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Abstract

The plurigaussian model is currently used for simulating geological domains (facies) in petroleum reservoirs and mineral

deposits, with the aim of assessing the uncertainty in the domain boundaries and of improving the geological controls in

the characterization of quantitative attributes.

This paper discusses the main aspects of the model and provides a set of computer programs to perform its inference and

conditional simulation. Two types of conditioning information are allowed: hard data for which one has an exact

knowledge of the actual domain at sample locations, and soft data consisting of inequality constraints on the local domain

proportions (probabilities of occurrence) at control points chosen by the mining or reservoir geologist.

An application to a Chilean porphyry copper deposit is finally presented, in which three Gaussian fields are used to

simulate the spatial distribution of five mineralogical domains: gravels, leached capping, oxides, primary and secondary

sulfides. The model is constructed so as to honor the topological contacts between mineralogical domains, their spatial

continuity, the information logged at exploration drill holes, as well as the vertical proportion curves that indicate the

mineralization profile with depth.
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1. Introduction

The geostatistical simulation of random sets and
categorical variables is used for modeling the spatial
distribution of geological domains, e.g. lithofacies in an
oil reservoir or a sedimentary formation, hydrofacies in
an aquifer, mineralogical domains in an ore body or
soil types in a landscape. It provides a probabilistic
ble from server at http://www.iamg.org/CGEditor/

978 4498; fax: +56 2 978 4985.

ess: xemery@ing.uchile.cl
description of the geological domains and contributes
to enhanced geological control for the quantitative
petrophysical variables of interest (porosity, perme-
ability, concentration, mineral grade, etc.), when these
variables are homogeneous within each geological
domain but the layout of the domain boundaries is
uncertain (Dowd, 1994; Dubrule, 1993; Emery and
González, 2007).

Two main families of geostatistical methods can
be used for categorical simulation. The first one
corresponds to Boolean and object-oriented models
(Lantuéjoul, 2002; Stoyan et al., 1996), the second
one to pixel-based methods. Among the latter,
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sequential indicator simulation provides a flexible
framework, but realizations often lack realism from
a geological viewpoint as the method cannot
incorporate topological constraints on the simulated
domains. Truncated Gaussian and plurigaussian
models are an alternative to the indicator approach
and have been applied for more than a decade to
the characterization of oil reservoirs (Armstrong
et al., 2003; Beucher et al., 1993) and ore deposits
(Betzhold and Roth, 2000; Skvortsova et al., 2001,
2002).

This work aims at presenting new developments
on the plurigaussian model and on the conditioning
process, and at providing a set of computer
programs that include the following features:
�
 no restriction on the number of simulated facies;

�
 no restriction on the number of truncated

Gaussian random fields;

�
 truncation rule associated with any partition of

the space spanned by the Gaussian random fields
into cuboids;

�
 availability of the most common variogram

models, with any number of nested structures
and possible geometric or zonal anisotropies;

�
 possibility to handle soft conditioning data

quantifying known geological features;

�
 ability to deal with large simulation domains;

and

�
 improvement in the construction of conditioning

Gaussian data with respect to existing softwares.

For the sake of simplicity, the plurigaussian
model considered in this work and the related
computer programs are limited to a set of indepen-
dent Gaussian random fields. The use of dependent
random fields can further enrich the method (Dowd
et al., 2003; Le Loc’h and Galli, 1997), but increases
the required efforts for parameter inference.

2. The plurigaussian model

2.1. Principles

Consider a set of independent standard Gaussian
random fields {Y1,y,Ym} in R3 with correlograms
r1,y,rm, respectively, and define a vectorial ran-
dom field Y such that

8x 2 R3; YðxÞ ¼ ðY 1ðxÞ; . . . ;Y mðxÞÞ. (1)

Let (D1,y,Dn) be a partition of Rm into n disjoint
subdomains. A categorical random field with n
categories (facies) is obtained by putting

8x 2 R3; IðxÞ ¼ i if and only if YðxÞ 2 Di. (2)

2.2. Truncation rule

The choice of the partition (D1,y,Dn) has
implications on the spatial relationships between
the facies, as it defines the permissible and forbidden
contacts between pairs of facies and also allows
reproducing the chronological ordering of the facies
(Armstrong et al., 2003, p. 50; Lantuéjoul, 2002,
p. 212; Le Loc’h et al., 1994).

Henceforth, we will assume that the subdomains
(D1,y,Dn) are cuboids of R

m or unions of cuboids.
This situation is still quite general, as we do not
make any restriction on the number of Gaussian
fields (m), the number of facies (n) or the config-
uration of the cuboids in Rm. Fig. 1 gives two
examples of plurigaussian realizations obtained by
using two Gaussian fields with cubic correlograms;
the partition (truncation rule) is symbolized by a
flag below each realization.

2.3. Variogram inference

For any separation vector h 2 R3, the indicator
(simple or cross) variogram between facies no. i and
facies no. j is derived from the corresponding non-
centered covariance

gijðhÞ ¼ Cijð0Þ �
CijðhÞ þ CjiðhÞ

2
, (3)

with

CijðhÞ ¼ ProbðYðxÞ 2 Di;Yðxþ hÞ 2 DjÞ. (4)

Because the components of Y are mutually
independent, the previous probability is a product
or a sum of products of the following form:

Ym
k¼1

ProbðY kðxÞ 2 ½ai; bi�;Y kðxþ hÞ 2 ½aj ; bj �Þ

¼
Ym
k¼1

Z bi

ai

Z bj

aj

grkðhÞ
ðu; vÞdudv; ð5Þ

where gr(.,.) is the probability density function of a
standard bivariate Gaussian pair with correlation
coefficient r. The integral is usually calculated by
numerical integration (e.g. Dowd et al., 2003). Here,
following Matheron et al. (1988), we prefer to use
expansions into the normalized Hermite polynomials
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Fig. 1. Examples of plurigaussian realizations obtained by truncating two independent Gaussian fields with cubic correlograms. The

truncation rule is represented by a flag below the realization. Each facies (F1–F3 or F1–F5) is associated with a specific gray tone.
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fHp; p 2 Ng, which are orthonormal functions for
the Gaussian distribution. Let g(.) and G(.) be
the standard Gaussian probability density function
and cumulative density function, respectively. Then
one has

Z bi

ai

Z bj

aj

grðu; vÞdudv ¼
Xþ1
p¼0

rpjpðai; biÞjpðaj ; bjÞ, (6)

where fjp; p 2 Ng are the coefficients of the Hermitian
expansion of the indicator of the interval [a,b]
(Chilès and Delfiner, 1999, p. 399):

j0ða; bÞ ¼ GðbÞ � GðaÞ;

8p 2 N�; jpða; bÞ ¼
Hp�1ðbÞgðbÞ�Hp�1ðaÞgðaÞffiffi

p
p :

8<
: (7)

For practical calculations, the expansion in
Eq. (6) has to be truncated at a high order, e.g.
500 or 1000. Relations (3) to (5) establish a link
between the Gaussian field correlograms and the
indicator variograms, which are accessible experi-
mentally from the facies data. The former can
therefore be determined according to the fitting of
the latter (Le Loc’h and Galli, 1997).

3. Conditioning the realizations to hard and soft data

The conditioning process of plurigaussian simula-
tions is performed in three steps. First, the available
conditioning information (e.g. facies data at sample
locations) is converted into a set of Gaussian data
that reproduce the spatial continuity of the vectorial
random field Y. Second, the Gaussian data are used
to construct conditional realizations of Y. Finally,
the categorical realizations are obtained by applying
the truncation rule (Eq. (2)). Since many algorithms
are available to simulate Gaussian random fields
(e.g. Chilès and Delfiner, 1999, pp. 462–504) and the
last step is straightforward, only the first step needs
to be examined.

3.1. Conditioning to hard data

Hard data consist of an exact knowledge of the
prevailing facies at given locations of the deposit or
reservoir, codified as categorical data indicating the
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facies number at such locations. To transform these
data into Gaussian ones, Dowd et al. (2003) proposed
an acceptance–rejection method embedded in a
sequential algorithm, in which the Gaussian values
are generated at each data location conditionally to the
categorical information at this location and to the
previously simulated Gaussian values. However, such a
method fails at accounting for all the original
categorical information and is only approximate. In
particular, the Gaussian values at the first data location
are simulated so as to be consistent with the categorical
information at this location, but the information
brought by the neighboring data is ignored.

To account for the full amount of conditioning
information, Freulon and de Fouquet (1993) and
Freulon (1994) designed an iterative algorithm to
simulate a truncated Gaussian vector, based on the
Gibbs sampler (Geman and Geman, 1984). The
extension to the plurigaussian case is a general-
ization of this algorithm and proceeds as follows.

3.1.1. Initialization

Let {xa, aAA} be the set of hard data locations
and {ia, aAA} the facies numbers at these locations.
For aAA, simulate an independent random vector
Y(xa) that belongs to Dia (Eq. (2)), e.g. by using an
acceptance–rejection method.

3.1.2. Iterative procedure
(a)
 Select an index d at random, uniformly in A.
Define A0 ¼ A�{d}.
(b)
 Calculate the distribution of Y(xd) conditionally
to the Y-values at the other locations {Y(xa),
aAA0}. Since the components of Y are indepen-
dent Gaussian random fields, the conditional
distribution of Yk(xd) (with k ¼ 1,y,m) is
Gaussian, with mean equal to its simple kriging
estimate from {Yk(xa), aAA0}, and variance
equal to its simple kriging variance. If a unique
neighborhood is used, the kriging weights and
variances for all the data locations can be
determined simultaneously from the inverse of
the Gaussian data covariance matrix (Dubrule,
1983).
(c)
 Simulate a new random vector Y0(xd) with the
conditional distribution of Y(xd).
(d)
 If Y0(xd) belongs to Did , substitute Y0(xd) for
Y(xd).
(e)
 Go back to step (a) and loop many times.

The rate of convergence of this iterative algorithm

depends on the correlation between the Gaussian
data and is still unknown to a great extent. Some
theoretical and experimental results on this subject
can be found in Armstrong et al. (2003, pp. 82–105),
Chan (1993), Galli and Gao (2001) and Roberts and
Sahu (1997). In practice, to ensure convergence, it is
recommended that each datum is updated several
tens or hundreds of times, unless the Gaussian field
correlograms have an important nugget effect (in
case of a pure nugget effect, the Gibbs sampler
would converge after a single iteration).
3.2. Conditioning to soft data

A second kind of conditioning information con-
sidered in this work corresponds to qualitative or
‘‘soft’’ data that express the background knowledge of
the geologist about the deposit/reservoir under study.
This information is useful to preclude that given facies
are simulated in regions of space where hard data are
sparse, but where the geologist is almost sure that such
facies are absent. To incorporate this geological
knowledge into the simulation process, the idea is to
split each Gaussian field {Y1,y, Ym} into two
independent Gaussian components with the same
correlogram and half the variance, and to translate the
soft information into a constraint on the first
component. More formally, let us write

8k 2 f1; . . . ;mg;Y k ¼
Uk þ Vkffiffiffi

2
p , (8)

where Uk and Vk are two independent standard
Gaussian random fields with correlogram rk. In terms
of vectorial random field:

Y ¼
U þ Vffiffiffi

2
p . (9)

Soft information consists of inequality constraints
on the local prior (pre-posterior) probabilities of
occurrence of given facies, for instance
�
 ‘‘There is more than 90% chance of finding facies
no. 1 at location x’’.

�
 ‘‘There is less than 10% chance of finding facies

no. 1 or facies no. 2 at location x’’.

�
 ‘‘Facies no. 1 has between 40% and 60% chance

of occurrence at location x’’. This constraint may
correspond to a tolerance interval around an
estimate of the facies proportion at the elevation
under consideration, given by the vertical pro-
portion curves (Armstrong et al., 2003, p. 27).
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This information can be codified by one or several
inequalities of the form
Xn

i¼1

oiðxÞProbðYðxÞ 2 DiÞoZðxÞ, (10)

with numerical coefficients {o1(x),y,on(x),Z(x)}
specified by the geologist according to its under-
standing or its intuition on the deposit/reservoir, or
according to statistical tools such as vertical
proportion curves or 3D proportion matrices
(Ravenne et al., 2002).

Here the Gibbs sampler consists of simulating the
random field U at the hard and soft data locations,
and the random field V at the hard data locations
only, such that:
�
 at each hard data location, the pair (U,V) is
consistent with the hard information;

�
 at each soft data location, vector U is consistent

with the soft information.

A description of the simulation algorithm is given
in Appendix A.

4. Program description

4.1. Main program: PLURISIM.M

The proposed programs are ASCII files written in
MATLAB language (version 5.0 or later). The main
routine (PLURISIM.M) allows drawing plurigaussian
realizations over a regular grid or over scattered
locations in R3, conditional to hard and/or soft data.
The realizations are obtained by truncating any
number of Gaussian fields, the simulation of which
uses the turning bands method and is based on a
program developed by Emery and Lantuéjoul (2006).

The input parameters of PLURISIM.M are the
following ones:
�
 simucoord: coordinates of the locations to simu-
late in R3 (m� 3 matrix; void if a grid simulation
is sought after);

�
 x0, y0 and z0: minimum grid coordinates along

x, y and z directions;

�
 nx, ny and nz: numbers of grid nodes along x, y

and z directions;

�
 dx, dy and dz: grid meshes along x, y and z

directions;

�
 nfield: number of Gaussian random fields to

truncate
�
 nthres: number of thresholds for each Gaussian
field (1� nfield vector);

�
 thresholds: threshold values (first Gaussian field

first, then second field, and so on);

�
 flag: matrix codifying the truncation rule and

containing the facies numbers. The flag repre-
senting the truncation rule is divided into
prod(nthres+1) cuboids and the matrix entries
(facies numbers in the cuboids) are ordered by
cycling along Y1, then along Y2, and so on. For
instance, the flags in Fig. 1 would be entered as
[1 2 1 3] and [1 2 3 1 4 4 5 5 1], respectively;

�
 nst: number of nested structures for each

Gaussian field (1� nfield vector);

�
 model: covariance model for the Gaussian random

fields (sum(nst)� 7 matrix). Each row corresponds
to a nested structure and is codified as [type, scale
factors, angles]. There are three scale factors
(along the rotated y, x and z directions, respec-
tively) and three angles to define the coordinate
rotation (azimuth, dip and plunge) (Deutsch and
Journel, 1998, p. 27). The available types are
described in the program file;

�
 cc: sills of the nested structures (sum(nst)� 1

vector);

�
 b: third parameters, used for some of the

covariance types (sum(nst)� 1 vector);

�
 nlines: number of lines to use for simulating each

nested structure with the turning bands method
(sum(nst)� 1 vector);

�
 nugget: nugget effect variances (1� nfield vector);

�
 harddatacoord: hard data coordinates (void for

non-conditional simulations);

�
 harddata: categorical data (facies numbers) (col-

umn vector);

�
 softdatacoord: soft data coordinates (void if soft

data are not considered; nsoftdata� 3 matrix
otherwise);

�
 softdata: coefficients {o1,y,on,Z} of the inequal-

ity constraints (Eq. (10)) (nsoftdata� (n+1)�
nconstraints matrix);

�
 nrealiz: number of realizations to draw;

�
 seed: seed number for generating random values;

�
 radius: maximum search radii along y, x and z

(rotated system) for the conditioning data; if the
radius along y is set to infinity, a unique
neighborhood is assumed for the Gibbs sampler
and for the conditioning kriging step;

�
 angles: angles to define the rotated system

(azimuth, dip and plunge), according to
GSLIB conventions (Deutsch and Journel, 1998,
p. 27);
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�
 octant: divide the neighborhood into octants?
1 ¼ yes, 0 ¼ no;

�
 ndata: number of conditioning data per octant

(if octant ¼ 1) or in total (if octant ¼ 0);

�
 name: name of output file;

�
 header: create a GSLIB header in the output file?

1 ¼ yes, 0 ¼ no;

�
 ntok: maximum number of locations/nodes to

simulate simultaneously. This number defines
how many locations are projected onto the lines
at each step of the turning bands simulation; and

�
 niteration: number of iterations to consider for

the Gibbs sampler.

Alternatively, program PLURISIM.M can be
used with a parameter file: no input argument is
then required in the Matlab workspace and the user
is prompted for the name of the parameter file. If no
name is entered, a default file (plurisim.par) is
assumed. In case the file does not exist, a blank
file plurisim.par is created. When resorting to the
parameter file mode, the coordinates of the loca-
tions to simulate (if these locations are not gridded)
the data coordinates and data values must be stored
in external ASCII files without headers, so as to be
loadable in the Matlab workspace.

PLURISIM.M creates an external ASCII file
with the simulated categorical values (one realiza-
tion per column). For grid simulations, the ordering
of the grid nodes is the same as in GSLIB (Deutsch
and Journel, 1998): point by point to the east, then
row by row to the north, and finally level by level
upward.

4.2. Auxiliary programs for parameter inference

Three other programs are provided to help for
parameter inference:
�
 CALCULATE_THRESHOLDS.M: calculate the
threshold values associated with a given flag
(truncation rule) and a set of facies proportions.
This program examines successively each Gaus-
sian random field and attempts to determine the
thresholds associated with this field by grouping
the facies, following the procedure described by
Armstrong et al. (2003, p. 54). Once a threshold is
determined, the initial flag is split into two sub-
flags and the program is used recursively. If the
calculation fails (non-unique solution or too
complex flag), the output thresholds are set to
minus infinity. In such a case, the thresholds can
be determined via trial-and-error or iterative
optimization methods (not implemented in this
work), in order to reproduce the facies propor-
tions.

�
 PROPCURVES.M: calculate smoothed propor-

tion curves along a given direction, from a set of
categorical data. The data coordinates are discre-
tized and assigned to given levels, then the
empirical domain proportions are calculated at
each level. The user can introduce a smoothing
parameter corresponding to half the size of a
moving window (expressed in number of levels)
over which the raw proportion curves are averaged.

�
 VMODEL_IND.M: calculate the indicator sim-

ple and cross variograms associated with a
truncation rule, facies proportions and Gaussian
variograms. The calculation is based on expan-
sions of the indicator function into Hermite
polynomials (Eqs. (3)–(7)). A graphical compar-
ison between the resulting indicator variograms
and the empirical ones (derived from the avail-
able hard data) allows determining the variogram
models of the Gaussian random fields.

5. A case study in mining engineering

5.1. Presentation of data

A case study is now proposed, dealing with the
simulation of mineralogical domains in a porphyry
copper deposit (Radomiro Tomic) located in north-
ern Chile, at 40 km from Calama city and at an
average elevation of approximately 3000m above
mean sea level. The ore body is approximately 5 km
long, 1 km large and 0.4 km deep.

The mineralization profile can be divided into five
main domains (Cuadra and Rojas, 2001): alluvial
gravels, leached capping, oxidized copper miner-
alization, primary sulfide mineralization and sec-
ondary sulfide enrichment. The deposit has been
recognized by diamond drill holes, along which the
mineralogy has been logged. A map showing the
distribution of the data over a cross-section is
presented in Fig. 2. One observes that the direction
of greatest geological continuity is almost horizon-
tal (it is dipping about 0.71 downwards with respect
to the north direction).

5.2. Truncation rule and threshold determination

The truncation rule must be defined so as to
honor the topological contacts between mineralogical
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Fig. 2. Distribution of available data over cross-section with east coordinate 4300m.

Fig. 3. Three-dimensional flag indicating truncation rule used for converting Gaussian values into categorical values.
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domains. In the present case, gravels are located
near the surface and are in contact with the oxide
and leach domains but never with sulfides, located
beneath the phreatic level at an elevation of 2850m.
In contrast, the other four domains (leached
capping, oxides, primary and secondary sulfides) are
in contact with each other. This situation motivates
the use of three Gaussian fields {Y1,Y2,Y3} and
the definition of the following truncation rule
(Fig. 3):
�
 location x belongs to gravel

3Y 1ðxÞoy1,
location x belongs to oxide
�
3
y1pY 1ðxÞoy01;

Y 2ðxÞoy2;

(

�
 location x belongs to leached capping

3
y1pY 1ðxÞoy01;

y2pY 2ðxÞ;

(

�
 location x belongs to secondary sulfide

3
y01pY 1ðxÞ;

Y 3ðxÞoy3;

(
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location x belongs to primary sulfide
�
3
y01pY 1ðxÞ;

y3pY 3ðxÞ:

(

The thresholds {y1,y
0
1,y2,y3} are linked to the

global proportions of the mineralogical domains.
Instead of estimating these proportions directly
from the available categorical data, we prefer to
define them from the variogram sills of the domain
indicators, in order to improve the consistency of
the subsequent variogram models. Recall that, if p is
the proportion of a spatial domain, then the sill of
the corresponding indicator variogram is p(1�p).
The analysis of the sample indicator variograms
leads to the following threshold values:

y1 ¼ �1:20; y01 ¼ 1:15; y2 ¼ 0:17 and y3 ¼ 0:22.

5.3. Variogram analysis

We now turn to the modeling of the Gaussian field
variograms. As mentioned in Section 2.3, these are
determined through their impact on the variograms of
the domain indicators. For practical calculations, only
the sub-horizontal (�0.71 dip) and sub-vertical (89.31
dip) directions, corresponding to the main anisotropy
directions, are considered. A trial-and-error procedure
based on program VMODEL_IND.M is adopted.
The following Gaussian variogram models provide a
satisfactory fitting of the indicator simple variograms
(Fig. 4) (for the sake of simplicity, the indicator cross-
variograms are not examined):
�
 Variogram model for the first Gaussian field:

g1 ¼ 0:04 cubic ð100m; 100mÞ

þ 0:06 cubic ð250m; 200mÞ

þ 0:90 cubic ð2500m; 200mÞ.
�
 Variogram model for the second Gaussian field:

g2 ¼ 0:40 spherical ð100m; 100mÞ

þ 0:30 spherical ð2000m; 120mÞ

þ 0:15 spherical ð100m;1Þ

þ 0:15 spherical ð2000m;1Þ.
�
 Variogram model for the third Gaussian field:

g3 ¼ 0:40 cubic ð200m; 200mÞ

þ 0:60 cubic ð25; 000m; 10; 000mÞ.
In the previous equations, the distances in
brackets represent the ranges along the sub-

horizontal and sub-vertical directions. The shape
of the variograms near the origin is linked to the
regularity of the boundaries between mineralogical
domains (Lantuéjoul, 2002, p. 26). In particular, the
cubic variogram model is smooth at the origin and
is associated with a regular boundary. In contrast,
the spherical model (used for the second Gaussian
field to separate oxides from leached capping)
increases linearly and entails a more erratic bound-
ary between these two domains.

5.4. Definition of soft conditioning constraints

To be realistic from a geological viewpoint, the
plurigaussian realizations must honor the mineralogi-
cal profile with depth: gravels should be found near
the surface, whereas sulfides should appear below the
phreatic level. Now, these conditions are not necessa-
rily fulfilled if one only uses the drill hole data as
conditioning information. The reason is that the
realizations are almost unconstrained in under-
sampled areas, for which the drill hole data are
scarce.

To account for the geological information, ancillary
data are defined over a regular grid covering the area
to simulate. These data consist of interval constraints
on the local domain proportions; the interval
midpoints correspond to the proportion estimates
given by the vertical proportion curves (Fig. 5),
whereas the interval widths are set to 20%. For
instance, if the curves indicate an oxide proportion of
30% at a given elevation, then the actual oxide
proportion is constrained between 20% and 40%.

5.5. Remark on the use of a stationary prior model

The vertical proportion curves (Fig. 5) indicate
the presence of trends along the vertical direction.
These trends can be interpreted as (i) an effect of
non-stationarity (presence of prior drifts), (ii) a
result of randomness or chance fluctuations (Chilès
and Delfiner, 1999, p. 233) or (iii) an effect of
conditioning data.

The first interpretation (drift models) is associated
with the definition of regionalized facies proportions
and spatially varying truncation thresholds, which
raises difficulties for variogram analysis (Armstrong
et al., 2003; Beucher et al., 1993). In general, the
second interpretation (chance fluctuations) does not
allow a systematic reproduction of the trends, which
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Fig. 4. Sample (dashed lines) and modeled (solid lines) indicator variograms along sub-horizontal and sub-vertical directions.
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appear only in some realizations. The third inter-
pretation assumes that trends are implicitly defined
by the presence of conditioning data: the simulated
random fields are forced to honor the conditioning
constraints, which alter their stationary prior dis-
tributions into non-stationary posterior (condi-
tional) distributions and produce patterns such as
local drifts (Journel and Huijbregts, 1978, p. 501).
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Fig. 5. Smoothed proportion curves, giving estimates of domain proportions along the direction of maximum geological variability

(sub-vertical).
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Prior drift models actually have little impact when
conditioning data abound and are relevant only in
extrapolation situations or when conditioning data
are scarce (Journel and Rossi, 1989).

In the present case study, soft data locations have
been placed in order to achieve a regular coverage of
the area of interest, and the soft constraints at these
locations have been defined by reference to the vertical
proportion curves. Such constraints are therefore
expected to impose the reproduction of the trends
along the vertical direction, without the need for a
prior drift model. Working with a stationary prior
model greatly facilitates the inference of model
parameters, as the thresholds defining the truncation
rule are constant in space and the Gaussian vario-
grams only depend on the separation vector.

It is worthy to note that the use of inequality
constraints (Eq. (10)) gives flexibility to the proposed
methodology, as it allows accounting for an un-
certainty in the local facies proportions (defined as the
probabilities of occurrence of the facies at a given
location). In contrast, with non-stationary models
based on vertical or on regionalized proportion
curves, the local facies proportions are considered as
‘‘hard’’ values with no uncertainty, although they have
been estimated from a limited set of neighboring data
and, therefore, are approximate. Accordingly, the
proposed approach is likely to simulate a larger range
of situations, with more varied facies proportions
between realizations, and to better reflect the actual
uncertainty in the geology of the deposit.

5.6. Conditional simulation

Once the model parameters (truncation rule,
Gaussian thresholds and variograms) and condi-
tioning data are ready, program PLURISIM.M can
be used to create conditional realizations of the
mineralogical domains in the deposit. Two of them
are displayed in Fig. 6 as an illustration. One can
check that both realizations reproduce the drill hole
data (Fig. 2), as well as the vertical proportion
curves (Fig. 5), through the incorporation of the
soft conditioning data (interval constraints).

All in all, the plurigaussian model is relatively
simple and straightforward to put in practice, and is
able to account for diverse sources of information:
contacts between the domains (truncation rule),
mineralogical profile with depth (vertical proportion
curves, converted into soft data constraints), geolo-
gical continuity (indicator variograms) and drill
hole information (conditioning hard data).
The application of this model requires a close
collaboration between the geostatistician and the



ARTICLE IN PRESS

Fig. 6. Two conditional realizations of mineralization domains. Representation of cross-section with east coordinate 4300m.

X. Emery 
geologist, in particular when defining the truncation
rule and the soft conditioning data.
6. Conclusions

The plurigaussian model is a promising approach
for simulating categorical variables representing
spatial domains (facies) and for assessing the
uncertainty in their boundaries. It is simple to
implement, mathematically consistent and data-
charged, as the realizations honor the topological
constraints (contacts and ordering) between facies,
their spatial continuity (indicator variograms) as well
as prior geological knowledge, e.g. information of the
vertical proportion curves for characterizing a
mineralization profile with depth. All these features
have been included in a set of computer programs,
which also allow a great flexibility in the choice of the
number of Gaussian fields to truncate, the number of
facies and the truncation rule. The presentation of
the concepts has been accompanied by a case study,
so as to familiarize practitioners with the steps
involved in the modeling and simulation, and to
assess the performance of the proposed programs.
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Appendix A

This appendix gives the steps for plurigaussian
simulation in the presence of hard and soft
conditioning data. The simulation procedure is based
on the decomposition of the vectorial random field Y
into two independent components U and V (Eq. (9)).

A.1. Initialization
(a)
 Let {xa, aAA} be the set of hard data
locations and {ia, aAA} the facies numbers
at these locations. For any a in A, simulate an
independent random vector Y(xa) that be-
longs to Dia (Eq. (2)) and set

UðxaÞ ¼ VðxaÞ ¼
YðxaÞffiffiffi

2
p . (A.1)
(b)
 Let {xb, bAB} be the set of soft data locations
and W a standard Gaussian random vector
with m independent components. For any b in
B, draw an independent random vector U(xb)
such that (Eq. (10))

Xn

i¼1

oiðxbÞProb
UðxbÞ þWffiffiffi

2
p 2 Di

� �
oZðxbÞ.

(A.2)
A.2. Simulation at the data locations

(Gibbs sampler)
(c)
 Select an index d at random, uniformly in A[B.

(d)
 If dAA (hard datum, associated with facies

number id)
J Define A0 ¼ A�{d}.
J Calculate the distributions of U(xd) and V(xd)

conditionally to {U(xe), eAA0[B} and {V(xa),
aAA0}. For any k in {1,y,m}, the conditional
distributions of Uk(xd) and Vk(xd) are Gaussian,
with means equal to simple kriging estimates
and variances equal to simple kriging variances.

J Simulate two random vectors U0(xd) and
V0(xd), with the conditional distributions of
U(xd) and V(xd), respectively.

J Define Y 0ðxdÞ ¼
U 0ðxdÞ þ V 0ðxdÞffiffiffi

2
p .

J If Y0(xd) belongs to Did , substitute U0(xd) for
U(xd) and V0(xd) for V(xd).
(e)
 If dAB (soft datum)
J Define B0 ¼ B�{d}.
J Calculate the distribution of U(xd) condition-
ally to {U(xe), eAA[B0}. Again, each compo-
nent Uk(xd) has a Gaussian distribution, with
mean and variance equal to its simple kriging
estimate and simple kriging variance.

J Simulate a new random vector U0(xd) with
the conditional distribution of U(xd).

J Let W be an independent standard Gaussian
random vector with m independent compo-
nents. For any i in {1,y,n}, calculate the
probability

Pi ¼ Prob
U 0ðxdÞ þWffiffiffi

2
p 2 Di

� �
. (A.3)

J If
Pn

i¼1oiðxdÞPioZðxdÞ (Eq. (10)), substitute
U0(xd) for U(xd).
(f)
 Go back to step (c) and loop many times.
At the end of this iterative procedure, one obtains
vectors that honor the conditioning information:
the hard information at xa (aAA) is accounted for
by the pair (U(xa),V(xa)), while the soft information
at xb (bA B) is accounted for by vector U(xb).

A.3. Simulation at other locations in R3

The remaining steps for conditional simulation of
facies are
(g)
 Simulate the random field V at the soft data
locations {xb, bAB}, conditionally to {V(xa),
aAA}.
(h)
 Calculate Y at the hard and soft data locations
(Eq. (9)).
(i)
 Simulate Y at other locations in R3, condition-
ally to its values at the data locations.
(j)
 Derive the facies simulation by applying the
truncation rule (Eq. (2)).
Appendix B. Supporting Information

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.cageo.2007.01.006.
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Tróia’92. Kluwer Academic, Dordrecht, pp. 351–369.
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de la formation du Brent. Sciences de la Terre, Série
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