighborhood, in association with a super-block
search strategy (Deutsch and Journel, 1992, p. 31).

The reader is referred to the header of the
program file for a description of the input para-
meters of TBSIM.M. No output variable is gener-
ated in the Matlab workspace. Instead, an external
ASCII file is created, which contains one realization
per column. For grid simulations, the ordering of
the nodes follows the GSLIB conventions (Deutsch
and Journel, 1992): point by point to the east, then
row by row to the north, and finally level by level
upward.

Alternatively, program TBSIM.M can be used
with a parameter file: in this case, no input
argument is required and the user is prompted for
the name of the parameter file. If no name is
entered, a default file (tbsim.par) is assumed. If the
file does not exist, a blank file tbsim.par is created.
When resorting to the parameter file mode, the
coordinates of the locations to be simulated (if these
locations are not gridded), the data coordinates and
data values must be in external ASCII files without
headers. TBSIM.M can also be compiled and
converted to a stand-alone executable that works
like a GSLIB program.

The generation of random variables requires the
availability of the Matlab Statistics Toolbox (routines
for simulating uniform, normal, gamma and beta
random variables). TBSIM.M uses twelve additional
subroutines, the description of which can be found in
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the corresponding program files: BACKTR, COVA,
CREATE_PARAMFILE, DUAL, KRIGE, PICK-
SUPR, SEARCH, SETDUAL, SETROT, SU-
PERBLK, TBMAIN and VDC.

5. Investigating the quality of the simulation

program: example of a spherical covariance model

This section examines the quality of the realiza-
tions obtained by program TBSIM.M, through a
particular example consisting of a non-conditional
simulation over a domain of size 1024� 1024� 1.
The covariance model is composed of an isotropic
spherical model with range 50 and sill 0.9 plus a
nugget effect with sill 0.1. In the following, three
kinds of checks are performed:
�

Fig

cov
a visual appreciation of the artifact banding due
to the use of a finite number of lines;

�
 an analysis of the statistics of the simulated

univariate and bivariate distributions;

�
 an inspection of the fluctuations of the first

moments over a set of realizations.

5.1. Artifact banding

Fig. 3 presents two realizations in grayscale
representations, the first one obtained by using 15
lines, the second one corresponding to 1000 lines.
. 3. Two realizations of random fields simulated with the turning

ariance consists of an isotropic spherical model plus a nugget effec
As stated earlier, the use of 15 lines is clearly
insufficient and leads to artifacts (striping) in the
simulated map. However, such artifacts are no
longer perceptible when using 1000 lines. In
practice, to choose a suitable number of lines, users
can construct a few non-conditional realizations
and check whether their ‘texture’ is acceptable or
not. Based on the current example and on the
comments in Section 2.7, the following heuristic rule
is deemed appropriate for simulating a spherical
covariance model with relative sill C (sill of the
spherical model divided by the total sill):

N � 20C max
u2S3

au

meshðuÞ

� �
, (36)

where au is the range along the direction spanned by
vector u and mesh(u) the minimal distance between
consecutive nodes (or locations to be simulated)
along that direction. This formula can also be
applied to the exponential and cubic models, the
construction of which is close to that of the
spherical model.

5.2. Reproduction of the univariate and bivariate

distributions

To validate the quality of the algorithm beyond a
visual check of the simulated maps, a set of 100 non-
conditional realizations is drawn with the same
model and same domain as in the previous
bands algorithm by using 15 and 1000 lines, respectively. The

t.
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Fig. 4. Validation of the reproduction of the univariate and bivariate distributions, from 100 non-conditional realizations obtained by

using 1000 lines. The covariance consists of an isotropic spherical model plus a nugget effect.

X. Emery, C. Lantuéjoul
subsection, by using 1000 lines for each realization.
The simulated univariate distributions are then
compared to the expected standard Gaussian
distribution via a quantile–quantile plot. Also, the
bivariate distributions are examined through three
parameters: the simulated variograms, madograms
and median indicator variograms (Fig. 4). For a
standard Gaussian random field with correlogram
r(h), one has the following relationships (Lantué-
joul, 2002, p. 208; Emery, 2005a, p. 166):
�
 variogram: 1�r(h);

�
 madogram (first-order variogram):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rðhÞ=p
p

;

median indicator variogram:
�
1=p arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rðhÞ=2

p
.

In each case, one observes that the average
simulated statistics match the theoretical model
almost perfectly. These tests are easy to perform and
helpful for investigating the quality of a simulation
algorithm, see for instance Emery (2004) for an
application to the sequential Gaussian algorithm.

5.3. Ergodic fluctuations

Another way to validate a simulation algorithm is
to examine the ergodic fluctuations in the simulated
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statistics. The amplitude of such fluctuations
depends on the size of the simulated domain and
on the spatial distribution of the random field (in
the present case, a multigaussian distribution). In
the following subsections, we focus on the fluctua-
tions of the spatial averages and of the simulated
variograms.
5.3.1. Fluctuations of the spatial averages over a set

of increasing sub-domains

Let V be the entire simulated domain. Suppose
that it can be partitioned into P sub-domains
fW p; p ¼ 1 . . .Pg with the same shape, size and
orientation as a reference domain W. Let us
consider the dispersion variance D2(W|V) of the
average value of the simulated random field over
these sub-domains. By applying Krige’s relation-
ship, the following approximate identity is estab-
lished (Matheron, 1989, p. 85):

D2ðW jV Þ � A
1

jW j
�

1

jV j

� �
, (37)

where |V| and |W| are the volumes of V and W, and
A is the integral range of the correlogram model (in
the present case, A ¼ 1413:7). Eq. (37) holds
provided that A is finite and non-zero and that
|W| is much greater than A (Lantuéjoul, 1991). It
can be re-written as follows:

D2ðW jV Þ �
A

jV j
ðP� 1Þ. (38)
Fig. 5. Validation of the fluctuations for (A) the spatial averages over

variograms.
In log–log coordinates, the points plotting the
dispersion variance of W within V as a function of
P�1 should be asymptotically aligned with slope 1
when P decreases. In practice the dispersion
variance is estimated as the average of the experi-
mental variances of the sub-domains over the 100
realizations. In Fig. 5A, the test is applied to two
types of sub-domains: squares and stripes with
length 1024. In both cases, the points are almost
aligned along the theoretical asymptote for small
values of P, which corroborates the consistency of
the observed fluctuations with the multigaussian
model.
5.3.2. Fluctuations of the regional variogram

Let GV(h) be the probabilistic version of the
regional variogram over domain V and g(h) the
theoretical variogram model. Then one has (Math-
eron, 1989, p. 81):

var½GV ðhÞ�

¼
1

2K2
hð0Þ

Z
½gðuþ hÞ þ gðu� hÞ � 2gðuÞ�2KhðuÞdu,

ð39Þ

where Kh(.) is the geometric covariogram of the
intersection of V and V shifted by �h.

The regional variogram GV(h) is the average of
many identically distributed random variables (the
squared differences between pairs of simulated
values). For lag distances |h| much smaller than
a set of increasing sub-domains, and (B) the simulated regional
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the diameter of the simulated domain V (say,
|h|o100 in the case under study), these variables
are not independent but are located in an area that
is several hundreds times the integral range of the
covariance model. By assuming a mixing property
in that area, the central limit theorem states that the
distribution of GV(h) at small distances is almost
Gaussian, with mean g(h) and variance given by
Eq. (39). Consequently, the distribution of the
dispersion of the regional variogram over a set of
n realizations is proportional to a w2 random
variable with n�1 degrees of freedom (in the present
case n� 1 ¼ 99). This result allows one to define a
95% probability interval around the expected
variance [Eq. (39)] and check that the observed
dispersion of the simulated regional variograms lies
within such an interval (Fig. 5B).

Lantuéjoul (1994) showed that the turning bands
method produces fluctuations that depart from the
theoretical expression given in Eq. (39). However,
the departure tends to zero when the number of
lines increases, so it can be controlled in order to be
smaller than a given accuracy level. When using one
thousand of lines as in this example, the bias is
negligible.
6. Conclusions

Thirty years after being developed, the turning
bands approach is still scarcely used in geostatistical
applications, although it is more efficient than most
other methods for simulating Gaussian random
fields. The non-conditional simulation step is gen-
erally very fast as it achieves the three-dimensional
simulation through a series of one-dimensional
simulations. Furthermore, a single kriging run is
required to make all the realizations conditional to a
set of data. By setting adequately the parameters of
the algorithm (in particular, by using several
hundreds or thousands of lines), the artifact
banding is almost imperceptible in the realization
maps, whereas the simulated statistics of the
univariate and bivariate distributions and the
associated statistical fluctuations are consistent with
the theoretical multigaussian model.

The proposed computer programs allow one to
simulate continuous attributes over large domains
and can handle nested and anisotropic covariance
models. They may also be a basis for the simulation
of categorical attributes through the truncated
Gaussian and plurigaussian algorithms, or for that
of continuous attributes represented by Gaussian-
related models (Lantuéjoul, 2002; Emery, 2005b).

Acknowledgments

The authors are grateful to two anonymous
reviewers for their valuable comments on an earlier
version of this paper.

Appendix A. Supplementary materials

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.cageo.2006.03.001
References

Black, T.C., Freyberg, D.L., 1990. Simulation of one-dimen-

sional correlated fields using a matrix-factorization moving

average approach. Mathematical Geology 22 (1), 39–62.

Brooker, P.I., 1985. Two-dimensional simulation by turning

bands. Mathematical Geology 17 (1), 81–90.
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géostatistique, Fascicule 1, Centre de Géostatistique, Ecole
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