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Abstract

This paper deals with the asymptotic stability analysis of a discrete dynamical inclusion whose
right-hand side is a convex process. We provide necessary and sufficient conditions for weak asymp-
totic stability, and obtain sharp estimates for the asymptotic null-controllability set. These estimates
involve not only standard, but also higher-order spectral information on the convex process and its
adjoint.
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1. Introduction

This paper deals with the asymptotic stability analysis of a discrete dynamical system
of the form
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x(k + 1) ∈ F
(
x(k)

)
, ∀k = 0,1, . . . . (1)

As state space, consider a real Hilbert space H with inner product 〈·,·〉 and associated norm
‖ · ‖. The multivalued operator F :H ⇒ H is assumed to be a convex process in the sense
that

grF = {
(s, v) ∈ H × H : v ∈ F(s)

}
is a convex cone containing the origin. This geometric property imposed on the graph of F

amounts to saying that

0 ∈ F(0),

F (αs) = αF(s), ∀α > 0, ∀s ∈ H,

F(s1) + F(s2) ⊂ F(s1 + s2), ∀s1, s2 ∈ H.

A trajectory of F refers to a sequence x : N → H satisfying the evolution law (1). Thus,

SF (ξ) = {
x : N → H : x solves (1) and x(0) = ξ

}
corresponds to the set of all trajectories of F emanating from the initial state ξ ∈ H . Ob-
serve that the multivalued operator SF :H ⇒ HN enjoys the same properties as F , namely,
normalization, positive homogeneity, and super-additivity.

Definition 1.1. F is said to be weakly asymptotically stable if

∀ξ ∈ H, ∃x ∈ SF (ξ) such that lim
k→∞x(k) = 0,

that is to say, from every initial state emanates a trajectory of F that, in the long run,
becomes arbitrarily close to the origin.

Weak asymptotic stability is a concept that speaks by itself and does not need any further
introduction. Definition 1.1 has been considered by authors like Phat [10,11] and Smirnov
[12], among others. The purpose of this note is not only providing necessary and sufficient
conditions for weak asymptotic stability, but also deriving sharp estimates for the set

K∞(F ) =
{
ξ ∈ H : lim

k→∞x(k) = 0 for some x ∈ SF (ξ)
}
.

We say that K∞(F ) is the asymptotic null-controllability set of F . We are borrowing the
terminology of control theory because (1) can be seen as a generalization of the control
model

x(k + 1) = Ax(k) + Bu(k), u(k) ∈ P,

where P is a closed convex cone in a given Hilbert space, and A and B are continuous
linear operators.

Two remarks are useful for putting our study in the right perspective: firstly, K∞(F ) is
a convex cone containing the origin; and, secondly,

K∞(F ) ⊂ domSF ⊂ domF,

with domF = {ξ ∈ H : F(ξ) �= ∅} and domSF = {ξ ∈ H : SF (ξ) �= ∅} being the domains
of F and SF , respectively. Needless to say, the convex process F cannot be weakly asymp-
totically stable unless it is nonempty-valued everywhere.
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2. Upper and lower estimates for K∞(F )

In the classic framework of a linear evolutionary system

x(k + 1) = Ax(k), ∀k = 0,1, . . . ,

weak asymptotic stability simply means that

lim
n→∞Anξ = 0, ∀ξ ∈ H. (2)

A convergence condition like (2) can be formulated also in the context of the difference
inclusion (1). To do this, one has to introduce first the set

Fn(ξ) = [F ◦ F ◦ · · · ◦ F ](ξ), (3)

with F appearing n times on the right-hand side of (3), and ◦ denoting composition. So,

v ∈ Fn(ξ) ⇔
{

there is a chain {v0, . . . , vn} with v0 = ξ, vn = v,

and vr+1 ∈ F(vr) for r = 0,1, . . . , n − 1.

The interpretation of Fn(ξ) is clear: it corresponds to the set all states that can be reached
by the multivalued system (1) after n steps starting from ξ . Next, one has to check whether
the successive reachable sets

F 1(ξ), F 2(ξ), F 3(ξ), . . .

get closer or not to the origin. More precisely, one has to see what happens with the distance

dist
[
0,F n(ξ)

] = inf
v∈Fn(ξ)

‖v‖

as n goes to ∞. This way of proceeding leads to the upper estimate:

Proposition 2.1. For any convex process F , one has

K∞(F ) ⊂
{
ξ ∈ H : lim

n→∞ dist
[
0,F n(ξ)

] = 0
}
. (4)

Proof. It is enough to observe that every x ∈ SF (ξ) satisfies the composite evolution law

x(n) ∈ Fn(ξ), ∀n = 0,1, . . . , (5)

where the standard convention F 0 = I (identity operator) is in order. �
Remark. A sequence x : N → H satisfying (5) can be seen as a sort of generalized trajec-
tory of F emanating from ξ . In contrast with a usual trajectory, the state x(n + 1) is not
necessarily obtained from x(n) by performing one extra iteration.

In what follows, the symbol F−n denotes the inverse of Fn. Thus, F−n(0) = {ξ ∈ H :
0 ∈ Fn(ξ)} corresponds to the set of all states that can be brought to the origin in n steps.
In view of this interpretation,

K(F ) =
⋃

F−n(0)
n�1
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is called the finite-time null-controllability set of F . We use the term stationary to refer to
a sequence x : N → H such that x(k) = 0 for all k above a certain threshold. Observe that

ξ ∈K(F ) ⇔ there is an x ∈ SF (ξ) which is stationary. (6)

The following counterpart of Proposition 2.1 can be proven in a straightforward manner.
As usual, the notation “cl” stands for topological closure.

Proposition 2.2. Let F be a convex process. Then,

(a) K(F ) is a convex cone contained in K∞(F );
(b) {ξ ∈ H : limn→∞ dist[ξ,F−n(0)] = 0} ⊂ cl[K∞(F )].

Proof. Since {F−n(0)}n�1 is a collection of convex cones arranged in a nondecreasing
order

F−1(0) ⊂ F−2(0) ⊂ F−3(0) ⊂ · · · ,
it follows that K(F ) is a convex cone, and

dist
[
ξ,K(F )

] = inf
n�1

dist
[
ξ,F−n(0)

] = lim
n→∞ dist

[
ξ,F−n(0)

]
, ∀ξ ∈ H.

Hence

cl
[
K(F )

] =
{
ξ ∈ H : lim

n→∞ dist
[
ξ,F−n(0)

] = 0
}
.

The observation (6) yields the remaining part of the proposition. �
It is natural to ask how large is the gap between the set on the left-hand side of Propo-

sition 2.2(b), and the set on the right-hand side of (4). In general, one should not expect to
have {

ξ ∈ H : lim
n→∞ dist

[
ξ,F−n(0)

] = 0
}

= cl
{
ξ ∈ H : lim

n→∞ dist
[
0,F n(ξ)

] = 0
}
, (7)

but, if this equality occurs, then the cones K(F ) and K∞(F ) have necessarily the same
closure. This observation is behind the formulation of next result. Recall that a convex
process F :H ⇒ H is said to be⎧⎪⎪⎪⎨

⎪⎪⎪⎩

strict if domF = H ;
closed if grF is a closed set;
coercive if dist[0,F (s)] → ∞ as ‖s‖ → ∞;
nonexpansive if dist[0,F (s)] � ‖s‖, ∀s ∈ H.

Theorem 2.1. Let F be a closed convex process such that F−1 is coercive and nonexpan-
sive. Then, K∞(F ) is contained in the closure of K(F ).

Proof. Coercivity of F−1 has been added just to make sure that all the iterates F−n are
closed. Now, under the condition

∀n � 1, F−n is a closed convex process, (8)
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the nonexpansive behavior of F−1 guarantees equality (7). To see this point, a number of
elements must be brought to the discussion. First of all, nonexpansiveness of F−1 implies
that each F−n is strict and∥∥F−n

∥∥ �
∥∥F−1

∥∥n � 1. (9)

Here the expression

‖G‖ = sup
‖u‖�1

dist
[
0,G(u)

]
is used to measure the “magnitude” of a strict convex process G :H ⇒ H . Another concept
to be recalled is that of lower-limit of a collection {Cn}n�1 of sets lying in a metric space Z.
By definition, one has

lim inf
n→∞ Cn =

{
z ∈ Z: lim

n→∞ dist[z,Cn] = 0
}
.

The lower-limit of a collection {Gn}n�1 of convex processes Gn :H ⇒ H is a new convex
process whose graph is given by

gr
[
lim inf
n→∞ Gn

]
= lim inf

n→∞ [grGn].
With this notation at hand, it becomes clear that{

ξ ∈ H : lim
n→∞ dist

[
0,F n(ξ)

] = 0
}

=
{
ξ ∈ H : 0 ∈ lim inf

n→∞
[
Fn(ξ)

]}
is contained in the closed convex cone{

ξ ∈ H : 0 ∈
[
lim inf
n→∞ Fn

]
(ξ)

}
=

[
lim inf
n→∞ Fn

]−1
(0) =

[
lim inf
n→∞ F−n

]
(0).

On the other hand,

cl
[
K(F )

] = lim inf
n→∞

[
F−n(0)

]
.

So, everything boils down to checking whether[
lim inf
n→∞ F−n

]
(0) = lim inf

n→∞
[
F−n(0)

]
. (10)

According to the general theory of lower-limits [3], equality (10) follows from (8) and

sup
n�1

∥∥F−n
∥∥ < ∞.

The above uniform boundedness condition is ensured, of course, by (9). �
Remark. The magnitude of a convex process can be used as preliminary test for checking
weak asymptotic stability. Indeed, a strict convex process F is weakly asymptotically stable
if ‖F‖ < 1. In view of this result, special attention must be devoted to the case ‖F‖ � 1.

Some refinements are possible in Theorem 2.1. For instance, the inclusion K∞(F ) ⊂
cl[K(F )] still holds if F is a convex process such that

for some p � 1, F−p is closed, coercive, and nonexpansive.
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To see this, apply Theorem 2.1 to the composite operator Fp , and observe that

K∞(F ) ⊂ K∞
(
Fp

)
and K(F ) = K

(
Fp

)
.

We shall not insist too much on Theorem 2.1 because its describes a situation that is rather
abnormal: the finite-time null-controllability set is rich enough to capture all the informa-
tion contained in K∞(F ).

While trying to evaluate the asymptotic null-controllability set, the inclusion K(F ) ⊂
K∞(F ) is the first thing that comes to mind. However, simple examples show that this
lower estimate can be very rough. To get a better estimate, spectral information on the
operator F must be brought into the picture.

3. A sharper lower estimate for K∞(F )

In this section we obtain a sharper lower estimate for K∞(F ) by using tools of spectral
analysis. To start with, we introduce:

Definition 3.1. The resolvent of F at λ ∈ R is the operator RλF :H ⇒ H given by

(RλF )(v) = (F − λI)−1(v) = {
ξ ∈ H : v ∈ (F − λI)(ξ)

}
.

The n-order resolvent of F at λ ∈ R is the iterated composition

Rn
λF = (RλF ) ◦ (RλF ) ◦ · · · ◦ (RλF ) = (F − λI)−n.

As usual, an eigenvalue of F is understood as a number λ ∈ R satisfying λa ∈ F(a) for
some a �= 0. Such a ∈ H is called an eigenvector of F associated to the eigenvalue λ. The
set

Λ(F) = {λ ∈ R: λ is an eigenvalue of F }
is referred to as the point spectrum of F . For convex processes, the concept of eigenvalue
has been extensively discussed in the last decade. It has known interesting applications not
only in control theory [2,4,6,11,14], but also in other areas.

One could introduce a sort of n-order point spectrum by simply writing

Λn(F) = {
λ ∈ R:

(
Rn

λF
)
(0) �= {0}},

but such idea is of no use. Indeed, next lemma shows that Λn(F) = Λ(F) for every n � 1.

Lemma 3.1. Let F be a convex process. For λ ∈ R, the following three conditions are
equivalent:

(a) (F − λI)−1(0) �= {0};
(b) (Rn

λF )(0) �= {0} for every n � 1;
(c) (Rn

λF )(0) �= {0} for some n � 1.

Proof. Since {(Rn
λF )(0)}n�1 is a collection of convex cones arranged in a nondecreas-

ing order, the only nontrivial implication is (c) ⇒ (a). Let n � 1 be an integer such that
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(Rn
λF )(0) contains a nonzero vector, say ξ ∈ H . Then, there is a chain {v0, . . . , vn} satis-

fying the end-point conditions v0 = ξ, vn = 0, and such that

vr+1 + λvr ∈ F(vr) for r = 0,1, . . . , n − 1. (11)

For r = n − 1, one gets λvn−1 ∈ F(vn−1). If vn−1 �= 0, then we are done. Otherwise,
we write (11) for r = n − 2, obtaining in this way λvn−2 ∈ F(vn−2). We apply the same
argument as before, and continue proceeding backward until the desired conclusion is at-
tained. �

Although the idea of dealing with higher-order eigenvalues is fruitless, introducing
higher-order eigenvectors does make sense:

Definition 3.2. Let n � 1. An n-order eigenvector of F associated to λ ∈ R is any nonzero
vector belonging to (Rn

λF )(0). A nonzero vector in

ΦF (λ) =
⋃
n�1

(
Rn

λF
)
(0)

is called a finite-order eigenvector of F associated to λ.

For linear operators, the notion of finite-order eigenvector is certainly known. For con-
vex processes, such a notion appears in the work by Smirnov [12]. Observe that ΦF (λ) is
precisely the finite-time null-controllability set of the shifted process F −λI . In particular,

ΦF (0) = K(F ).

So, next result can be seen as complement to Proposition 2.2(a).

Proposition 3.1. Let F be a convex process. Then,(
Rn

λF
)
(0) ⊂ K∞(F ), ∀n � 1, ∀λ ∈ ]0,1[. (12)

Proof. Fix λ ∈]0,1[ and n � 1. If ξ ∈ (Rn
λF )(0), then there is a chain {v0, . . . , vn} satis-

fying the end-point conditions v0 = ξ , vn = 0, and the recursive relation (11). Extend this
chain by setting vr = 0 for all r > n. Consider now the sequence x : N → H given by

x(k) =
k∑

r=0

Ck
r λk−rvr , ∀k = 0,1, . . . , (13)

with

Ck
r = k!

r!(k − r)! . (14)

We claim that x ∈ SF (ξ). To start with, observe that x(0) = v0 = ξ . To prove (1), we
proceed by induction. One clearly has

x(1) = λv0 + v1 ∈ F
(
x(0)

)
.
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The induction hypothesis is that (1) holds for k = N − 1. We need to prove that (1) holds
for k = N . From the very definition of x, it follows that

x(N + 1) = λx(N) +
N∑

r=1

CN−1
r−1 λN−r (vr+1 + λvr) (15)

and

x(N) = λx(N − 1) +
N∑

r=1

CN−1
r−1 λN−rvr . (16)

Both formulas have been proved and exploited in a different context by Alvarez, Correa
and Gajardo [1]. Their proofs are quite technical and do not need to be reproduced here. It
is essentially a matter of playing with the general properties of the combinatorial numbers
defined by (14). Recall now that

vr+1 + λvr ∈ F(vr), ∀r � 0.

Since F is a convex process, it follows that

N∑
r=1

CN−1
r−1 λN−r (vr+1 + λvr) ∈ F

(
N∑

r=1

CN−1
r−1 λN−rvr

)
. (17)

On the other hand, the induction hypothesis x(N) ∈ F(x(N − 1)) yields

λx(N) ∈ F
(
λx(N − 1)

)
. (18)

We now sum up (17) and (18), and use the super-additivity of F . In view of formulas (15),
(16), what we are getting is precisely the relation (1) for k = N . In short, we have shown
that x ∈ SF (ξ). To complete the proof, it remains to check that x(k) → 0 as k → ∞. For k

large enough (in fact, for k � n), expression (13) becomes

x(k) =
n−1∑
r=0

Ck
r λk−rvr .

Thus,

∥∥x(k)
∥∥ � M

n−1∑
r=0

Ck
r λk−r with M = max

{‖v0‖, . . . ,‖vn−1‖
}
.

A matter of computation yields

∥∥x(k)
∥∥ � M

n−1∑
r=0

λk−r (n − 1)!
r!(n − 1 − r)!

k!
(k − r)!

(n − 1 − r)!
(n − 1)!

� Mλk−(n−1)

n−1∑
r=0

Cn−1
r k(k − 1) · · · (k − r + 1)

� Mλk−n+1
n−1∑

Cn−1
r kr .
r=0
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The last sum being equal to (1 + k)n−1, one gets finally the estimate∥∥x(k)
∥∥ � Mλk−n+1(1 + k)n−1,

with a right-hand side term going to 0 as k → ∞. �
Inclusion (12) does not hold when λ ∈]−1,0[ . To handle the case of a negative λ, we

are led to introduce:

Definition 3.3. The bilateral resolvent of F at λ ∈ R is the operator BλF :H ⇒ H given
by

(BλF )(v) = (F − λI)−1(v) ∩ −(F − λI)−1(−v).

The n-order bilateral resolvent of F at λ is the composition Bn
λF = (BλF ) ◦ (BλF ) ◦ · · · ◦

(BλF ).

The definition of BλF may look strange at first sight, but it is motivated by a simple
geometric consideration. In fact,

gr(BλF ) = gr(RλF ) ∩ −gr(RλF )

is the largest linear space contained in the graph of RλF . The “bilateral” counterpart of
Definition 3.2 reads as follows:

Definition 3.4. Let n � 1. An n-order bilateral eigenvector of F associated to λ ∈ R is any
nonzero vector belonging to (Bn

λF )(0). A nonzero vector in

ΨF (λ) =
⋃
n�1

(
Bn

λF
)
(0)

is called a finite-order bilateral eigenvector of F associated to λ.

Bilateral eigenvectors emerge as natural mathematical objects while dealing with non-
linear convex processes. The set (F −λI)−1(0) may contain a nonzero vector ξ , but not its
opposite −ξ . If this happens, the eigenvector ξ is not of the bilateral type. Without further
ado, we state:

Proposition 3.2. Let F be a convex process. Then,(
Bn

λF
)
(0) ⊂ K∞(F ), ∀n � 1, ∀λ ∈ ]−1,0[. (19)

Proof. Fix λ ∈ ]−1,0[ and n � 1. If ξ ∈ (Bn
λF )(0), then we can construct a chain

{v0, . . . , vn} such that v0 = ξ , vn = 0, and

vr+1 ∈ (BλF )−1(vr ) for r = 0,1, . . . , n − 1.

The above recurrence relation breaks down into

vr+1 + λvr ∈ F(vr)

−vr+1 + λ(−vr) ∈ F(−vr)

}
for r = 0,1, . . . , n − 1. (20)
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As in the proof of Proposition 3.1, we extend this chain by setting vr = 0 for all r > n,
and then we consider the sequence x : N → H given by expression (13). It has already
been shown that x(k) → 0 as k → ∞, so the crucial question is the following one: does
x belong to SF (ξ)? The answer is yes, and for proving this fact one can proceed as in
Proposition 3.1. This time, however, one must play simultaneously with both recursive
relations stated in (20). The bilateral aspect of (20) is not to be neglected. �

The results stated in this section can be presented in a more compact manner by intro-
ducing a suitable notation. The distinction between the usual case and the bilateral one is
implicit in the definition of the mapping

λ ∈ R ⇒ ΘF (λ) =
⎧⎨
⎩

ΨF (λ) if λ ∈ ]−1,0[,
K(F ) if λ = 0,

ΦF (λ) if λ ∈]0,1[ .
Recall that the Minkowski sum of a finite number of convex cones coincides with the
convex hull of these cones. Inspired by this fact, we use the integration symbol∫

]−1,1[
ΘF (λ)dλ = co

[ ⋃
λ∈]−1,1[

ΘF (λ)

]
(21)

to denote the convex hull of the family {ΘF (λ)}λ∈]−1,1[.

Theorem 3.1. Let F be a convex process. Then,∫
]−1,1[

ΘF (λ)dλ ⊂ K∞(F ). (22)

Proof. By Propositions 2.2(a), 3.1, and 3.2, we know that ΘF (λ) ⊂ K∞(F ) whenever
λ ∈ ]−1,1[. The desired conclusion is obtained by passing to the convex hull. �

While computing the integral (21), only the eigenvalues of F need to be taken into
account. By way of example,∫

]−1,1[
ΘF (λ)dλ = ΘF (λ1) + · · · + ΘF (λp) if Λ(F) ∩ ]−1,1[ = {λ1, . . . , λp}.

Since the point spectrum of a convex process is not necessarily finite, carrying out the
computation of (21) is not always as easy as above.

The different values of λ do not play an identical role, so it may be useful to split the
integral (21) in the form∫

]−1,1[
ΘF (λ)dλ =

∫
]−1,0[

ΨF (λ)dλ +K(F ) +
∫

]0,1[
ΦF (λ)dλ. (23)

The right-hand side of (23) consists of three components, each one having its own interpre-
tation. The last two components are convex cones, while the first one is a linear subspace.
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4. Dualization

The purpose of this section is deriving upper estimates for the convex cone K∞(F ). The
set

M(F ) =
{
ξ ∈ H : lim

n→∞ dist
[
0,F n(ξ)

] = 0
}

(24)

is a fairly sharp upper bound for K∞(F ), but (24) is not always easy to be evaluated.
To obtain easily computable bounds, we look at the spectral information contained in the
adjoint process of F .

Recall that the adjoint (or transpose) of the convex process F :H ⇒ H is the convex
process F ∗ :H ⇒ H defined by

(u, z) ∈ grF ∗ ⇔ 〈z, s〉 � 〈u,v〉, ∀(s, v) ∈ grF.

We assume that the reader is familiar with this transposition mechanism. Being con-
sistent with the notation introduced in the previous section, we write (RλF

∗)(0) =
(F ∗ − λI)−1(0). The symbol

P − = {
ξ ∈ H : 〈ξ,w〉 � 0, ∀w ∈ P

}
refers to the negative polar cone of P ⊂ H .

Proposition 4.1. Let F be a convex process. Then,

K∞(F ) ⊂ [(
RλF

∗)(0)
]−

, ∀λ � 1. (25)

Proof. Let ξ ∈ K∞(F ) and λ � 1. Suppose that ξ /∈ [(RλF
∗)(0)]−, that is to say,

〈w,ξ 〉 > 0 for some vector w ∈ (RλF
∗)(0). By definition of (RλF

∗)(0), such w satisfies

〈w,v〉 � 〈λw, s〉, ∀(s, v) ∈ grF. (26)

On the other hand, there is a trajectory x ∈ SF (ξ) such that limk→∞ x(k) = 0. Plugging
into (26), one gets〈

w,x(k + 1)
〉
�

〈
λw,x(k)

〉
, ∀k = 0,1, . . . .

Hence, for each k ∈ {0,1, . . .}, one can write 〈w,x(k)〉 � λk〈w,ξ 〉, and therefore

∥∥x(k)
∥∥ � 〈w,ξ 〉

‖w‖ > 0.

That x remains away from the origin is, of course, a contradiction. Therefore, the state ξ

must be in [(RλF
∗)(0)]−. �

As we shall see next, it is possible to sharpen the estimate (25) by using higher-order
spectral information on F ∗. However, this is not just a matter of writing

K∞(F ) ⊂ [(
RnF ∗)(0)

]−
, ∀n � 1, ∀λ � 1. (27)
λ
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Inclusion (27) is correct for n = 1, but an extra term is missing when n � 2. This point will
be clarified after stating two auxiliary lemmas. The first lemma has to do with a certain
kernel function Γ : N × N → N defined recursively by

Γ (r + 1, k) =
{∑k−1

p=0 Γ (r,p) if k � 1,

0 if k = 0,

with Γ (0, k) = 1 for every k � 0.

Lemma 4.1. For r � 1 and k ∈ {0,1, . . . , r − 1}, one has Γ (r, k) = 0.

Proof. The proof is accomplished by induction on r . �
The purpose of the second lemma is establishing a link between the trajectories of F and

the stationary trajectories of F ∗ − λI . The function Γ : N × N → N plays here a relevant
role.

Lemma 4.2. Let F be a convex process. Take λ � 0 and x ∈ SF (ξ). Then, for any stationary
trajectory y ∈ SF ∗−λI (w), one has

〈
x(k),w

〉
�

k∑
r=0

Γ (r, k)λk−r
〈
y(r), ξ

〉
, ∀k � 0. (28)

Proof. The length of a stationary sequence y : N → H is the smallest integer N � 1 such
that y(k) = 0 for every k � N . For N = 1, the lemma amounts to saying that

0 ∈ (
F ∗ − λI

)
(w) ⇒ 〈

x(k),w
〉
� λk〈w,ξ 〉, ∀k � 0.

This particular situation has been taken care of in the proof of Proposition 4.1. Suppose
(28) holds for any trajectory y ∈ SF ∗−λI (w) of length N . We shall prove that (28) remains
true also for trajectories of length N + 1. So, pick up any

y ∈ SF ∗−λI (w) such that y(k) = 0, ∀k � N + 1.

The shifted trajectory k �→ ỹ(k) = y(k + 1) satisfies ỹ ∈ SF ∗−λI (y(1)) and ỹ(k) = 0 for
any k � N , so the induction hypothesis yields

〈
x(k), y(1)

〉
�

k∑
r=0

Γ (r, k)λk−r
〈
y(r + 1), ξ

〉
, ∀k � 0. (29)

Denote by ak the sum on the right-hand side of (29). Since y(1) + λw ∈ F ∗(w), one has〈
x(k),w

〉
�

〈
x(k − 1), y(1)

〉 + λ
〈
x(k − 1),w

〉
.

Hence,〈
x(k),w

〉
� ak−1 + λ

〈
x(k − 1),w

〉
� ak−1 + λ

[
ak−2 + λ

〈
x(k − 2),w

〉]
� · · · � λk〈ξ,w〉 +

k∑
ak−j λ

j−1.
j=1
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But

ak−j λ
j−1 = λj−1

k−j∑
r=0

Γ (r, k − j)λk−j−r
〈
y(r + 1), ξ

〉
,

so one gets

〈
x(k),w

〉
� λk〈ξ,w〉 +

k∑
j=1

k−j∑
r=0

Γ (r, k − j)λk−r−1〈y(r + 1), ξ
〉
.

A careful permutation of the summation order produces

〈
x(k),w

〉
� λk〈ξ,w〉 +

k−1∑
r=0

k−1∑
p=r

Γ (r,p)λk−r−1〈y(r + 1), ξ
〉
.

Lemma 4.2 yields then the inequality

〈
x(k),w

〉
� λk〈ξ,w〉 +

k−1∑
r=0

k−1∑
p=0

Γ (r,p)λk−r−1〈y(r + 1), ξ
〉
.

Due to the definition of Γ , one obtains

〈
x(k),w

〉
� λk〈ξ,w〉 +

k−1∑
r=0

Γ (r + 1, k)λk−r−1〈y(r + 1), ξ
〉
,

that is to say,

〈
x(k),w

〉
�

k∑
r=0

Γ (r, k)λk−r
〈
y(r), ξ

〉
.

This proves (28) for k � 1. The case k = 0 can be checked directly. �
We now are ready to incorporate the term that is missing in (27). In the theorem stated

below, we use the notation

P � = H\P + = {
ξ ∈ H : 〈ξ,w〉 < 0 for some w ∈ P

}
to indicate the complement of P + = −P −.

Theorem 4.1. Let F be a convex process. Then,

K∞(F ) ⊂ [(
Rn

λF ∗)(0)
]− ∪ [(

Rn−1
λ F ∗)(0)

]�
, ∀n � 2, ∀λ � 1. (30)

Proof. Fix n � 2 and λ � 1. Let ξ be in K∞(F ), that is to say, limk→∞ x(k) = 0 for some
x ∈ SF (ξ). Suppose, to the contrary, that ξ does not belong to the right-hand side of (30).
In such a case,

〈ξ,w〉 > 0 for some w ∈ (RnF ∗)(0),
λ
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and ξ ∈ [(Rn−1
λ F ∗)(0)]+. By a monotonicity argument, one has in fact

ξ ∈ [(
Rn−r

λ F ∗)(0)
]+

, ∀r = 1, . . . , n − 1.

Since w ∈ (Rn
λF ∗)(0), one can construct a stationary trajectory y ∈ SF ∗−λI (w) of length n.

By Lemma 4.2, the relation (28) necessarily holds. Observe that

y(r) ∈ (
Rn−r

λ F ∗)(0), ∀r = 1, . . . , n − 1,

and therefore 〈y(r), ξ 〉 � 0 for r = 1, . . . , n− 1. Keeping in mind that λ � 1, one arrives at〈
x(k),w

〉
� λk〈w,ξ 〉 � 〈w,ξ 〉 > 0,

contradicting in this way the convergence of x(k) toward the origin. �
Next example shows that formula (27) is not correct for n = 2. So, the extra term in (30)

should not be neglected.

Example. Consider the closed convex process F : R2 ⇒ R
2 given by

F(s) =
[

1 0

1 1

]
s + R

2+.

One can check that

ξ =
[ −1

1

]
∈ K∞(F ).

On the other hand,

F ∗(u) =
{[ 1 1

0 1

]
u if u ∈ R

2+,

∅ if u /∈ R
2+,

and, therefore, Λ(F ∗) = {1}. So, choose λ = 1. A simple matter of computation shows that

w =
[

0
1

]
∈ (

R2
λF

∗)(0).

Since 〈w,ξ 〉 > 0, it follows that ξ /∈ [(R2
λF

∗)(0)]−. This proves that K∞(F ) is not
contained in [(R2

λF
∗)(0)]−. What is happening here is that ξ belongs to the set

[(R2−1
λ F ∗)(0)]�.

Inclusions (25) and (30) do not hold when λ � −1. As we have learned already, deal-
ing with negative eigenvalues requires using a bilateral approach. Next result involves the
orthogonal space of(

BλF
∗)(0) = (

F ∗ − λI
)−1

(0) ∩ −(
F ∗ − λI

)−1
(0).

Proposition 4.2. Let F be a convex process. Then,

K∞(F ) ⊂ [(
BλF

∗)(0)
]⊥

, ∀λ � −1. (31)
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.

Proof. Let ξ ∈K∞(F ) and λ � −1. Suppose that ξ /∈ [(BλF
∗)(0)]⊥, that is to say,

〈w,ξ 〉 �= 0 for some w ∈ (
BλF

∗)(0).

Such w is a bilateral eigenvector of F ∗ associated to λ. The double inclusion

λw ∈ F ∗(w), λ(−w) ∈ F ∗(−w)

leads to the equality

〈w,v〉 = 〈λw, s〉, ∀(s, v) ∈ grF. (32)

As in the proof of Proposition 4.1, there is a trajectory x ∈ SF (ξ) such that limk→∞ x(k) = 0
Plugging into (32), one gets〈

w,x(k + 1)
〉 = 〈

λw,x(k)
〉
, ∀k = 0,1, . . . .

Hence, for each k ∈ {0,1, . . .}, one has 〈w,x(k)〉 = λk〈w,ξ 〉, and therefore∥∥x(k)
∥∥ � λk 〈w,ξ 〉

‖w‖ .

The inequality 〈w,ξ 〉 > 0 allows us to write∥∥x(2k)
∥∥ � 〈w,ξ 〉

‖w‖ > 0,

whereas the inequality 〈w,ξ 〉 < 0 yields∥∥x(2k + 1)
∥∥ � −〈w,ξ 〉

‖w‖ > 0.

In both cases, x admits a subsequence that remains away from the origin. This contradicts
the fact that x(k) → 0 as k → ∞. In conclusion, ξ must be in [(BλF

∗)(0)]⊥. �
The bilateral counterpart of Theorem 4.1 reads as follows. The symbol L� = H \ L⊥

indicates the complement of the orthogonal space L⊥.

Theorem 4.2. Let F be a convex process. Then,

K∞(F ) ⊂ [(
Bn

λF ∗)(0)
]⊥ ∪ [(

Bn−1
λ F ∗)(0)

]�
, ∀n � 2, ∀λ � −1. (33)

Proof. It it essentially a matter of adjusting Lemma 4.2 to the present situation. One can
show the relation

〈
x(k),w

〉 = k∑
r=0

Γ (r, k)λk−r
〈
y(r), ξ

〉
, ∀k � 0, (34)

for any stationary y : N → H such that

y(0) = w and
(
y(r), y(r + 1)

) ∈ gr
(
F ∗ − λI

) ∩ −gr
(
F ∗ − λI

)
, ∀r � 0. (35)

The implication (35) ⇒ (34) is true, regardless of the choice of λ ∈ R. Having clarified this
point, fix now n � 2 and λ � −1. Let ξ be an initial state that can be brought asymptotically
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to the origin by means of a trajectory x of F . If ξ were not in the right-hand side of (33),
then 〈ξ,w〉 �= 0 for some w ∈ (Bn

λF ∗)(0), and

ξ ∈ [(
Bn−r

λ F ∗)(0)
]⊥

, ∀r = 1, . . . , n − 1.

Since w ∈ (Bn
λF ∗)(0), one can construct a trajectory y as in (35). The relation (34) leads

then to a contradiction. Indeed, (34) is inconsistent with the convergence of x(k) toward
the origin. �

5. Weak asymptotic stability results

Most of the heavy work has been accomplished in Sections 3 and 4. It is time now to
state some general asymptotic stability results based on our estimates for the set K∞(F ).
We begin by writing down a sufficient condition for weak asymptotic stability. The notation

cone{a1, . . . , ap} = {μ1a1 + · · · + μpap: μ1 � 0, . . . , μp � 0}
refers to the convex cone generated by {a1, . . . , ap}. As usual, span{b1, . . . , bq} denotes
the linear space spanned by {b1, . . . , bq}.

Theorem 5.1. Let F :H ⇒ H be a convex process. Suppose that the domain of F is repre-
sentable in the form

dom F = span{b1, . . . , bq} + cone{c1, . . . , cr} + cone{a1, . . . , ap}, (36)

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1, . . . , cr are vectors in K(F );
a1, . . . , ap are finite-order eigenvectors of F

associated to eigenvalues lying in ]0,1[ ;
b1, . . . , bq are finite-order bilateral eigenvectors of F

associated to eigenvalues lying in ]−1,0[ .
Then, F is weakly asymptotically stable relative to its domain, that is to say, K∞(F ) =
domF .

Proof. The set on the right-hand side of (36) is contained in the integral (23), which in
turns is contained in K∞(F ). �
Remark. One or two components in (36) could be missing, that is to say, there is no need
to have all three of them at the same time. For instance, if F does not possess finite-order
bilateral eigenvectors, then we simply drop the first term in (36).

Weak asymptotic stability of F can be secured if the space H is representable in the
form

H = span{b1, . . . , bq} + cone{c1, . . . , cr} + cone{a1, . . . , ap},
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but this would require H to be finite dimensional. In an infinite dimensional setting, it is
more reasonable to write

H = span{bj : j ∈ J1} + cone{cj : j ∈ J2} + cone{aj : j ∈ J3}, (37)

where J1, J2, J3 are countable index sets. The symbols cone(Q) and span(Q) refer, re-
spectively, to the closed convex conic hull, and the closed linear hull of Q ⊂ H .

Theorem 5.2. Let F :H ⇒ H be a convex process. Assume that the space H is repre-
sentable in the form (37), where⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

each cj belongs to K(F );
each aj is a finite-order eigenvector of F

associated to an eigenvalue lying in ]0,1[ ;
each bj is a finite-order bilateral eigenvector of F

associated to an eigenvalue lying in ]−1,0[ .
Then, K∞(F ) is dense in H .

Proof. The set on the right-hand side of (37) is contained in the closure of (23), which in
turns is contained in the closure of K∞(F ). The conclusion is that cl[K∞(F )] = H . �

Finally, we write down a necessary condition for weak asymptotic stability.

Theorem 5.3. A convex process F :H ⇒ H fails to be weakly asymptotically stable if any
of the following conditions occurs:

(a) F ∗ admits a finite-order eigenvector with associated eigenvalue in [1,∞[;
(b) F ∗ admits a finite-order bilateral eigenvector with associated eigenvalue in

]−∞,−1].

Proof. Consider first the case (a). By applying Lemma 3.1 to the convex process F ∗, one
sees that (a) is equivalent to

F ∗ admits an eigenvector with associated eigenvalue in [1,∞[ . (38)

Failure of weak asymptotic stability is then a consequence of the estimate (25). A direct
way of arriving at the same conclusion is by exploiting the higher-order estimate (30). As
far as the case (b) is concerned, one can use the estimate (33), or one can combine (31)
with the appropriate bilateral version of Lemma 3.1. �
Remark. The condition (38) was anticipated by Smirnov [12, Theorem 3.1], but only in the
context of a closed convex process F defined over a finite dimensional space H . Although
Smirnov does consider another condition which is not mentioned in Theorem 5.3, this
extra-condition is not always easy to use in practice. Indeed, one is led to compute the
maximal subspace L ⊂ domF ∗ ∩ −domF ∗ enjoying the invariance property F ∗(L) ⊂ L,
and then one has to check that the eigenvalues of the restriction of F ∗ to L have absolute
values less than 1.
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We end this section with an example illustrating the use of condition (b). The example
takes place in the infinite dimensional real Hilbert space H = L2[−T ,T ] of square inte-
grable functions over the interval [−T ,T ]. The problem under study is a discrete control
system of the form

xk+1(t) = Axk(t) + Bμk(t)

μk(t) ∈ P

}
a.e. on [0, T ], (39)

where each μk is a control variable living in a suitable control space U . Each xk = x(k) is
an element of the state space L2[−T ,T ]. To fix the ideas, take U = L2[−T ,T ] and B = I .
The convex cone

P = {
π ∈ L2[−T ,T ]: π = 0 a.e. on J1, π � 0 a.e. on J2

}
is interpreted as a constraint set for the control variable. Here J1 and J2 are two nonzero
Lebesgue measure sets in [−T ,T ] such that J1 ∪ J2 = [−T ,T ] and J1 ∩ J2 = ∅. The
operator A describes the intrinsic behavior of the system when no external control is acting
on it. We are considering here the linear continuous self-adjoint operator A : L2[−T ,T ] →
L2[−T ,T ] given by

[As](t) = β(t)s(t) a.e. on [0, T ],
where β : [−T ,T ] → R is a continuous function.

In order to formulate the control problem (39) in the form (1), it is enough to introduce
the multivalued operator F :L2[−T ,T ] ⇒ L2[−T ,T ] given by F(s) = As + P . In such a
case,

F ∗(η) =
{

Aη if η ∈ P +,

∅ if η /∈ P +,

with

P + = {
η ∈ L2[−T ,T ]: η � 0 a.e. on J2

}
.

If there is a nonzero Lebesgue measure set J ⊂ J1 such that β(t) = λ � −1 for almost
every t ∈ J , then it can be shown that λ ∈ Λ(F ∗). One sees also that the square integrable
function

t ∈ [−T ,T ] �→ η(t) =
{

1 if t ∈ J,

0 if t /∈ J,

is a bilateral eigenvector of F ∗ associated to λ. According to Theorem 5.3(b), the existence
of such element indicates that the control system (39) is not weakly asymptotically stable.

6. Conclusions

Asymptotic stability analysis of multivalued dynamical systems is a broad theme with
many ramifications. The most common framework is that of a differential inclusion

ẋ(t) ∈ F
(
x(t)

)
, (40)
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where trajectories are sought in a suitable class of functions, and the multivalued operator
F has some special structure. It would be hard to draw a complete picture of what has
been published in the context of the continuous-time model (40). The Lyapunov function
approach is perhaps the most popular one when it comes to deal with asymptotic stability
issues. The spectral approach, which is less known, plays a prominent role in the work
by Leizarowitz [7] and Smirnov [12,14]. The theory of Lyapunov functions is now fairly
well understood, but it is not always easy to construct and exploit such functions. There
are good reasons for switching the attention to spectral methods. Once a simple or higher-
order eigenvector of F has been computed, one gets immediately a valuable information
on the localization of K∞(F ). The more we know about the spectral structure of F , the
sharper the estimate for K∞(F ) we obtain. Another point not to be forgotten is that spectral
methods exploits also the duality existing between a convex process and its adjoint.

Passing from a differential inclusion to a difference inclusion is not a mere routine work.
Some specific features of the discrete-time model (1) have no counterpart in the context of
the continuous-time dynamics (40). Partial results on weak asymptotic stability of discrete-
time systems governed by convex processes have been obtained by Phat [10] and Smirnov
[13]. It is in relation to [10,13] that our contribution must be evaluated. The reader will
notice important changes in the methodology, as well as in the sharpness of the results.

A question that deserve to be studied in the future is the weak asymptotic stability of a
positively homogeneous operator F given by

grF =
⋃
j∈J

grFj , (41)

with each Fj being a convex process. The index set J may be finite or infinite. For (41),
the asymptotic null-controllability set K∞(F ) obeys to the rule⋃

j∈J

K∞(Fj ) ⊂ K∞(F ).

Although some of our results can be extended to this “multiconvex” setting, one should
not be over-optimistic. The lack of usual convexity rules out, for instance, the possibility
of exploiting standard duality arguments.

A particular case of (41) is that of a linear-selectionable process. The later terminology
refers to a positively homogeneous operator F of the form

F(x) = {Ax: A ∈A},
with A being a bundle of linear operators. Molchanov and Pyatnitskiy [8,9] derive as-
ymptotic stability results for difference inclusions governed by a special type of linear-
selectionable operators. Their results are not comparable to ours; they are simply different.

As a final remark, we would like to point out that various concepts of weak asymptotic
stability can be formulated in the more general context of a multivalued operator which is
not necessarily positively homogeneous. There is, in principle, the possibility of bringing
such a general operator to the particular framework of a convex process by applying a
suitable “differentiation” (or linearization) technique; see, for instance, Frankowska [5] for
a comparison between local controllability of a general multivalued operator and global
controllability of an associated convex process obtained by differentiation. So, our results
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could be extended beyond the class of convex processes, keeping in mind, of course, that
some information is being lost by the mere fact of differentiating the original operator.
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