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Multigaussian kriging for point-support estimation: incorporating
constraints on the sum of the kriging weights

Abstract In the geostatistical analysis of regionalized
data, the practitioner may not be interested in mapping
the unsampled values of the variable that has been
monitored, but in assessing the risk that these values ex-
ceed or fall short of a regulatory threshold. This kind of
concern is part of the more general problem of estimating
a transfer function of the variable under study. In this
paper, we focus on themultigaussianmodel, for which the
regionalized variable can be represented (up to a nonlin-
ear transformation) by a Gaussian random field. Two
cases are analyzed, depending onwhether themean of this
Gaussian field is considered known or not, which lead to
the simple and ordinary multigaussian kriging estimators
respectively. Although both of these estimators are the-
oretically unbiased, the latter may be preferred to the
former for practical applications since it is robust to a
misspecification of the mean value over the domain of
interest and also to local fluctuations around this mean
value. An advantage of multigaussian kriging over other
nonlinear geostatistical methods such as indicator and
disjunctive kriging is that it makes use of the multivariate
distribution of the available data and does not produce
order relation violations. The use of expansions into
Hermite polynomials provides three additional results:
first, an expression of the multigaussian kriging estima-
tors in terms of series that can be calculated without
numerical integration; second, an expression of the
associated estimation variances; third, the derivation of a
disjunctive-type estimator that minimizes the variance of
the error when the mean is unknown.

Keywords Gaussian random fields Æ Multivariate
normality Æ Conditional expectation Æ Ordinary
kriging Æ Lognormal kriging Æ Hermite polynomials

Introduction

In many fields of application concerned with spatial
prediction, the practitioner needs to determine the dis-
tribution of values of a regionalized variable relative to
one or several thresholds. For instance, in soil and
groundwater remediation studies, the environmentalist
looks whether the concentration of a pollutant exceeds a
critical level (specified by regulators) or not. In agricul-
tural land management, the soil scientist is interested in
avoiding a deficiency in nutrients or an excess in con-
taminant concentrations. In mineral resource and ore
reserve evaluation, the mining engineer wants to assess
the grades of the elements of interest, by-products and
impurities relative to given economic or regulatory cut-
offs.

Although it is helpful to map the regionalized vari-
able, linear kriging is generally not suitable for all these
applications concerned with the risk of exceeding or
falling short of a threshold (Chilès and Delfiner 1999, p.
178). Instead, nonlinear geostatistical methods can be
used, such as indicator, disjunctive and multigaussian
kriging (Matheron 1976; Journel 1983; Verly 1983, 1984;
Maréchal 1984). However, disjunctive and multigaus-
sian kriging are still not widely used in practical appli-
cations. One of the reasons is that they are traditionally
restricted to simple kriging, i.e. kriging with a known
mean, which is often considered a demanding require-
ment (Guibal and Remacre 1984, p. 434; Rivoirard
1994, p. 67).

The objective of this work is to develop and improve
the multigaussian approach, in particular concerning the
possibility to use ordinary kriging (i.e. kriging with an
unknown mean) instead of simple kriging. After a brief
recall of the definition and main properties of the mul-
tigaussian model, the multigaussian kriging approach is
introduced, distinguishing the cases of a known and an
unknown mean. Then we examine the precision of the
estimators and calculate the associated error variances.
Further developments are finally proposed to construct
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an ‘‘optimal’’ estimator that minimizes the error vari-
ance when the mean is unknown.

Principles and properties of multigaussian kriging

The multigaussian model

The regionalized variable under study is regarded as a
realization of a (nonlinear) transform of a random field
{Yx, x 2 Rd} with univariate Gaussian distribution
(Rivoirard 1994, p. 46; Goovaerts 1997, p. 273). Usually,
one works with standard Gaussian variables, i.e. the
mean and variance of Yx are set to 0 and 1, respectively.
As this paper examines the case of an unknown mean,
here we prefer to assume that the mean is equal to m,
whereas the variance of Yx is still one.

The key assumption of the multigaussian model is
that the random field {Yx, x 2 Rd} has a multivariate
Gaussian spatial distribution. Such distribution is fully
determined as soon as the mean value and the correlo-
gram (or variogram) are identified, which makes the
model very simple to use for nonlinear estimation as well
as for stochastic simulation. Given a set of data trans-
formed to normal scores values, a key question is to
check the plausibility of the multigaussian assumption.
A possibility is to use one of the many tests for multi-
variate normality proposed in the statistical literature
(e.g. Koziol 1986; Mecklin and Mundfrom 2004), al-
though such tests are not widely used in geostatistical
applications. Alternatively, the multigaussian hypothesis
can be validated by examining the experimental bivari-
ate distributions of the normal scores values, for which
several tools are available:

1. Inspection of the lagged-scattergrams for several lag
separation vectors and calculation of regression
curves associated with the Hermite polynomials of
low degrees (Rivoirard 1994, p. 39; Chica-Olmo and
Luque-Espinar 2002).

2. Inspection of the indicator variograms associated
with several thresholds (Goovaerts 1997, p. 278).

3. Inspection of the variograms of several orders, e.g.
by comparing the madogram and the rodogram to
the classical variogram (Emery 2005a). These tools
are interesting when the mean value is assumed
unknown, since they do not work with the random
field {Yx, x 2 Rd} itself, but with its increments.
The objective of multigaussian kriging is to estimate
a function of the regionalized variable at an un-
sampled location x, which is also a function of the
normal score transform Yx, denoted by u(Yx)
henceforth; this function is sometimes called a
‘‘transfer function’’ or a ‘‘recovery function’’. For
instance, the problem mentioned in the introductory
section (assessment of whether the value of the
variable under study exceeds a critical threshold or
not) is dealt with by considering an indicator
function:

uðYxÞ ¼
1 if Yx>y
0 otherwise.

�
�
�
�

ð1Þ

The correlogram q(x,x¢) of the Gaussian field {Yx,
x 2 Rd} is supposed to be correctly modeled and the
available information to perform the local estimation
are the values of this field at a set of sampling locations,
say {xa, a=1,..., n}. In the following, two cases are
distinguished, depending on whether the mean value m is
considered known or not.

Case of a known mean

In the case of a knownmean, the posterior distribution of
Yx at location x, i.e. its distribution conditioned to the
data located at {xa, a=1,..., n}, is Gaussian-shaped with a
mean equal to the simple kriging Y SK

x from the normal
scores data and variance equal to the corresponding
simple kriging variance ðrSK

x Þ
2 (Goovaerts 1997, p. 272;

Chilès andDelfiner 1999, p. 381). One can therefore write:

Yx ¼ Y SK
x þ rSK

x T ; ð2Þ

where T is a standard Gaussian random variable inde-
pendent of the data (this is the standardized simple
kriging error).

Simple multigaussian kriging (in short, sMK) is de-
fined by taking the expected value of the posterior dis-
tribution of u(Yx): this estimator is also known as the
‘‘conditional expectation’’ of u(Yx) (Rivoirard 1994, p.
61; Chilès and Delfiner 1999, p. 380). Using Eq. 2, one
finds:

½uðYxÞ�sMK ¼
Z

uðY SK
x þ rSK

x tÞ gðtÞ dt; ð3Þ

where g(.) is the standard Gaussian probability density
function. An equivalent expression is the following one:

½uðYxÞ�sMK ¼ E uðY SK
x þ rSK

x T ÞjY SK
x

� �

ð4Þ

which shows that all the conditioning information is
actually contained in the simple kriging estimator. The
integral in Eq. 3 can be evaluated via numerical inte-
gration (Verly 1984, p. 500).

The simple multigaussian kriging estimator has sev-
eral interesting properties:

1. It is unbiased, i.e. the expected value of the error is zero.
2. It is conditionally unbiased (Chilès and Delfiner 1999,

p. 164), i.e. the expected value of u(Yx) knowing its
estimate is equal to this estimate:

E uðYxÞ j ½uðYxÞ�sMK
n o

¼ ½uðYxÞ�sMK: ð5Þ

3. It honors the values of u(Yx) at the sample locations
(indeed, at a data location, the kriging estimator
matches the datum and the kriging variance is zero).

4. The simple kriging estimator tends to the prior mean
m and the kriging variance to the prior unit variance



when the distance between x and the data is greater
than the range of the correlogram. Hence, far from
the data, the conditional expectation of u(Yx) con-
verges to its prior expectation. Note that this prop-
erty is necessary to ensure conditional unbiasedness
(property 2). Indeed, far from the data, the condi-
tioning is inactive in Eq. 5, so one has:

½uðYxÞ�sMK ¼ E uðYxÞj½uðYxÞ�sMK
n o

� E uðYxÞf g:
ð6Þ

5. The estimation error u(Yx) � [u(Yx)]
sMK is not cor-

related with the estimator [u(Yx)]
sMK (Chilès and

Delfiner 1999, p. 15), which entails the following
identity:

cov uðYxÞ; ½uðYxÞ�sMK
n o

¼ var ½uðYxÞ�sMK
n o

: ð7Þ

Simple multigaussian kriging relies on the mean value
m of the Gaussian field {Yx, x 2 Rd}, a feature that may
be undesirable in practical applications (Remacre 1984;
Guibal and Remacre 1984, p. 434). In the next subsec-
tion, the hypotheses on which the model is based are
weakened, by considering the mean unknown.

Case of an unknown mean

This situation is of interest when the random field {Yx, x
2 Rd} has a varying mean that can be considered con-
stant only at the scale of the kriging neighborhood (case
of local stationarity). Usually, this local mean has to be
estimated from the data contained in the neighborhood
and the estimation may be poor if these data are too few
or highly clustered in space. Should the estimated mean
differ from the true mean of {Yx, x 2 Rd}, the simple
multigaussian kriging estimator would be biased, hence
there is a risk of getting inaccurate estimations of the
transfer functions.

Considering an unknown mean avoids this incon-
venient as the model does no longer rely on this mean
and accounts for the uncertainty associated with it.
This approach is widely applied in linear geostatistics,
where ordinary kriging is commonly used instead
of simple kriging. The ordinary kriging of Yx is
defined by the following weighting of the normal
scores data:

Y OK
x ¼

Xn

a¼1
kOK

a Yxa ð8Þ

with

Pn

b¼1
kOK

b qðxa; xbÞ þ lx ¼ qðxa; xÞ 8a ¼ 1 . . . n

Pn

a¼1
kOK

b ¼ 1:

8

>><

>>:

ð9Þ

The ordinary kriging variance (variance of the esti-
mation error) is

ðrOK
x Þ

2 ¼ 1�
Xn

a¼1
kOK

a qðxa; xÞ � lx: ð10Þ

Ordinary multigaussian kriging is defined by substi-
tuting ordinary kriging to simple kriging in Eq. 3.
However, to avoid bias, the simple kriging variance has
to be replaced by the ordinary kriging variance plus
twice the Lagrange multiplier introduced in Eq. 9 (Em-
ery 2005b, 2006):

½uðYxÞ�oMK ¼
Z

uðY OK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOK
x Þ

2 þ 2lx

q

tÞ gðtÞ dt:

ð11Þ

This estimator does not depend on the value of the
mean any more. It can be re-written in the following
form:

½uðYxÞ�oMK ¼ E uðY OK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOK
x Þ

2 þ 2lx

q

T ÞjY OK
x

� �

;

ð12Þ

where T stands for a standard Gaussian random vari-
able independent of Y OK

x : Note that this is not the
standardized ordinary kriging error, since this error is
correlated to the data and therefore to the kriging esti-
mator (Chilès and Delfiner 1999, p. 184). The unbi-
asedness of ordinary multigaussian kriging can be
demonstrated by noting that Y OK

x is a Gaussian random
variable, as a weighted average of data with a multi-
variate Gaussian distribution, with mean m and variance
(Eqs. 8, 9, 10)

ðsOK
x Þ

2 ¼ varðY OK
x Þ ¼ 1� ðrOK

x Þ
2 � 2lx: ð13Þ

Consequently, Y OK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOK
x Þ

2 þ 2lx

q

T has the same
prior distribution as Yx (namely, a normal distribution
with mean m and unit variance). Hence the expected
value of the estimator in Eq. 12 is equal to the one of the
function to estimate, irrespective of the value of the
mean m:

E ½uðYxÞ�oMK
n o

¼ E uðY OK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOK
x Þ

2 þ 2lx

q

T Þ
� �

¼ E uðYxÞf g:
ð14Þ

Remarks

1. Ordinary multigaussian kriging honors the values of
u(Yx) at the data locations: at these locations, the
ordinary kriging estimator matches the data values,
whereas the kriging variance and Lagrange multiplier
are equal to zero.

2. Because of the square root, Eq. 11 requires that
ðrOK

x Þ
2 þ 2lx is nonnegative. In general, this condi-



tion is fulfilled, since the variance of the ordinary
kriging estimator (weighted average of the data) is
usually smaller than the prior variance, i.e. ðsOK

x Þ
2 is

lower than or equal to one (Eq. 13). Otherwise, one
may replace ordinary kriging by another weighting of
the normal scores data with a variance less than one,

Fig. 1 Geometric interpretation
of the simple and ordinary
multigaussian kriging
estimators



a sufficient condition being that the weights are
nonnegative and add to one to ensure unbiasedness,
see Barnes and Johnson (1984), Herzfeld (1989) and
Deutsch (1996).

3. The ordinary multigaussian kriging estimator is
globally unbiased but not conditionally unbiased. In
general, one has (Appendix A):

E uðYxÞj½uðYxÞ�oMK
n o

6¼ ½uðYxÞ�oMK: ð15Þ

As mentioned before (Eq. 6), any conditionally unbiased
estimator of u(Yx) converges to its prior expectation
when moving away from the data. Therefore, to avoid
this convergence, one must accept the presence of a
conditional bias.
4. For the estimation purpose, everything occurs as if

the posterior distribution of the unknown value Yx

were Gaussian, with mean equal to the ordinary
kriging and variance the ordinary kriging variance
plus twice the Lagrange multiplier (Eq. 11). This
mathematically consistent distribution implies that
the estimations do not violate order relations, for
instance the estimation of a positive function is al-
ways positive or the estimation of an indicator
function (Eq. 1) decreases when the threshold in-
creases. However, this (pseudo) posterior distribution
differs from the true one, for which the first- and
second-order moments are the simple kriging and
simple kriging variance (see Eq. 2).

In general, the variance of the pseudo posterior
distribution of Yx is lower than the simple kriging var-
iance. Indeed, let km be the weight assigned to the mean
in the simple kriging estimator and (rm

OK)2 the estimation
variance of the unknown mean. The additivity theorem
(Matheron 1971, p. 129) provides the following rela-
tionship:

ðrOK
x Þ

2 ¼ ðrSK
x Þ

2 þ k2m ðrOK
m Þ

2: ð16Þ

Besides, the Lagrange multiplier introduced in the
ordinary kriging system (Eq. 9) can be expressed as
follows (Emery 2004, p. 411):

lx ¼ �km ðrOK
m Þ

2: ð17Þ

Hence the variance of the pseudo posterior distribu-
tion of Yx is

ðrOK
x Þ

2 þ 2lx ¼ ðrSK
x Þ

2 þ km ðkm � 2Þ ðrOK
m Þ

2: ð18Þ

Usually the weight of the mean km is positive and less
than 2, so the dispersion of the pseudo posterior distri-
bution is smaller than the one of the true posterior dis-
tribution. This entails that the ordinary multigaussian
kriging approach is not suitable for assessing the local
uncertainty on the unsampled values of the regionalized
variable, e.g. by deriving confidence intervals from the
pseudo posterior distribution.

A geometric interpretation of multigaussian kriging

Equations 4 and 12 can be interpreted from a geometric
point of view (Fig. 1). To simplify, suppose that the
mean m is equal to zero and consider the vector space
spanned by the Gaussian variables at locations x and
{xa, a=1,..., n}. This space is provided with a scalar
product equal to the covariance operator. For visuali-
zation purposes the drawing is restricted to the case
n=2. The unit sphere represents all the Gaussian ran-
dom variables with a unit variance that can be obtained
by linear combinations of the three variables Yx; Yx1 ; Yx2 :
Let Y be an element of this sphere, Y* its orthogonal
projection onto the plane H spanned by the data Yx1 ; Yx2

and Y^ = Y�Y* the residual, which is orthogonal to H
(Fig. 1a). Since u(Yx) and u(Y) have the same expected
value, an unbiased estimator of u(Yx) is obtained by
putting

½uðYxÞ�� ¼ E uðWÞjW�f g ð19Þ

For instance, the orthogonal projection of Yx onto H
is its simple kriging (Journel and Huijbregts 1978, p.
559). It always falls inside the sphere and it is therefore
possible to find a Gaussian variable orthogonal to H
(the simple kriging error) such that the sum is located on
the sphere (Eqs. 2, 4):

W� ¼ Y SK
x

W? ¼ rSK
x T

W ¼ Yx:

8

<

:
ð20Þ

Ordinary kriging is the orthogonal projection of Yx

onto the line that joins the two data (this line represents
the constraint that the kriging weights add to one). It
may occasionally fall outside the unit sphere (Fig. 1c): in
this case, the variance of the ordinary kriging estimator
is greater than one and no independent random variable
can be added to come back to the sphere. Otherwise, one
has (Eq. 12 and Fig. 1b):

W� ¼ Y OK
x

W? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sOK
x

� �2
q

T

W ¼ Y OK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sOK
x

� �2
q

T :

8

>><

>>:

ð21Þ

Example: lognormal kriging

An interesting example is the case when u is an expo-
nential function, which amounts to estimating a log-
normal variable:

uðYxÞ ¼ expðr YxÞwith r 2 R: ð22Þ

After simplification, the simple and ordinary multig-
aussian kriging estimators (Eqs. 3, 11) are found to



coincide with the so-called simple and ordinary lognor-
mal kriging:

½expðrYxÞ�sMK ¼ exp rY SK
x þ r2 ðrSK

x Þ
2

2

 !

½expðrYxÞ�oMK ¼ exp OK
x þ r2 ðrOK

x Þ
2

2
þ r2lx

 !

:

ð23Þ

Lognormal kriging has been extensively studied in the
geostatistical literature, mainly in the scope of ore reserve
evaluation problems (Matheron 1974; Parker et al. 1979;
Rendu 1979; Journel 1980; Dowd 1982; Rivoirard 1990).
So far, it was considered an exceptional case where an
ordinary kriging of the normal scores data could be used
without provoking a bias (Rivoirard 1994, p. 71; Chilès
and Delfiner 1999, p. 382). However, the previous
statements about ordinary multigaussian kriging show
that the incorporation of a constraint on the sum of the
kriging weights is not specific to the lognormal model.

Precision of multigaussian kriging

The unbiasedness (accuracy) of multigaussian kriging
does not entail that this estimator is precise, as the esti-
mation errors may be highly dispersed and only com-
pensate in average. The precision of an estimator is
usually quantified by calculating the variance of the esti-
mation error. For instance, concerning simple multig-
aussian kriging, this variance is expressed as follows
(Eq. 7):

var uðYxÞ � ½uðYxÞ�sMK
n o

¼ var uðYxÞf g � var ½uðYxÞ�sMK
n o

:
ð24Þ

To go further and get a workable analytical expres-
sion of this variance, it is useful to expand the estimator
into Hermite polynomials.

Expansion of the multigaussian kriging estimator into
Hermite polynomials

The normalized Hermite polynomials {Hp, p 2 N}
(Hochstrasser 1972) form an orthonormal basis with
respect to the standard bivariate Gaussian distribution,
that is:

1. Any function of L2(R,g) (i.e. the space of functions
that are square-integrable with respect to the measure
defined by the standard Gaussian density g) can be
expanded into Hermite polynomials, i.e. there exists a
unique set of scalar coefficients {up(m), p 2 N} such
that:

8y 2 R;uðmþ yÞ ¼
Xþ1

p¼0
upðmÞHpðyÞ: ð25Þ

2. If {Y, Y¢} has a standard bigaussian distribution with
correlation coefficient r, then for any positive integers
p and q:

EfHpðY Þg ¼ 0

covfHpðY Þ;HqðY 0Þg ¼
0 if p 6¼ q
rp otherwise.

�
�
�
�

8

<

:
ð26Þ

From these properties, the following expansions can
be established (Emery 2005b, pp. 299–305):

– Transfer function to estimate:

uðYxÞ ¼
Xþ1

p¼0
upðmÞHpðYx � mÞ: ð27Þ

– Simple multigaussian kriging:

½uðYxÞ�sMK ¼
Xþ1

p¼0
upðmÞ ðsSKx Þ

pHp
Y SK
x � m

sSKx

	 


; ð28Þ

where (sx
SK)2 is the variance of the simple kriging estima-

tor, which is equal to the prior variance minus the simple
kriging variance (Chilès and Delfiner 1999, p. 162):

ðsSKx Þ
2 ¼ varðY SK

x Þ ¼ 1� ðrSK
x Þ

2: ð29Þ

The convergence rate of the series in Eq. 28 is faster than
the one in Eq. 27, because the coefficients {up(m),
p 2 N} are multiplied by the successive terms of a geo-
metric series with common ratio less than one. Conse-
quently, Eq. 28 can be used to calculate the simple
multigaussian kriging estimator by truncating the sum-
mation to a high order (say, Pmax=100) instead of
resorting to a numerical integration of Eq. 3 (Emery
2005b, p. 300).
– Ordinary multigaussian kriging:

½uðYxÞ�oMK ¼
Xþ1

p¼0
upðmÞ ðsOK

x Þ
pHp

Y OK
x � m

sOK
x

	 


: ð30Þ

Since the estimator does not depend on the mean m
(Eq. 11), one also has

½uðYxÞ�oMK ¼
Xþ1

p¼0
upð0Þ ðsOK

x Þ
pHp

Y OK
x

sOK
x

	 


: ð31Þ

Again, this equation can be used to calculate the or-
dinary multigaussian kriging estimator, by truncating
the expansion to a high order. It is also interesting for
establishing the conditions under which the estimator
can be defined. Indeed, the expansion converges if and
only if the sum of the squares of {up(0) (sx

OK)p, p 2 N} is
finite. A sufficient condition is that sx

OK is less than or
equal to one, a situation that has been mentioned earlier,
but this is not a necessary condition. For instance,
Eq. 31 converges for any value of sx

OK if u is a polyno-



mial (finite expansion) or an exponential function (or-
dinary lognormal kriging). In contrast, if u is an indi-
cator function (Eq. 1), the expansion diverges as soon as
sx
OK is greater than one.

Expression of the estimation variances

The calculation of the estimation variances is based on
the previous expansions and on the orthonormality of
the Hermite polynomials for the bigaussian distribution
(Eq. 26). It comes (proof in Appendix B):

– Simple multigaussian kriging variance:

varfuðYxÞ � ½uðYxÞ�sMKg

¼
Xþ1

p¼1
u2

pðmÞ f1� ½1� ðrSK
x Þ

2�pg:

– Ordinary multigaussian kriging variance:

varfuðYxÞ�½uðYxÞ�oMKg

¼
Xþ1

p¼1
u2

pðmÞf1þ½1�ðrOK
x Þ

2�2lx �p�2½1�ðrOK
x Þ

2�lx�pg:

ð33Þ

In practice, Eqs. 32 and 33 can be calculated
numerically by truncating the expansions to a high or-
der. The estimation variances explicitly depend on the
value of the mean (m); if this mean is unknown, an
approximation consists in replacing m by its optimal
estimate or by zero (mean value in the ideal multigaus-
sian model). In contrast, the previous variances are not
conditional, in the sense that they do not depend on the
data values. It is also possible to define a conditional
variance, which is a more realistic measure of the
uncertainty on the value of u(Yx):

varfuðYxÞjdatag ¼ ½u2ðYxÞ�sMK � f½uðYxÞ�sMKg2: ð34Þ

This variance can be calculated provided that the
mean is known. Its expected value is the non-conditional
variance given in Eqs. 24 and 32. As an example, let us
consider again the case where u is an exponential
function (Eq. 22); the Hermitian expansion of such a
function can be found in Chilès and Delfiner (1999, p.
641). After simplification, the following non-conditional
and conditional estimation variances are found:

varfexpðrYxÞ � ½expðrYxÞ�sMKg
¼ e2rðmþrÞf1� e�r2ðrSK

x Þ
2

g; ð35Þ

varfexpðrYxÞ � ½expðrYxÞ�oMKg
¼ e2rðmþrÞf1þ e�r2½ðrOK

x Þ
2þlx� ðe�r2lx � 2Þg

ð36Þ

and

varfexpðrYxÞjdatag¼e2rY SK
x þr2 ðrSK

x Þ
2

fer2 ðrSK
x Þ

2

�1g: ð37Þ

These formulae coincide with the expressions given
by Rendu (1979, pp. 417–419), Journel (1980, pp. 291–
295) and Dowd (1982, pp. 482–84). Note that the con-
ditional variance is proportional to the square of the
simple lognormal kriging estimator, a feature known as
‘‘proportional effect’’.

On the optimality of multigaussian kriging

Known mean

Simple multigaussian kriging coincides with the condi-
tional expectation estimator in the multigaussian
framework, which is known to minimize the estimation
variance among all the estimators constructed from the
data (Chilès and Delfiner 1999, p. 14). Hence it consti-
tutes the ‘‘optimal’’ estimator if the mean value is
known, provided of course that the multigaussian
hypothesis is suited to the data under study.

Unknown mean

Unlike simple multigaussian kriging, ordinary multig-
aussian kriging is not a conditional expectation estima-
tor and may not minimize the estimation variance. The
reader will find in Appendix C some elements on the
construction of a disjunctive-type estimator that is
unbiased and theoretically more precise than ordinary
multigaussian kriging. The idea is to seek an estimator
that minimizes the error variance of each term of the
Hermitian expansion of u(Yx) (Eq. 27), by putting:

½uðYxÞ�* ¼
Xþ1

p¼0
upð0Þ ðs�x;pÞ

pHp
Y �x;p
s�x;p

 !

; ð38Þ

where fY �x;p; p 2 Ng is a set of weighted averages of the
normal scores data whose weights add to one, and
fðs�x;pÞ

2; p 2 Ng their respective variances.
To compare the performance of this disjunctive esti-

mator with the one of simple and ordinary multigaussian
kriging, we propose to examine a few kriging configu-
rations. More precisely, let us consider three data in a
two-dimensional space and four locations to estimate, as
shown in Fig. 2.

In this exercise, the correlogram of the Gaussian
random field {Yx, x 2 R2} is supposed to be an isotropic
exponential model with practical range a and sill C=0.9,
plus a nugget effect with sill 1 � C=0.1. Two values of
the range are tested: a=2 and a=10. For both range
values and each location to estimate, the estimation
variances of the first ten Hermite polynomials are cal-
culated, corresponding to simple multigaussian kriging
(solid lines in Fig. 3), ordinary multigaussian kriging
(circles in Fig. 3) and the disjunctive estimator given in



Eq. 38 (dotted lines in Fig. 3). In the analyzed configu-
rations, the latter improves the estimation variance of
ordinary multigaussian kriging up to 5% (especially for
the polynomials of degrees 3–8 at locations B and D)
and therefore constitutes a worthy alternative to it. In
practice however, ordinary multigaussian kriging is
much simpler to calculate and may be preferred by
practitioners. The advantages of the disjunctive estima-
tor vanish when

1. The nugget effect of the correlogram model is
important: this situation leads to an equal weighting
of the normal scores data for both the disjunctive
estimator and ordinary multigaussian kriging;

2. The data are abundant or the location to estimate is
close to a datum. Simple kriging is then close to or-
dinary kriging (the weight of the mean is low in the
simple kriging estimator), hence ordinary multigaus-
sian kriging is almost optimal;

3. The location to estimate is distant from any datum.
In this case, for any integer p, the optimal weighting
in Eq. 38 is the ordinary kriging of the data (proof in
Appendix C), hence the disjunctive estimator coin-
cides with ordinary multigaussian kriging.

Misspecified mean

In this last subsection, we examine the robustness of
simple multigaussian kriging to a misspecification of the
mean value and compare its performance to ordinary
multigaussian kriging. For sake of simplicity, the anal-
ysis is restricted to the lognormal case, for which ana-
lytical formulae can be derived. Suppose that the mean
value of the normal scores data is wrongly specified by
the user, who assumes a mean equal to m¢ instead of m.
In the following, we will assume that m¢ is the optimal
estimator of the true unknown mean, obtained by or-
dinary kriging from the normal scores data. Because of

the additivity relationship (Matheron 1971, p. 129),
using m¢ instead of m amounts to substituting ordinary
kriging for simple kriging in the traditional lognormal
kriging estimator (Eq. 23):

½expðrYxÞ�� ¼ exp rY OK
x þ r2 ðrSK

x Þ
2

2

 !

: ð39Þ

This kind of estimator has been proposed by Go-
ovaerts (1997, p. 282); however, in general it is not
unbiased. Its quality can be characterized by the
associated mean squared error (denoted by MSESMK

in the following), a measure that accounts for both the
error mean (accuracy) and error variance (precision).
When x coincides with a data location, this mean
squared error is zero because the estimator honors the
data values. In the following, we examine the opposite
case when Yx is correlated with none of the data.
After simplification, the following mean squared error
is found:

MSESMK ¼ e2rðmþrÞf1þ e
1
2r

2 ðrOK
m Þ

2�r2 ½e3
2r

2 ðrOK
m Þ

2

� 2�g;
ð40Þ

where (rm
OK)2 is the optimal estimation variance of the

unknown mean. This quantity has to be compared to the
mean squared error of ordinary lognormal kriging
(Eq. 36). Under the same conditions as above (Yx un-
correlated with the data), the latter becomes:

MSEOMK ¼ e2 rðmþrÞ f1þ e�r2 ½er2ðrOK
m Þ

2

� 2�g: ð41Þ

The performances of the two estimators (simple log-
normal kriging with a misspecified mean and ordinary
lognormal kriging) can be compared through the ratio

MSESMK

MSEOMK
¼ 1þ e

1
2r

2 ðrOK
m Þ

2�r2 ½e3
2r

2 ðrOK
m Þ

2 � 2�
1þ e�r2 ½er2 ðrOK

m Þ
2 � 2�

: ð42Þ

Fig. 2 Two-dimensional
kriging configuration with three
data and four locations to
estimate



Fig. 3 Estimation variances of
the first ten Hermite
polynomials associated with
simple and ordinary
multigaussian kriging and the
disjunctive-type estimator given
in Eq. 38



As shown in Fig. 4 for several values of r2, this ratio
is always greater than one, which indicates that, in case
of using an estimated mean instead of the true mean,
simple lognormal kriging produces a greater mean
squared error than ordinary lognormal kriging. The
latter should therefore be preferred to the former, inas-
much as its implementation is straightforward and en-
tails no bias and better precision. The difference between
both estimators narrows when the estimation variance of
the mean is close to zero (the data are abundant) or
when the logarithmic variance r2 is low (in this case, the
function to estimate is almost linear).

Although they have been established in a specific case
(lognormal kriging), these results indicate that simple
multigaussian kriging may not be robust to misspecifica-
tions of the mean value of the normal scores data, espe-
cially if the function to estimate is highly nonlinear, and
give poorer results than ordinary multigaussian kriging.

Conclusions

The multigaussian approach offers a simple framework
for assessing a point-support transfer function of a
regionalized variable. Contrarily to other nonlinear
geostatistical methods such as indicator and disjunctive
kriging, multigaussian kriging takes advantage of the
multivariate distribution of the available data and does
not lead to order-relation violations, since the estimator
is based on a mathematically consistent posterior dis-
tribution. It can also account for an unknown mean of
the normal scores data and therefore be robust to local
variations of this mean over the domain of interest.

The simple and ordinary multigaussian kriging esti-
mators, as well as the associated estimation variances,
can be expressed and calculated thanks to expansions
into Hermite polynomials. Additionally, such expansions
allow one to define a disjunctive-type estimator that
minimizes the estimation variance when the Gaussian
field has an unknown mean and is theoretically more
precise than ordinary multigaussian kriging. Two possi-
ble extensions of the approach presented in this paper are:

– Multivariate problems: by assuming that all the
regionalized variables can be modeled by jointly-
Gaussian random fields, the multigaussian kriging
formalism can be generalized by substituting a (simple
or ordinary) cokriging for the (simple or ordinary)
kriging;

– Change-of-support problems: these problems are
important in mining engineering and environmental
sciences; they can be tackled in the scope of the dis-
crete Gaussian model (Rivoirard 1994, p. 88; Chilès
and Delfiner 1999, p. 438) instead of the point-support
multigaussian model.
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Appendix A

This appendix analyses the conditional bias of the or-
dinary multigaussian kriging estimator (Eq. 11). To

Fig. 4 Ratio of the mean
squared errors between simple
lognormal kriging with a
misspecified mean and ordinary
lognormal kriging. A ratio
greater than one indicates that
the former estimator is less
precise than the latter



quantify this bias, let us calculate the regression of u(Yx)
upon [u(Yx)]

oMK. Since the latter is a function of the
ordinary kriging estimator (to simplify, we suppose that
this is a one-to-one function), conditioning to [u(Yx)]

oMK

amounts to conditioning to Yx
OK :

EfuðYxÞj½uðYxÞ�oMKg ¼ EfuðYxÞjY OK
x g: ð43Þ

The pair Yx � m; ðY OK
x � mÞ=sOK

x

� �

has a standard
bigaussian distribution with correlation coefficient
(Eqs. 8, 10)

rOK
x ¼ 1

sOK
x

Xn

a¼1
kOK

a qðxa; xÞ ¼
1� ðrOK

x Þ
2 � lx

sOK
x

: ð44Þ

Hence, one can write (Rivoirard 1994, p. 50):

Yx ¼ mþ rOK
x

sOK
x

ðY OK
x � mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrOK
x Þ

2
q

U ; ð45Þ

where U is a standard Gaussian variable independent of
Yx
OK. This identity allows one to calculate the regression

curve between the true and estimated values of u(Yx)
(Eq. 43):

EfuðYxÞj½uðYxÞ�oMKg
¼
R

u mþ rOK
x

sOK
x

Y OK
x � m

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrOK
x Þ

2
q

u
	 


gðuÞ du:

ð46Þ

A comparison with Eq. 11 shows that, in general, a
conditional bias is present (Eq. 15), unless rx

OK = sx
OK:

in this case, the Lagrange multiplier lx is equal to zero
because of Eqs. 13 and 44, and ordinary multigaussian
kriging coincides with simple multigaussian kriging.
However, this is a very specific circumstance as it implies
that the weight of the mean is equal to zero in the simple
kriging system (Eq. 17).

Appendix B

In this appendix, we establish the analytical expres-
sions of the estimation variances associated with
multigaussian kriging. To make the demonstration
more general, let us consider a weighted average of the
normal scores data and mean value that estimates Yx

without bias:

Y �x ¼
Xn

a¼1
ka Yxa þ 1�

Xn

a¼1
ka

 !

m: ð47Þ

The variance of Yx
* and its covariance with Yx are:

varðY �x Þ ¼ ðs�xÞ
2 ¼

Pn

a¼1

Pn

b¼1
ka kb qðxa; xbÞ

covðYx; Y �x Þ ¼ r�xs�x ¼
Pn

a¼1
ka qðxa; xÞ

8

>><

>>:

ð48Þ

so that Yx � m; ðY �x � mÞ=s�x
� �

is a standard bigaussian
pair with correlation coefficient rx

*.
Let us now define an unbiased estimator of u(Yx) as:

uðYxÞ½ �� ¼
R

uðY �x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðs�xÞ
2

q

tÞ gðtÞdt

¼
Pþ1

p¼0
upðmÞ ðs�xÞ

pHp
Y �x�m

s�x

� � ð49Þ

The estimation variance of the estimator defined in
Eq. 49 is found by considering the Hermitian expansions
of the transfer function (Eq. 27) and by using the or-
thonormality of the Hermite polynomials for the big-
aussian distribution (Eq. 26):

varfuðYxÞ � ½uðYxÞ��g
¼ varfuðYxÞg þ varf½uðYxÞ��g � 2 covfuðYxÞ; ½uðYxÞ��g

¼
Pþ1

p¼1
u2

pðmÞ f1þ ðs�xÞ
2p � 2 ðr�xs�xÞ

pg:

ð50Þ

The estimation variances of the simple and ordinary
multigaussian kriging estimators (Eqs. 32, 33) are par-
ticular cases of this formula, obtained by using the
simple and ordinary kriging weights in Eq. 48.

Appendix C

This appendix aims at obtaining an ‘‘optimal’’ unbiased
estimator of u(Yx) in case of an unknown mean. By
convention, the criterion for optimality is the minimi-
zation of the estimation variance. Equation 49 provides
a general form of an unbiased estimator of u(Yx).
Suppose one does not use ordinary kriging but another
weighted average of the normal scores data, such that
the weights add to one:

Y �x ¼
Xn

a¼1
ka Yxa with

Xn

a¼1
ka ¼ 1: ð51Þ

Since Yx
* does no longer depend on the mean value m,

the estimator in Eq. 49 can also be written as follows:

½uðYxÞ�� ¼
Xþ1

p¼0
upð0Þðs�xÞ

pHp
Y �x
s�x

	 


: ð52Þ

It is not obvious that ordinary kriging minimizes the
estimation variance (Eq. 50) among all the weighted
averages of the normal scores data with total weight
equal to one. Actually, this is the case for linear func-
tions of Yx, but not for any function u. Matheron (1974,
p. 30) examined the case of an exponential function
(lognormal model) and proposed an algorithm to obtain
the optimal weighting for Yx

*, i.e. to find the weighted
average that minimizes the estimation variance of the
lognormal estimator.



A closer look at Eq. 50 shows that the best choice of
the weighted average depends on the coefficients {up(m),
p 2 N} and that one can construct a more general esti-
mator which minimizes each term of the estimation
variance by putting (Eq. 38):

½uðYxÞ�� ¼
Xþ1

p¼0
upð0Þðs�x;pÞ

pHp
Y �x;p
s�x;p

 !

ð53Þ

for a set of weighted averages fY �x;p ¼
Pn

a¼1 ka;p Yxa ; p 2
Ng to be determined.

The unbiasedness of this estimator can be established
by recalling that, for any Gaussian random variable Y
with mean m and variance s2, one has (Emery 2005b, p.
319):

E spHp
Y
s

	 
� �

¼ ð�mÞp
ffiffiffiffiffi

p !
p : ð54Þ

Consequently, the disjunctive-type estimator in
Eq. 53 has the same expected value as ordinary multig-
aussian kriging (Eq. 31), which is the same as the ex-
pected value of the transfer function to estimate:

Ef½uðYxÞ��g ¼ Ef½uðYxÞ�oMKg ¼ Ef½uðYxÞ�g: ð55Þ

The calculation of the estimation variance is more
tricky, as the exact expression of this variance depends
on the unknown mean value m. To break the deadlock,
one has to choose a model (with a specified mean value)
and calculate the estimation variance in the framework
of this model. Note that, in contrast, the unbiasedness
condition (Eq. 55) is independent of this model since the
expected value of the estimation error is zero, regardless
of the mean value. Here, we will use the ‘‘ideal’’ mul-
tigaussian model, for which the normal scores data have
a zero mean. In this case, the estimation variance of the
Hermite polynomial of degree p, which contributes to
the p-th term of Eq. 50, is:

varfHpðYxÞ � ½HpðYxÞ��g ¼ 1þ ðs�x;pÞ
2p � 2 ðr�x;p s�x;pÞ

p

ð56Þ

and the minimization under the restriction on the sum of
the weights (Eq. 51) leads to the following system of
nonlinear equations:

Pn

b;d¼1
kb;p kd;p qðxb; xdÞ

" #p�1
Pn

b¼1
kb;p qðxa; xbÞ þ lp

¼
Pn

b¼1
kb;p qðxb; xÞ

" #p�1

qðxa; xÞ 8a ¼ 1; :::; n

Pn

b¼1
kb;p ¼ 1:

8

>>>>>>>>><

>>>>>>>>>:

ð57Þ

In practice, this system can be solved by iterations. The

initial guess fkð0Þb;p, b= 1,:::, ng may be the solution of

the ordinary kriging system (Eq. 9). At step k, one solves
the linear system

Pn

b¼1
kðkÞb;p qðxa; xbÞ þ mðkÞp

¼

Pn

b¼1
kðk�1Þb;p qðxb;xÞ

Pn

b;d¼1
kðk�1Þb;p kðk�1Þd;p qðxb;xdÞ

2

6
4

3

7
5

p�1

qðxa; xÞ 8a ¼ 1; :::; n

Pn

b¼1
kðkÞb;p ¼ 1:

8

>>>>>>>>>><

>>>>>>>>>>:

ð58Þ

This iterative algorithm is based on a fixed-point
method. It is quite easy to implement but may not
necessarily converge, or converge slowly. Alternative
iterative algorithms can be used to solve system Eq. 57,
see for instance Ortega and Rheinboldt (1970) and
Dennis and Schnabel (1983).

As a particular case, if the distance from x to any of
the data locations {xa, a=1,..., n} is greater than the
range of the correlogram model, then system Eq. 58 is
the same as the ordinary kriging system of the unknown
mean (Matheron 1971, p. 128), or equivalently the or-
dinary kriging system of a location distant from all the
data:

Pn

b¼1
kðkÞb;p qðxa; xbÞ þ mðkÞp ¼ 0 8a ¼ 1; :::; n

Pn

b¼1
kðkÞb;p ¼ 1:

8

>><

>>:

ð59Þ

This implies that, far from the data, the disjunctive-
type estimator proposed in Eq. 53 coincides with the
ordinary multigaussian kriging estimator. Note that
both estimators are also the same at the data locations as
they honor the values of the transfer function to esti-
mate. As a consequence, the disjunctive estimator
(Eq. 53) is a worthy alternative to ordinary multigaus-
sian kriging only for ‘‘intermediate’’ locations, not too
close nor too distant from the data.

References

Barnes RJ, Johnson TB (1984) Positive kriging. In: Verly G, David
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