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Abstract

This paper addresses the problem of assessing the risk of deficiency or excess of a soil property at unsampled locations, and

more generally of estimating a function of such a property given the information monitored at sampled sites. It focuses on a

particular model that has been widely used in geostatistical applications: the multigaussian model, for which the available data

can be transformed into a set of Gaussian values compatible with a multivariate Gaussian distribution.

First, the conditional expectation estimator is reviewed and its main properties and limitations are pointed out; in particular, it

relies on the mean value of the normal scores data since it uses a simple kriging of these data. Then we propose a generalization of

this estimator, called bordinary multigaussian krigingQ and based on ordinary kriging instead of simple kriging. Such estimator is

unbiased and robust to local variations of the mean value of the Gaussian field over the domain of interest. Unlike indicator and

disjunctive kriging, it does not suffer from order-relation deviations and provides consistent estimations.

An application to soil data is presented, which consists of pHmeasurements on a set of 165 soil samples. First, a test is proposed

to check the suitability of the multigaussian distribution to the available data, accounting for the fact that the mean value is

considered unknown. Then four geostatistical methods (conditional expectation, ordinary multigaussian, disjunctive and indicator

kriging) are used to estimate the risk that the pH at unsampled locations is less than a critical threshold and to delineate areas where

liming is needed. The case study shows that ordinary multigaussian kriging is close to the ideal conditional expectation estimator

when the neighboring information is abundant, and departs from it only in under-sampled areas. In contrast, even within the

sampled area, disjunctive and indicator kriging substantially differ from the conditional expectation; the discrepancy is greater in

the case of indicator kriging and can be explained by the loss of information due to the binary coding of the pH data.
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1. Introduction

Kriging techniques are currently used to estimate

soil properties, such as electrical conductivity, pH,
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nutrient or contaminant concentrations, on the basis of

a limited set of samples for which these properties

have been monitored. However, because of its

smoothing property, linear kriging is not suitable to

applications that involve the conditional distributions

of the unsampled values, for instance assessing the

risk of exceeding a given threshold. This problem is

critical for delineating contaminated areas where a

remedial treatment is needed, for determining land

suitability for a specific crop, or for planning an

application of fertilizer.

Determining the risk of exceeding a threshold, or

more generally estimating a function of a soil prop-

erty, can be dealt with either stochastic simulations or

nonlinear geostatistical methods like indicator kriging

or disjunctive kriging, which have found wide accep-

tance in soil science (Webster and Oliver, 1989,

2001; Wood et al., 1990; Oliver et al., 1996; Van

Meirvenne and Goovaerts, 2001; Lark and Ferguson,

2004). An alternative to indicator and disjunctive

kriging is the conditional expectation estimator. How-

ever, in practice this estimator is hardly used, except

in the scope of the multigaussian model (Goovaerts,

1997, p. 271; Chilès and Delfiner, 1999, p. 381). This

paper focuses on this particular model and is orga-

nized as follows. In the next section, the conditional

expectation estimator is reviewed and its main prop-

erties and practical limitations are highlighted, in

particular concerning the use of a simple kriging of

the Gaussian data. Then, ordinary kriging is substi-

tuted for simple kriging in order to obtain an unbi-

ased estimator that is robust to local variations of the

Gaussian data mean. The proposed approach is final-

ly illustrated and discussed through a case study in

soil science.
2. On the conditional expectation estimator

2.1. The multigaussian model

A Gaussian random field, or multigaussian ran-

dom function, is characterized by the fact that any

weighted average of its variables follows a Gaussian

distribution. Its spatial distribution is entirely deter-

mined by its first- and second-order moments (mean

and covariance function or variogram), which makes

the statistical inference very simple under an assump-
tion of stationarity. In general, the available data do

not have a Gaussian histogram, so that a transforma-

tion is required to turn them into Gaussian values

(normal score transform). The mean of the trans-

formed data is usually set to zero and their variance

to one, i.e. one works with standard Gaussian dis-

tributions (Rivoirard, 1994, p. 46; Goovaerts, 1997,

p. 273).

A goal of this paper is to find an estimator that is

robust to departures of the data from the ideal multi-

gaussian model, in particular concerning local varia-

tions of the mean value over the domain of interest.

Therefore, the assumption of zero mean is omitted and

the following hypotheses are made:

1) the transformed data have a multivariate Gaussian

distribution;

2) their mean is constant (at least at the scale of the

neighborhood used for local estimations) and equal

to m;

3) their variance is equal to one;

4) their correlogram is known; henceforth, the cor-

relation between the values at locations x and xV
is denoted by q(x,xV). In the stationary case, this

is a function of the separation vector h=x�xV
only.

2.2. Local estimation with multigaussian kriging

Let {Y(x), xaD} be a Gaussian random field

defined on a bounded domain D and known at a set

of sampling locations {xa, a =1. . . n}. It can be

shown (Goovaerts, 1997, p. 272) that the conditional

distribution of Y(x) is Gaussian-shaped, with mean

equal to its simple kriging Y(x)SK from the available

data and variance equal to the simple kriging variance

r2
SK(x). Therefore, the posterior or conditional cumu-

lative distribution function (in short, ccdf) at location

x is

8yaR;F x; yjdatað Þ ¼ G
y� Y xð ÞSK

rSK xð Þ

! 
ð1Þ

where G(.) is the standard Gaussian cdf. This ccdf can

be used to estimate a function of the Gaussian field,

say u[Y(x)] (this is often referred to as a btransfer
functionQ). For instance, one can calculate the
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expected value of the conditional distribution of

u[Y(x)], which defines the bconditional expectationQ
estimator (Rivoirard, 1994, p. 61):

u Y xð Þ½ �f gCE ¼
Z

u yð ÞdF x; yjdatað Þ

¼
Z

u Y xð ÞSK þ rSK xð Þt
h i

g tð Þd t ð2Þ
Fig. 1. Numerical integration for calculating the co
where g(.) stands for the standard Gaussian probabil-

ity distribution function. The estimator in Eq. (2) is

also called bmultigaussian krigingQ in the geostatisti-

cal literature (Verly, 1983; David, 1988, p. 150). Its

implementation relies on an assumption of strict sta-

tionarity and knowledge of the prior mean m, in order

to express Y(x)SK.

In practice, Eq. (2) can be calculated by numerical

integration (Fig. 1), by drawing a large set of values
nditional expectation of a transfer function.
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{u1,. . . uM} that sample the [0,1] interval either uni-

formly or regularly, and putting

u Y xð Þ½ �f gCEc 1

M

XM
i¼1

u yið Þ ð3Þ

with 8ia{1,. . .M},F(x;yi | data)=ui. An alternative

approach is to replace the integral in Eq. (2) by a

polynomial expansion, which also helps to express the

estimation variance (Emery, 2005b).

Note: throughout the paper, the kriging estima-

tors are regarded as random variables. This allows

one to express their expected value and establish

their unbiasedness.

2.3. Properties of the estimator

Among all the measurable functions of the data,

the conditional expectation minimizes the estimation

variance (variance of the error). It is unbiased and,

even more, conditionally unbiased. This property is of

great importance in resource assessment problems

(Journel and Huijbregts, 1978, p. 458). Furthermore,

since the ccdf [Eq. (1)] is an increasing function, the

conditional expectation honors order relations and

provides mathematically consistent results: for in-

stance, the estimate of a positive function is always

positive (Rivoirard, 1994, p. 62).

Despite these nice properties, the estimator is not

often used in practice. One of the reasons is the attrac-

tion to the mean that produces the use of a simple

kriging of the Gaussian data. Indeed, at locations

distant from the data relatively to the range of the

correlogram model, the simple kriging of Y(x) tends

to the prior mean m and the kriging variance to the

prior unit variance, hence the conditional expectation

in Eq. (2) tends to the prior expectation of u[Y(x)].

To avoid this effect when estimating a spatial

attribute, practitioners often prefer ordinary kriging

to simple kriging. This way, the mean value is

considered unknown and is estimated from the data

located in the kriging neighborhood. Several authors

suggested a generalization of the conditional expec-

tation estimator, by substituting in Eq. (2) an ordi-

nary kriging for the simple kriging and leaving

unchanged the simple kriging variance (Journel,

1980; Goovaerts, 1997, p. 282). However, this ap-

proach is generally ill advised, since it produces a bias

when estimating a nonlinear function of the Gaussian
field (Rivoirard, 1994, p. 71; Chilès and Delfiner,

1999, p. 382).

For this reason, although less precise, alternative

methods are sometimes used instead of the conditional

expectation, e.g. indicator or disjunctive kriging with

unbiasedness constraints (Rivoirard, 1994, p. 69;

Goovaerts, 1997, p. 301; Chilès and Delfiner, 1999,

p. 417). The following section aims at generalizing the

conditional expectation estimator, by trading simple

kriging for ordinary kriging in Eq. (2) and correcting

the expression of the estimator to avoid bias.
3. Ordinary multigaussian kriging

3.1. Construction of an unbiased estimator

In Eq. (2), the simple kriging estimator Y(x)SK is a

Gaussian random variable (weighted average of mul-

tivariate Gaussian data) with mean m and variance

var Y xð ÞSK
h i

¼ 1� r2
SK xð Þ: ð4Þ

Therefore, the conditional expectation of u[Y(x)]

belongs to the class of estimators that can be written in

the following form:

u Y xð Þ½ �T ¼
Z

u YTþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� var YTð Þ

p
t

h i
g tð Þd t

¼ E u YTþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� var YTð Þ

p
T

h i
jYT

n o
ð5Þ

where Y* is a Gaussian random variable with mean m

andT is a standardGaussian variable independent ofY*.

The value of T does not need to be known, since

the estimator u[Y(x)]* is defined by an expected

value with respect to T. In the case of the conditional

expectation, Y* is the simple kriging of Y(x) and T can

be interpreted as the standardized simple kriging error.

In the multigaussian model, this error is independent

of the kriging estimator (Chilès and Delfiner, 1999, p.

164 and 381).

A key result is that any estimator given by Eq. (5)

constitutes an unbiased estimator of u[Y(x)], provid-

ed only that Y* and T are independent normal vari-
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ables, the first one with mean m, the second one with

mean zero and unit variance. Indeed, under these

conditions, YTþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� var YTð Þ

p
T and Y(x) have the

same univariate distribution (a normal distribution

with mean m and unit variance), hence:

E u Y xð Þ�*½ g ¼ E u Y* þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� var Y*ð Þ

p
T

h in on

¼ E u Y xÞð �½ g:f ð6Þ

In particular, Y* can be the ordinary kriging of

Y(x), defined by the following weighting of the

Gaussian data {Y(xa), a =1. . . n}:

Y xð ÞOK ¼
Xn
a¼1

kOKa Y xað Þ: ð7Þ

The ordinary kriging weights and error variance are

determined by the following system, in which l(x) is
a Lagrange multiplier:

Xn
b¼1

kOKb q xa; xb

� �
þ l xð Þ ¼ q xa; xð Þ 8a ¼ 1:::n

Xn
a¼1

kOKa ¼ 1

r2
OK xð Þ ¼ 1�

Xn
a¼1

kOKa q xa; xð Þ � l xð Þ:

ð8Þ

8>>>>>>>>><
>>>>>>>>>:

The variance of the estimator is related to the error

variance and Lagrange multiplier introduced in Eq.

(8):

var Y xð ÞOK
h i

¼
Xn
a¼1

Xn
b¼1

kOKa kOKb q xa; xb
� �

¼
Xn
a¼1

kOKa q xa; xð Þ � l xð Þ

¼ 1� r2
OK xð Þ � 2l xð Þ: ð9Þ

The use of an ordinary kriging in Eq. (5) defines the

following estimator, named bordinary multigaussian

krigingQ and associated with the superscript oMK:

u Y xð Þ½ �f goMK

¼
Z

u Y xð ÞOKþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
OK xð Þþ2l xð Þ

q
t

� �
g tð Þd t: ð10Þ
This expression does not depend on the value of

the Gaussian data mean, so the latter can be con-

sidered unknown. With respect to the classical con-

ditional expectation, the estimation of a function of

Y(x) is obtained by replacing the simple kriging by

an ordinary kriging and the simple kriging variance

by the ordinary kriging variance plus twice the

Lagrange multiplier introduced in the kriging sys-

tem. A particular case of Eq. (10) is the so-called

bordinary lognormal krigingQ (Journel, 1980, p. 295;
Rivoirard, 1990, p. 217), for which u is an exponen-

tial function.

3.2. Pseudo-conditional distribution for assessing the

risk of deficiency or excess of a soil property

Let us introduce the indicator function associated

with threshold y:

8yaR; IY x; yð Þ ¼ j 1 if Y xð Þ V y

0 otherwise:
ð11Þ

The ordinary multigaussian kriging of such indica-

tor provides a pseudo ccdf (bpseudoQ because it differs
from the true ccdf given in Eq. (1)), which estimates

the risk that the value at location x is less than or equal

to y conditionally to the available data at locations

{xa, a =1. . . n}:

8yaR; F̂F x; yjdatað Þ ¼ IY x; yð Þ½ �oMK

¼ G
y� Y xð ÞOKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
OK xð Þ þ 2l xð Þ

p
!
:

 
ð12Þ

This corresponds to a Gaussian distribution with

mean the ordinary kriging of Y(x) and variance the

ordinary kriging variance plus twice the Lagrange

multiplier. As in Eq. (2), the estimator of a transfer

function [Eq. (10)] can be expressed in terms of this

pseudo ccdf:

u Y xð Þ½ �f goMK ¼
Z

u yð Þd F̂F x; yjdatað Þ ð13Þ

Eq. (13) allows one to calculate the ordinary multi-

gaussian kriging estimator by numerical integration

[Eq. (3)]. The main properties of this estimator are

discussed in the following subsections.
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3.3. Robustness to local variations of the mean value

Contrary to the conditional expectation, ordinary

multigaussian kriging [Eq. (10)] does not rely on the

mean value of the Gaussian data. This mean can even

vary locally in space, provided that it remains constant

at the scale of the kriging neighborhood.

Ordinary multigaussian kriging is therefore suit-

able to a locally stationary framework and provides

estimates that are robust to variations of the mean

value in space. An alternative would be to use a

simple kriging with a locally varying mean (in prac-

tice, estimated from the data located in the kriging

neighborhood) in the conditional expectation estima-

tor [Eq. (2)]. However, such approach does not ac-

count for any uncertainty on the mean value, which is

considered known although it may be poorly estimat-

ed, and provides biased results as soon as the estimat-

ed mean departs from the true mean. Instead, ordinary

multigaussian kriging appears to be simpler (there is

no need to estimate the local mean) and is unbiased

even if the true mean value differs from the global or

local mean estimated from the data.

In practice, the empirical data never conform to the

ideal model (stationary random field with known

mean), so that a less efficient but more robust estima-

tor is often preferred to the boptimalQ estimator (Math-

eron, 1989b, p. 94; Rivoirard, 1994, p. 71; Chilès and

Delfiner, 1999, p. 39). This concern for robustness is

the reason why ordinary kriging is generally used

instead of simple kriging when evaluating a regiona-

lized variable in linear geostatistics. With the multi-

gaussian approach, a nonlinear function of this

variable can be estimated, which is a substantial im-

provement with respect to linear kriging.

3.4. Measures of local uncertainty

A limitation of ordinary multigaussian kriging con-

cerns the calculation of local uncertainty measures,

such as confidence intervals, local variance or inter-

quartile range. Indeed, formulae (12) and (13) only

give an unbiased estimator of the posterior distribu-

tion at location x and of any quantity that can be

expressed as a linear function of the ccdf (e.g.

expected value of Y(x) or the probability that it

exceeds a given threshold). But the estimated distri-

bution [Eq. (12)] does not match the true one
[Eq. (1)], in particular both distributions do not

have the same variance.

In general, the pseudo ccdf understates the disper-

sion of the true ccdf. For instance, assume that only

one datum is available in the kriging neighborhood

(under-sampled area): the pseudo ccdf [Eq. (12)] is a

step function (zero variance) and obviously under-

estimates the uncertainty prevailing at the unsampled

location. This statement is true with other methods

that assess the posterior distributions using ordinary

kriging, such as indicator and disjunctive kriging with

unbiasedness constraints: one obtains a step function

if a single datum is found in the kriging neighbor-

hood. It proves that the posterior distributions esti-

mated with ordinary kriging are suitable for estimation

purposes only, not for assessing local uncertainty or

simulating the unknown values, e.g. via a sequential

algorithm (Emery, 2004, p. 410).

3.5. Further properties

Ordinary multigaussian kriging [Eq. (10)] honors

the value of u[Y(x)] at each data location. This

exactitude property holds as soon as one uses in Eq.

(5) an estimator Y* that honors the Gaussian data, not

only an ordinary kriging.

Eq. (10) does not make sense if rOK
2 (x)+2l(x)b0,

or equivalently var[Y(x)OK]N1, because of the pres-

ence of a negative term under the square root. This

situation is unlikely to occur, since the variance of the

ordinary kriging estimator (weighted average of the

data) is usually less than the prior unit variance.

Otherwise, ordinary kriging should be traded for an-

other weighted average of the Gaussian data with a

variance less than or equal to one. A sufficient con-

dition is that the weights are nonnegative and add to

one to ensure unbiasedness; a solution to this problem

has been proposed by Barnes and Johnson (1984).

Concerning the precision of ordinary multigaussian

kriging, the estimation variance of u[Y(x)] is greater

than the one of the conditional expectation, which is

minimal among all the possible estimators of u[Y(x)].

However, if the data are abundant, ordinary kriging is

close to simple kriging (Goovaerts, 1997, p. 137),

hence ordinary multigaussian kriging is close to the

optimal conditional expectation. It therefore constitu-

tes a worthy alternative to other nonlinear estimation

methods, such as indicator or disjunctive kriging.



Table 1

Advantages and drawbacks of ordinary multigaussian kriging

Pros Cons

Suitable for assessing

conditional probabilities

and transfer functions

Not suitable for assessing

local uncertainty

(e.g., via confidence

intervals or local variance)Unbiased estimator

Robust to local variations

of the mean value

(local stationarity)

Undefined if the variance

of the ordinary kriging

estimator is greater than

the prior unit varianceAccounts for uncertainty

on the mean value

When the data are scarce,

does not yield the

prior expectation

Theoretically less precise

than the conditional

expectation

Restricted to the

multigaussian model

Close to the conditional

expectation when

the data are abundant

Honors the data

The estimates do not need

order-relation corrections
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Another advantage of ordinary multigaussian kriging

over these two techniques is that there is no need for

order-relation corrections, since the estimated ccdf

[Eq. (12)] is an increasing function of the threshold.

The advantages and drawbacks of the ordinary

multigaussian kriging approach are summarized in

Table 1. The main restriction of this approach is

certainly the multigaussian assumption, which must

be suited to the available data to ensure the quality of

the estimator. To validate this assumption, a test is

proposed in the next section together with a case

study. The other limitations indicated in Table 1 are

quite mild and should not cause difficulty in practical

applications, as it will be confirmed in the case study.
4. Application to soil data

4.1. Presentation of the dataset

In the following, the previous concepts and meth-

ods are applied to a dataset which consists of 165

samples quasi-regularly spaced over a 335�335 m

field (Fig. 2a) located in Reunion Island (Indian

Ocean) and planted to sugar cane. For each sample,

several variables have been determined on three levels
between 0 and 1 m in depth: available water capacity,

pH, exchangeable aluminum, total acidity and cation

exchange capacity. In the following, we are interested

in the pH of the topsoil (0–200 mm), which has been

measured in a solution of potassium chloride with a

ratio soil / solution equal to 1 /2.5. The pH is a critical

variable for determining soil fertility, hence for pre-

dicting yield variability within the field and defining

the amount of fertilizer that should be applied.

Fig. 2b and c display the histogram of the pH data

and the normal scores variogram. The latter is not

isotropic and has a greater range along the direction

N108 W. The directional variograms have been com-

puted for distances multiple of 25 m, with a tolerance

of 208 on the azimuth and 12.5 m on the lag distance,

so that each point is calculated after at least one

hundred data pairs. The model is the sum of a nugget

effect with sill 0.5 and a spherical structure with sill

0.5 and ranges 155 (N108 W) and 55 m (N808 E).

Concerning the histogram, it has been declustered

with the cell method (Goovaerts, 1997, p. 83), using

a cell size of 25�25 m that roughly corresponds to

the sampling mesh. It shows a bimodality, which may

be symptomatic of a mixture of two populations.

Actually, a look at the location map (Fig. 2a) proves

that the high pH values are disseminated over the

entire field of interest, hence one cannot define sub-

domains to study the two populations separately; this

observation also explains the high relative nugget

effect in the normal scores variogram (50% of the

total sill).

Before performing local estimations with multi-

gaussian kriging, it is advisable to check the compat-

ibility of the multigaussian model with the

transformed data.

4.2. Checking the multigaussian assumption

In practice, the multigaussian hypothesis cannot be

fully validated because, in general, the inference of

multiple-point statistics is beyond reach. Usually, only

the univariate and bivariate distributions are examined

(Goovaerts, 1997, p. 280). By construction of the

normal scores transform, the former is Gaussian

shaped and therefore consistent with the multigaus-

sian model. Regarding the latter, there exist several

ways of checking the two-point normality. One of

them is the structural analysis of the indicator function



Fig. 2. Exploratory and variogram analyses of the pH data: A) location map of the samples; B) declustered pH histogram; C) normal scores

variogram; D) test of the bivariate Gaussian assumption.
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IY(x,y) [Eq. (11)]: for several thresholds { y1,. . . yk},
the empirical indicator variogram is compared to the

theoretical variogram, which can be expressed as a

function of the correlogram q(h) of the Gaussian field

(Chilès and Delfiner, 1999, p. 101) (here, local statio-

narity is assumed, so that the correlogram only

depends on the separation vector between samples):

cI ;y hð Þ ¼ G y� mð Þ 1� G y� mð Þ½ �

� 1

2p

Z q hð Þ

0

exp � y� mð Þ2

1þ u

#
duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

"

ð14Þ
However, one difficulty of the model is that the

mean value m is considered unknown and may vary

locally, so it is preferable to find a test that does not

depend on this mean value. In this respect, a conve-

nient way to check the bigaussian assumption is to

study the variograms of order less than two, since

these tools are defined after the increments of the

random field. For xa ]0,2], the variogram of order

x is defined as (Matheron, 1989a, p. 30):

cx hð Þ ¼ 1

2
E jY xþ hð Þ � Y xð Þjxf g ð15Þ

For x =2, one finds the classical variogram

c(h)=1�q(h). Two other cases are of interest:
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x =1.0 and x =0.5, which correspond to the mado-

gram and rodogram respectively. Under the assump-

tion that the distribution of {Y(x+h), Y(x)} is

bigaussian, one has (Emery, 2005a, p. 168):

8xa�0; 2�; cx hð Þ ¼ 2x�1ffiffiffi
p
p C

xþ 1

2

�
c hð Þ½ �x=2

�
ð16Þ

where C(.) is the gamma function.

Consequently, in log–log coordinates, the points

that plot the variogram of order x as a function of
Fig. 3. Probability maps that the pH is less than 5
the classical variogram should be aligned with slope

x/2. Once applied to the transformed data, this test is

quite satisfactory (Fig. 2d), hence the multigaussian

assumption is deemed acceptable for the data under

study.

4.3. Mapping the risk that the pH is less than a given

threshold

The pH of the soil has an effect on its fertility.

When it decreases, H+ ions become sufficiently
.1. The sample locations are superimposed.
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concentrated to attack the clay crystals, releasing

Al3+ ions. At pH equal to approximately 5.1, the

release becomes pronounced and is detrimental to

the crops. Hence it is important to correctly assess

the probability that the pH is less than a threshold of

5.1. In the following, four local estimation methods

are compared:

! conditional expectation [Eq. (1)]

! ordinary multigaussian kriging [Eq. (12)]
Fig. 4. Error maps plotting the absolute differences betw
! ordinary indicator kriging (Journel, 1983; Goo-

vaerts, 1997, p. 301). This method relies on a

coding of the pH data into indicator values associ-

ated with the target threshold (5.1) [Eq. (11)],

followed by an ordinary kriging of the 0–1 values.

The result is an unbiased estimation of the proba-

bility to be below the threshold;

! bigaussian disjunctive kriging with an unbiased-

ness constraint (Rivoirard, 1994, p. 70; Chilès

and Delfiner, 1999, p. 417). For want of a better
een each estimator and the conditional expectation.



Table 2

Coordinates and pH values on the first row of samples

Sample number Easting [m] Northing [m] pH value

1 100.0 325.0 5.54

2 125.0 325.0 5.40

3 150.0 325.0 6.11

4 177.0 323.0 4.98

5 202.0 323.0 5.25

6 227.0 322.0 5.22

7 251.0 322.0 4.71

8 276.0 324.0 4.09

9 301.0 324.0 5.36

10 326.0 325.0 5.07
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name, this method will be called ordinary disjunc-

tive kriging hereafter. It is based on an expansion

of the indicator function [Eq. (11)] into Hermite

polynomials and an ordinary kriging of each poly-

nomial from its values at the data locations. The

spatial covariance of the polynomial of degree p is

equal to the one of the Gaussian data raised to

power p. Unlike indicator kriging, ordinary disjunc-

tive kriging avoids the loss of information due to

the indicator coding of the original data (Lark and

Ferguson, 2004, p. 42). It can be shown that it

amounts to a full ordinary indicator cokriging, i.e.

an ordinary cokriging of the indicators associated

with all the possible thresholds (Liao, 1991).

In each case, kriging is performed in a moving

neighborhood with a radius of 250 m along the direc-

tion of greater continuity (N108W) and 90 m along the

orthogonal direction (N808 E), looking for the 48

nearest samples. This number is deemed sufficient

for estimating the local means when resorting to ordi-

nary kriging. The results are displayed in Fig. 3. One

notices that, in the northwest corner, the conditional

expectation converges to the prior probability that the

pH is less than 5.1 (namely, 41%), while the other three

methods provide lower estimates (in general, below

30%). The reason is that the data located in the north-
Fig. 5. Estimated probabilities along the east–west transect with north coordinate 322.5 m.
west part of the field have a higher pH than the global

mean (around 5.5, whereas the average of the entire

field is 5.2). In contrast, in the sampled area, little

difference is observed between conditional expectation

and ordinary multigaussian kriging. These two meth-

ods account for the multivariate Gaussian distribution

of the data and provide consistent conditional proba-

bilities (between 0 and 1), whereas disjunctive and

indicator kriging require correcting the order-relation

violations and significantly depart from conditional

expectation, even inside the sampled area (Fig. 4).

The discrepancy between indicator and multigaus-

sian kriging can be better understood on a simple

example. Fig. 5 plots the estimated probabilities



X. Emery 
along a transect that approximately corresponds to the

first row of data (north coordinate equal to 322.5 m,

see Fig. 2a). The pH values of these data are presented

in Table 2. As previously mentioned, in the western

part of the transect, no data are available and the

conditional expectation yields a higher probability

(0.41) than the three other methods. Now, the discrep-

ancy between conditional expectation and indicator

kriging can be explained by the loss of information

produced by the data coding into a binary variable: a

datum is coded as 1 if its pH is less than 5.1, inde-

pendently of whether the value is close to the thresh-

old or not. In the example under study, the eighth
Fig. 6. Delineation of the areas
datum of the transect (pH equal to 4.09) and the last

datum (pH equal to 5.07) play the same role in the

indicator kriging formalism, as both of them are coded

as b1Q, which is misleading. On the contrary, the other

three methods yield a higher risk that the pH is less

than 5.1 in the vicinity of the eighth datum, and a

lower risk in the vicinity of the last datum, which is

very close to the target threshold.

4.4. Use of the probability maps for soil management

The previous methods quantify the risk that soil

acidity is detrimental for crops and are useful for soil
where liming is needed.
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management and decision-making, such as delineat-

ing the areas where a treatment is needed.

In this respect, one can calculate the proportion

of the entire field whose pH is less than 5.1, either

from the data histogram (Fig. 2b) or by averaging

the local estimations obtained via multigaussian,

disjunctive or indicator kriging. In every case, one

finds a global proportion equal to 41% approximate-

ly. From this, the probability maps (Fig. 3) can be

used to delineate the areas for which it is necessary

to make conditions favorable for crops to tolerate

soil acidity or to reduce this acidity (e.g. by liming)

so as to neutralize the toxic concentrations of H+

and Al3+. A simple way is to impose that the

delineated areas cover 41% of the entire field, so

as to be consistent with the global estimation. The

delineations are shown in Fig. 6, in which one

observes that indicator kriging yields results that

strongly differ from the three other (Gaussian-

based) methods.

Of course, other approaches are possible for de-

lineation. In particular, instead of using the probabil-

ity maps, one may define a loss function (Goovaerts,

1997, p. 350) to determine whether liming is eco-

nomically profitable or not and optimize the

expected farm income by avoiding excessive liming

and fertilization.

4.5. Discussion on the local estimation methods

Indicator kriging may be tedious if many thresh-

olds are considered, while disjunctive kriging is quite

convoluted for most practitioners. In contrast, ordi-

nary multigaussian kriging is straightforward and

appears to be a helpful tool for soil scientists who

wish to map the conditional probabilities of a soil

property and incorporate these probabilities in deci-

sion-making processes. The steps required for this

approach are the following:

1) calculated declustering weights to obtain a repre-

sentative histogram of the original data;

2) transform these data to normal scores, using the

declustered histogram;

3) check the suitability of the two-point normality

hypothesis;

4) model the variogram of the normal scores data;

5) perform an ordinary kriging of these data;
6) estimate the conditional distribution of the normal

variable at any unsampled location [Eq. (12)], and

back-transform it to the original unit.

In addition to its simplicity and straightforward-

ness, ordinary multigaussian kriging provides consis-

tent results and no order-relation correction is needed.

If the neighboring information is abundant, it is prac-

tically identical to the conditional expectation, which

constitutes the bidealQ estimator of the conditional

distributions. Furthermore, it is robust to local varia-

tions of the mean value over the field of interest,

which is advantageous in under-sampled areas since

it avoids the attraction to the prior probabilities ob-

served when using simple kriging. For these reasons,

ordinary multigaussian kriging is expected to always

outperform bigaussian disjunctive kriging, as in prac-

tice the conditions to apply both methods are the

same. However, the user should beware that the multi-

gaussian assumption, or at least the bigaussian as-

sumption, is suitable to the available data.

Otherwise, one should resort to indicator kriging or

to disjunctive kriging under an appropriate non-

Gaussian model (Hu, 1989; Liao, 1991; Chilès and

Liao, 1993; Chilès and Delfiner, 1999, p. 398–419).
5. Conclusions

The ordinary multigaussian kriging approach pro-

vides an unbiased estimation of posterior distributions

and transfer functions of a spatial attribute, e.g. a soil

property that can be modeled by a Gaussian random

field. Although this estimator is theoretically less

precise than the conditional expectation and does

not allow one to measure the uncertainty prevailing

at unsampled locations, it is robust to local variations

of the mean value and is therefore suitable when the

data do not conform to the ideal stationary model,

especially in under-sampled areas. The method is

simple and straightforward to apply, since a single

variogram analysis and kriging are required. Further-

more, it does not suffer from order-relation problems

and provides conditional probabilities that always lie

in [0,1].

Like indicator and disjunctive kriging, multigaus-

sian kriging is a helpful method in soil science appli-

cations concerned with spatial predictions. In
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particular, mapping the conditional probabilities of a

soil property is of importance for management deci-

sions, which are based on threshold values of this

property, such as delineating safe and hazardous

areas or identifying zones that are suitable for crop

growth and those that must be treated.
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