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Abstract. It will be shown that every minimal Cantor set can be obtained as a
projective limit of directed graphs. This allows to study minimal Cantor sets by
algebraic topological means. In particular, homology, homotopy and cohomology
are related to the dynamics of minimal Cantor sets. These techniques allow to
explicitly illustrate the variety of dynamical behavior possible in minimal Cantor
sets.

1 Introduction

A minimal Cantor set is a dynamical system defined by a continuous map on the
Cantor set whose orbits are dense. These dynamical systems have been widely
studied, mainly by symbolic dynamical means. See for example [BSY], [BH], [D],
[DKL], [Du], [DHS], [G], [GPS] and [W]. In this paper we study in a self contained
manner minimal Cantor sets by algebraic topological means without any use of
symbolic dynamics. In particular, we show that classical concepts such as homol-
ogy, homotopy and cohomology are related to the dynamics of minimal Cantor sets.

The first result is a structure Theorem which says that every minimal Cantor
set can be obtained as a projective limit of directed graphs.

It is then possible to define a homology group for the minimal Cantor as a
projective limit of the homology groups of the directed graphs, the Cech-homology
of the suspension of the minimal Cantor set. This allows to identify the set of
invariant measures with a cone in this homology group.

Examples of uniquely ergodic minimal Cantor sets, minimal Cantor sets with
finitely many ergodic measures were already known, see [D] and [W]. The projec-
tive limit structure allows us to construct such examples, using elementary linear
algebra, in a very explicit way. Using this homological approach an example of a
minimal Cantor set whose set of ergodic (probability) measures is homeomorphic
to a n-dimensional sphere, is also presented.

As invariant measures are related to homology it will be shown that entropy
is linked to homotopy of the directed graphs. Using a homotopical argument mini-
mal Cantor sets with positive and even infinite topological entropy are constructed.
Combining homological and homotopical arguments uniquely ergodic examples of
minimal Cantor sets with infinite topological entropy are explicitly given. See
also [G].

It is also possible to define a cohomology group over S1 for the minimal
Cantor as a direct limit of the cohomology groups of the directed graphs. Using
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this cohomology group, the minimal Cantor sets which admit a semi-conjugation
to an irrational rotation of the circle are identified. In particular, the group of
rotation numbers which allow such semi-conjugations is defined. Explicit examples
of minimal Cantor sets are constructed which do not allow semi-conjugations to
rotations, do have non-trivial semi-conjugations to circle rotations and to minimal
torus shift of arbitrary dimension.

2 Minimal Cantor sets

A Cantor set is a perfect 0-dimensional compact metric space. It can be covered by
a partition of clopen sets1 with arbitrary small diameters. It follows that a Cantor
set can be seen in many different ways as the projective limit of finite sets labeling
the elements of a successive sequence of partitions (see for instance [Mi1], [Mi2] for
an interesting use of this idea). A dynamical system given by a continuous map on
a Cantor set is called a minimal Cantor set if all orbits are dense. In this section we
will give a combinatorial description of minimal Cantor sets. The idea is to make
clopen covers of the Cantor set reflecting the action of the map. The same idea
was used for studying minimal Cantor sets appearing in unimodal dynamics ([M])
but turned out to be strong enough to describe abstract minimal Cantor sets.

Let f : C → C be a minimal Cantor set. We are going to construct arbitrarily
small covers consisting of clopen sets which represent the dynamics of f . Unless
otherwise stated all considered subsets of C will be clopen.

The construction of such a cover X starts with the choice of a partition P
of C. The partition P is used for getting control on the size of the sets in X . Choose
U0 ⊂ P ∈ P . The cover X of C will consist of clopen sets whose points pass trough
the same sets of the partition P before they return to U0. The definition can be
given inductively. Let X =

⋃
n≥0 X (n) where X (n) is defined as follows. Let

X (0) = {U0}
X (n + 1) = f−1

P (X (n)).

The pullback f−1
P (X (n)) consists of the sets

(f−1(V ) ∩Q)− U0

where V ∈ X (n) and Q ∈ P . Observe that the definition depends only on U0 ⊂ C
and the partition P . The collection X = ∪X (n) is a pairwise disjoint clopen cover
of C. In particular it is finite. The cover X reflects the dynamics of f : the image
of every set V ∈ X (n + 1) is a subset of some set in X (n), n ≥ 0.

The path of a set Vn ∈ X (n) is

λ(Vn) = {Vn, Vn−1, . . . , V1, V0 = U0}
1i.e. closed open sets
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where Vj ∈ X (j) and f(Vj+1) ⊂ Vj . The following Lemma summarizes how this
cover X reflects the action of f .

Lemma 2.1
a) X is a pairwise disjoint clopen cover of C;
b) let U1, U2, . . . , Ud ∈ X be all the sets such that f(U0)∩Uj �= ∅ for j = 1, . . . , d.

Then
C = ∪d

j=1λ(Uj);

c) the diameter of every V ∈ X is smaller than mesh(P).

Although the above properties follow directly from the definition they form
the fundamental tool for describing minimal Cantor sets. In particular the above
defined cover can be considered to be an approximation of the map f . It can be
naturally represented by a directed graph. The elements of X serve as vertices and
the action of f defines the edges.

Definition 2.2 A directed topological graph X is called a combinatorial cover iff

a) X is finite and the set of vertices carries the discrete topology;
b) X is irreducible (every two vertices can be connected by a directed path);
c) except for one vertex 0X ∈ X, every vertex of X has exactly one out going

edge. This vertex 0X is called the splitting vertex and can have more out
going edges.

A vertex y ∈ X is called an image of a vertex x ∈ X if there is an edge going
from x to y. The shortest directed path λ(x) from a vertex x ∈ X to 0X is called
the path of x.

Figure 1. A combinatorial cover.
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The above constructed cover X can be considered as a combinatorial cover.
The combinatorial covers as described in Lemma 2.1 consist of a finite number of
loops, corresponding to the path of the sets U1, U2, . . . , Ud, starting and ending in
the splitting vertex.

The projection hX : C → X is given by hX (x) = V iff x ∈ V ∈ X . This
projection preserves the action of f and the graph structure, that is if x ∈ V and
f(x) ∈W then hX (W ) is an image of hX (V ).

The (combinatorial) cover X is considered to be an approximation of f . The
next step is to make a consistent sequence of finer and finer (combinatorial) covers.

Assume that the (combinatorial) cover Xn is defined using the partition Pn,
with mesh(Pn) ≤ 1

n , and U0 ∈ Xn as splitting vertex. Choose a clopen partition
Pn+1 which refines Xn. This can be done by taking mesh(Pn+1) small enough.
Assume it smaller than 1

n+1 . Choose a clopen set U ′ ⊂ U0 such that for some
U1 ∈ Xn f(U ′) ⊂ U1. Choose P ∈ Pn+1 with P ∩ U ′ �= ∅. Finally choose a clopen
U ⊂ P ∩U ′ and construct Xn+1 by using U and Pn+1. By construction, the cover
Xn+1 refines the cover Xn. Let πn : Xn+1 → Xn be the projection between the
combinatorial covers induced by the inclusion map.

Definition 2.3 A map π : Y → X between two combinatorial covers is called a
combinatorial refinement iff

a) π preserves the graph structure;
b) π(0Y ) = 0X ;
c) There is an image 1X ∈ X of 0X ∈ X such that

1X = π({V |V image of 0Y ∈ Y }).

The inclusion of Xn+1 into Xn is denoted by πn : Xn+1 → Xn. The inductive
construction of Xn was done such that

Lemma 2.4 The projection πn : Xn+1 → Xn is a combinatorial refinement.

Consider the sequence of refinements πn : Xn+1 → Xn, n ≥ 1. The projective
limit

X = limXn

will be a topological graph. In particular, the edges can be described by a continu-
ous function. This follows from the following observation. In general, the image of
a vertex U ∈ Xn+1 is not well defined. However, by construction it follows directly
that

πn({V ∈ Xn+1 |V is image of U}) = U ′ ∈ Xn

is uniquely defined. The graph structure on X can be described by the map g :
X → X defined by

g({Un}) = {U ′
n}.

This map is continuous.
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Consider the projections hn = hXn : C → Xn. Because the maps hn and πn

are inclusions they commute, hn = πn ◦ hn+1. Hence, there is a limit map h :
C → X which is continuous and onto. In fact h is a homeomorphism. To show this
it is sufficient to proof that h is injective. Take two points x, y ∈ C. Because of
Lemma 2.1(c) we know that mesh(Xn) → 0, the covers Xn are going to separate
points. So there exists an n ≥ 1 and U, V ∈ Xn with x ∈ U and y ∈ V and U �= V .
Hence hn(x) �= hn(y) which means h(x) �= h(y). Moreover, by construction we
have that h conjugates f to g.

Consider a sequence of combinatorial refinements πn : Xn+1 → Xn and take
the corresponding projective limit

X = limXn.

The graph structure of this topological graph can, as we saw above, be described
by a continuous map f : X → X . If this system is a minimal Cantor set it is called
a combinatorially obtained minimal Cantor set. We proved

Theorem 2.5 Every minimal Cantor set can be conjugated to a combinatorially
obtained minimal Cantor set.

In general the dynamical systems obtained by taking projective limits of di-
rected graphs will not be minimal Cantor sets. Let us finish this section describing
the, very weak, restriction needed to be made on the refinements to obtain minimal
Cantor sets.

Let f : X → X be obtained by taking the projective limit corresponding to
the combinatorial refinements πn : Xn+1 → Xn. The vertices in the graphs Xn

form a finite clopen partition of X . The space X has arbitrarily fine finite clopen
covers. Hence it is zero-dimensional and compact.

Corresponding to the chosen representation of f there is a special point 0 =
{0Xn} ∈ X . If there is a directed path of length t from a vertex U ∈ Xn to a vertex
V ∈ Xn which doesn’t pass through 0Xn then f t(U) ⊂ V . This implies that every
orbit in X accumulates at 0. So ω(x) ⊃ ω(0) for x ∈ X and X is a minimal set iff
ω(0) = X . For studying ω(0) we need to know the intersection properties between
loops of Xn+1 with loops of Xn.

Let Ln consist of the images of 0Xn , that is U1, . . . , Udn . The set Ln labels the
loops of Xn. In particular denote the image which contains f(0) by U1 ∈ Ln. For
Ui ∈ Ln and Vj ∈ Ln+1 define wij = #{T ∈ λ(Vj) |T ⊂ Ui}. The loop λ(Uj) of
Xn+1 passes wij times through the loop λ(Ui) of Xn. The matrix Wn with entries
wij is called the winding matrix corresponding to πn : Xn+1 → Xn.

The intersection properties can be summarized by the graph L whose vertices
are ∪Ln together with edges from Vj ∈ Ln+1 to Ui ∈ Ln with weight wij .

The matrix Wmn describes in the same way the projection from Xm+1 to Xn.
Clearly, Wmn = Πn

j=m−1Wj . The graph L is said to be 2-connected if for every
n ≥ 1 there exists an m ≥ 1 such that all entries of the first column of Wmn are
at least 2. If the first column of Wmn are positive then the path λ(V1), V1 ∈ Lm+1
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passes through all loops of Xn. If this holds for all n the orbit of 0 will be dense.
We need the 2 in the definition to be sure that X is a Cantor set and not just a
periodic orbit, the loop of V1, V1 ∈ Lm+1 passes through the loops of Xn in at
least 2 ways.

Proposition 2.6 The map f : X → X is a minimal Cantor set if and only if L is
2-connected.

3 Invariant measures and Homology

In this section we are going to discuss the spaceM(X) consisting of signed invari-
ant measures of a minimal Cantor set f : X → X . A signed invariant measure is
the difference of two finite measures. On M(X) we use the following norm

|μ| = sup
φ∈B0(X)

|
∫

φdμ|,

where B0(X) stands for the unit ball on the space of continuous functions on X
equipped with the sup norm. All measure spaces under consideration will be
equipped with similar norms.

Fix a projective limit representation for the minimal Cantor set f : X → X ,
say X = limXn with πn : Xn+1 → Xn the corresponding projections. The number
of loops in Xn is dn. Consider the space of signed measures on Xn, the σ-algebra is
generated by the elements of Xn. Each loop of Xn carries an “invariant measure”.
More precisely, let λ(U1), . . . , λ(Udn) be the loops of Xn. The measure νn

j on Xn

has λ(Uj) as support and

νn
j (A) = 1 iff A ∈ λ(Uj).

The first homology group H1(Xn) is the vector space generated by these mea-
sures νn

j . Formally, H1(Xn) is a measure space. However, the generators corre-
spond to the loops of the graph Xn and we can also think about H1(Xn) as the
first homology group of the graph Xn.

The inclusion pn : X → Xn induces a map

(pn)∗ : M(X)→ H1(Xn),

the (pn)∗-image of a measure inM(X) is the measure obtained when the σ-algebra
is restricted to the one generated by the sets of the cover Xn.

Lemma 3.1 The map πn : Xn+1 → Xn induces a linear map

(πn)∗ : H1(Xn+1)→ H1(Xn)

which represented using the bases above equals the winding matrix of πn,

(πn)∗ = Wn.
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Proof. Observe that every measure in H1(Xn) is determined by its values on the
Uj ’s,

(pn)∗(μ) = Σdn

j=1μ(Uj)νn
j .

Furthermore a computation shows

(πn)∗(μ) = Σdn

i=1{Σdn+1
j=1 wijμ(Uj)}νn

i

which proves (πn)∗ = Wn.

The set I(X) ⊂ M(X) consists of the invariant measures of f : X → X .
Define

H+
1 (Xn) = {Σdn

j=1αjν
n
j |αj ≥ 0}.

Again denote the composition WnWn+1 . . .Wm by Wmn and let

I(Xn) =
∞⋂

j=n+1

Wjn(H+
1 (Xj)).

The sets I(Xn) are cones in H1(Xn). Clearly Wn(I(Xn+1)) = I(Xn). Hence
the projective limit limWn I(Xn) is well defined. Finally, let P(X) ⊂ I(X) and
P (Xn) ⊂ I(Xn) consist of corresponding probability measures.

Because all maps under consideration are inclusion maps the induced maps
(pn)∗ : M(X) → H1(Xn) satisfy (pn+1)∗ ◦ Wn = (pn)∗. Furthermore they are
closed continuous maps. This enables us to extend the maps (pn)∗ to a bounded
map

p∗ :M(X)→ lim
Wn

H1(Xn).

Proposition 3.2 The map

p∗ : I(X)→ lim
Wn

I(Xn)

is an isomorphism. In particular the map

p∗ : P(X)→ lim
Wn

P (Xn)

is as such.

Proof. Observe that (pm)∗(I(X)) ⊂ H+
1 (Xm) for all m ≥ 1 and (pn)∗ = WnWn+1

. . . Wm−1 ◦ (pm)∗. Finally because Wn is a non-negative matrix we get Wm(H+
1

(Xm+1)) ⊂ H+
1 (Xm). Hence, (pn)∗(I(X)) ⊂ I(Xn) for all n, This implies p∗(I(X))

⊂ limWn I(Xn).
Every point in limWn I(Xn) gives rise to a positive additive set function on

the clopen sets of X . It gives rise to an invariant measure, the map p∗ : I(X) →
limWn I(Xn) is onto.
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A minimal Cantor set is said to have bounded combinatorics if it can be
obtained combinatorially such that the winding matrices Wn are positive and the
size and entries of these matrices are uniformly bounded.

Proposition 3.3 Let f : X → X be a minimal Cantor set with representation X =
lim Xn.

a) If the number of loops in Xn is uniformly bounded by d then f has at most
d ergodic invariant probability measures.

b) If f has bounded combinatorics then it is uniquely ergodic.

Proof. To prove the first statement we may assume that dn = d for all n ≥ 1.
Normalize the basis measures from Lemma 3.1 to probability measures, μm

j =
1

tm
j

νm
j where {νm

j | j = 1, . . . , d} is the basis and tmj the period of the corresponding

loop.
Let Pm ⊂ H+

1 (Xm) be the set of probability measures and Pm
n = Wnm(Pm).

Because Pm is the convex hull of the {μm
j }, Pm

n is the convex hull of the measures
μnm

j = Wnm(μm
j ). By taking a subsequence we may assume that the measures

μnm
j converge to measures μj ∈ Pn for j = 1, . . . , d. Because P (Xn) =

⋂
Pm

n we
get that P (Xn) equals the convex hull of the measures {μj | j = 1, . . . , d}. Hence
it is the convex hull of at most d points. Suppose that X had more than d ergodic
measures. Then, for n large enough, the projection of these ergodic measures would
be distinct extremal points of P (Xn) which has at most d extremal points.

To prove the second statement we have to show that I(X) is one-dimensional.
The hyperbolic distance between two points x, y ∈ H+

1 (Xn) is

hyp(x, y) = − ln
(m + l) · (m + r)

l · r ,

where m is the length of the line segment [x, y] and l, r are the length of the
connected components of T \ [x, y]. The line segment T is the largest line segment
in H+

1 (Xn) containing [x, y]. Positive matrices contract the hyperbolic distances
on the positive cones. The winding matrices Wn have uniformly bounded size and
entries. This implies that the contraction is uniform.

The set

I(Xn) =
∞⋂

j=n+1

Wjn(H+
1 (Xn))

is one-dimensional because of the uniform contraction of each Wn. In particular,
by using Proposition 3.2, we have that I(X) is one-dimensional. The map f has
only one invariant probability measure.

There exist minimal Cantor sets which can be combinatorially obtained by
covers Xn which all have d ≥ 1 loops and have d− 1 ergodic invariant probability
measures. To describe such an example arrange the projections πn such that the
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corresponding winding matrices Wn have all entries equal to 1 except for the diag-
onal entries of the second and following columns which equal a large number wn. In
particular, the basis measure μn+1

j which is concentrated on the j th loop of Xn+1

will be projected to a measure very close to μn
j , the measure concentrated on the

j th loop of Xn. By taking a sequence wn growing fast enough we can assure that
I(Xn) is a cone spanned by d − 1 different ergodic measures. The corresponding
minimal Cantor set has d− 1 ergodic invariant (probability) measures.

Theorem 3.4 For every n there exists a minimal Cantor whose set of ergodic
invariant (probability) measures is homeomorphic to the sphere Sn.

Proof. For all dimensions the idea for the construction is the same. We will give
the proof for n = 1.

Let X1 be a combinatorial cover with three tubes. Hence the probability
measures P1 ⊂ H1(X1) form a 2-dimensional simplex. The convex hull of a finite
set E ⊂ P1 is denoted by hull(E). A set E is called the set of extremal points of
hull(E) if hull(E′) �= hull(E) for every strict subset E′ ⊂ E.

We are going to define the combinatorial covers Xn+1 and the projections
πn : Xn+1 → Xn inductively. Suppose X1, X2, . . . , Xn and the corresponding pro-
jections are defined. Using the notation of the proof of Proposition 3.3 we get
that Pn

1 , the projection of the probability measures Pn into P1, form a convex set
spanned by En = {μ1n

j | j = 1, . . . , dn}, where dn is the number of loops in Xn.
The induction hypothesis assumes that En is the set of extremal points of Pn

1 .
Assume that the measures in En are ordered in such a way that hull({μ1n

j , μ1n
j+1}),

j = 1, . . . , dn − 1 and hull({μ1n
dn

, μ1n
1 }) are the sides of Pn

1 .
The cover Xn+1 is going to have dn+1 = 2dn loops. For every loop in Xn

there is a loop in Xn+1 which passes an times through this given loop and exactly
once through all other loops in Xn. This gives a group of dn loops in Xn+1.

For every pair {μn
j , μn

j+1}, j = 1, . . . , dn− 1 and the pair {μn
dn

, μn
1} there will

be a loop in Xn+1 which passes bn times through both corresponding supporting
loops in Xn and exactly once through all other loops in Xn. This gives another
group of dn loops in Xn+1. All loops of Xn+1 are going to pass at least once
through all loops of Xn. This is to assure that X = lim Xn becomes a minimal
Cantor set.

Observe that by choosing the number an very big, the measures on the loops
of the first group are going to have their masses concentrated mainly on the loop
through which it passes an times. Their projections into Pn are going to converge to
the corresponding measure μn

j . By choosing the number bn very big, the measures
on the loops of the second group are going to be equally concentrated over the two
loops through which it passes bn times. Their projections are going to converge to
the mean of the corresponding measures: 1

2 (μn
j + μn

j+1).
Let E1

n+1(a) consist of the projections in P1 of the measures concentrated on
the loops of the first group in Xn+1 when constructed with a and E2

n+1(b) consist
of the projections of the measures in the second group when constructed with b.
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By the discussion above we know that E1
n+1(a) converges to En when a→∞ and

E2
n+1(b) converges to the middle points of the sides of hull(En) when b→∞.

We are going to define the values an and bn inductively. Assume that Ej ,
j = 1, . . . , n is defined inductively together with finite sets E′

j , 1, . . . , n, satisfying

1) hull(E′
j) is strictly contained in hull(Ej);

2) The annulus Aj = hull(Ej) \ hull(E′
j) satisfies the metrical property

ε(Aj) ≤ 2lj−1;

where ε(Aj) is the length of the longest straight line in An and ln the longest
side of hull(En);

3) Aj−1 ⊃ Aj and lj ≤ 0.6lj−1.

Let us define En+1 and E′
n+1 extending the above property. By taking a′

n+1

sufficiently big, E1
n+1(a′

n+1) converges to En, and we can manage so that the
annulus A = hull(En) − hull(E1

n+1(a
′
n+1)) is part of An and ε(A) ≤ 2ln. Let

E′
n+1 = E1

n+1(a
′
n+1). By the same reason as above there is an an+1 such that

hull(E′
n+1) lies strictly in hull(E1

n+1(an+1)). We may assume that all points in
E1

n+1(an+1) have distance to En less than 0.01ln. Because all loops in Xn+1 pass
through all loops of Xn the hull(E1

n+1(an+1)) lies strictly inside hull(En). Now take
bn+1 such that E2

n+1(bn+1)∩hull(E1
n+1(an+1)) = ∅. By taking bn+1 big enough we

may assume that ln+1 ≤ 0.6ln.
Let En+1 = E1

n+1(an+1)∪E2
n+1(bn+1) and E′

n+1 = E1
n+1(a

′
n+1). This finishes

the inductive definition.

Claim 3.5 The set P (X1) =
⋂

Pn
1 =

⋂
hull(En) ⊂ P1 is a strictly convex disk,

every line connecting two points on the boundary intersects the boundary only in
the begin and end point.

Observe that the topological boundary of P (X1) equals
⋂

An. Hence if the
boundary of P (X1) contains a straight line L then L ⊂ An for every n. So |L| ≤
ε(An)→ 0. Contradiction.

First we will show that P(X) = limAn P (Xn) contains a set homeomorphic
to a circle. Take a refining sequence of equal distributed partitions of the circle S1

with dn pieces. Let φ1n : S1 → ∂ hull(En) be the homeomorphism which maps the
pieces of the nth partition linearly to the sides of hull(En). These homeomorphisms
can be factorized as φ1n = W1n ◦ φn, where φn : S1 → ∂Pn maps the pieces of the
nth partition linearly onto the corresponding sides of Pn. Let φnm = Wnm ◦ φm.

If the φ1n are chosen coherently then this sequence converges to an embed-
ding h1 : S1 → P1. The construction implies that all φnm : S1 → Pn converge to a
continuous map hn : S1 → Pn satisfying hn = Wn ◦ hn+1. Furthermore the factor-
ization shows that all hn : S1 → γn = hn(S1) ⊂ Pn are embeddings of the circle
and Wn : γn+1 → γn is a homeomorphism. Let γ = limWn γn ⊂ P(X). This γ is
homeomorphic to S1.
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Claim 3.6 Let Erg(X) be the set of ergodic (probability) measures of f . Then

Erg(X) = γ.

First we will show that γ ⊂ Erg(X). Let μ ∈ γ. Suppose that μ is not ergodic
then μ = αμ1 + (1 − α)μ2 where the μi’s are two invariant probability measures.
Consider (p1)∗(μ) = α(p1)∗(μ1) + (1 − α)(p1)∗(μ2). Because (p1)∗(μ) ∈ γ1 and
P (X1) is strictly convex this is only possible if (p1)∗(μ1) = (p1)∗(μ2) = (p1)∗(μ).
But Wn : γn+1 → γn is bijective which implies μ = μ1 = μ2. Contradiction,
γ ⊂ Erg(X).

To finish the proof of Theorem 3.5 we have to show that every invariant
measure can be disintegrated over the supports of the ergodic measures in γ. For
m > n let μm

j , j ≤ dm be the probability measure concentrated on the j th loop
and μnm

j the projection of μm
j into Pn.

Let μ ∈ P(X). Then for m ≥ n, (pm)∗(μ) = Σdm

j=1α
m
j μm

j with αm
j ≥ 0 and

Σdm

j=1α
m
j = 1. So (pn)∗(μ) = Σdm

j=1α
m
j μnm

j which induces a discrete measure εnm

on Pn by εnm(μnm
j ) = αm

j . By taking subsequences we may assume that for all
n ≥ 1 the sequences εnm, m ≥ n will converge weakly to a measure εn. Clearly the
support of εn is part of γn and we may assume (Wn)∗(εn+1) = εn. Hence there is
also an induced measure ε on γ.

Let φ : X → R be a function which is constant on the vertices of Xn. Now
for every m ≥ n ∫

φdμ = Σdm

j=1α
m
j

∫
φdμnm

j

= Σdm

j=1εnm(μnm
j )

∫
φdμnm

j

=
∫

[
∫

φdν]dεnm.

The function on Pn defined by ν → ∫
φdν is continuous and because εnm → εn

weakly
∫

φdμ =
∫

[
∫

φdν]dεn. Using the fact that φ is piecewise constant it follows
easily that the same formula holds on γ with the measure ε concentrated on γ and
by using standard arguments the formula can be shown to hold for measurable
functions φ, ∫

φdμ =
∫

[
∫

φdν]dε.

This desintegration shows that a measure whose corresponding measure ε is not
concentrated in a single point of γ, is not ergodic. Hence γ = Erg(X).

A variation of the above construction could be to approximate every point
in En by two close points in En+1. In this way the set of ergodic measures will be
homeomorphic to a Cantor set. Countable sets of ergodic measures can be obtained
by approximating every point in En by one in En+1 except for one special chosen
point which is approximated by two points in En+1, one of which is the special one
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for En+1. Even we can make examples having Erg(X) to be a union of manifolds,
Cantor sets and discrete parts.

4 Entropy and homotopy

In Section 3 it was shown that invariant measures are homological objects. The
prove of the theorem below shows that entropy reflects homotopical properties of
the system. Other examples of the type described in this theorem were already
constructed in [G] using symbolic dynamical methods.

Theorem 4.1 ([G]) There exist uniquely ergodic minimal Cantor sets with infinite
topological entropy.

Let C ⊂ Rd be an open cone. The hyperbolic distance on C is defined as
follows. For x, y ∈ C let T ⊂ C be the maximal line segment containing x, y. Then

hypC(x, y) = − ln
(m + l) · (m + r)

l · r ,

where m is the length of the line segment [x, y] between x and y and l, r are the
lengths of the connected components of T \[x, y]. In the case when l (or r) is infinite
the hyperbolic distance is defined to be hypC(x, y) = − ln m+r

r . The hyperbolic
distance on the positive cone in Rd is denoted by hypd. Let

Cd
s = {x ∈ Rd | hypd(x,1) < s}

The proof of the following lemma is a continuity argument.

Lemma 4.2 For every d ≥ 1, ε > 0 there exists s = s(d, ε) such that

hypd(x, y) ≤ ε · hypCd
s
(x, y),

for x, y ∈ Cd
s .

The elements in the set W d
a = {0, 1, . . . , d− 1}a are called words of length a.

For every word w = (wi)i=1,2,...,a the frequency vector νw ∈ Rd is defined as
follows

νw(j) =
1
a
·#{i ≤ a |wi = j}.

Let
V d,s

a = {w ∈W d
a |w1 = 0, νw ∈ Cd

s }.
Lemma 4.3

lim
a→∞

#V d,s
a

da
= 1.

Proof. The statement is a reformulation of the Birkhoff Ergodic Theorem applied
to the full shift over d symbols.
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The construction of an example with infinite entropy is a generalization of
the construction of an example with positive entropy. For expository reasons we
first present the finite entropy example and the main part of the construction.

Fix a small δ > 0. Let X be a combinatorial cover with d loops and s = s(d, 1
2 )

given by Lemma 4.2. Lemma 4.3 assures that we can choose a� 1 such that

#V d,s
a ≥ (1− δ) · da.

The combinatorial refinement π : X ′ → X is defined as follows. Each word in V d,s
a

can be interpreted as a path through X which starts to follow the 0-loop of X .
Let X ′ be a combinatorial cover whose loops are in 1 to 1 correspondence with the
words in V d,s

a . The projection π is intrinsically defined. Choose one of the loops of
X ′ to be the 0-loop of X ′.

Proposition 4.4 There exist uniquely ergodic minimal Cantor sets with arbitrary
high entropy.

Proof. Choose d0, T0 and δ > 0 such that

ln d0

T0
+ 2 ln(1− δ)� 1

and let X0 be a combinatorial cover which has d0 loops all of length T0. Now define
inductively the combinatorial refinements

X0 ← X1 ← X2 ← · · ·

by XN+1 = (XN )′ and let X be the inverse limit. We will use the following
notation. The number of loops in XN is denoted by dN and sN , aN are the numbers
defining the refinement XN+1. In particular,

dN+1 = #V dN ,sN
aN

≥ (1− δ) · daN

N .

Observe that the periods of the loops in each XN are the same, say TN . By
construction we get

TN+1 = aN · TN .

In particular,
TN = T0 · ΠN−1

i=0 ai.

Let N > N1 ≥ N0 and n = ΠN−1
i=N1

ai. Then to each loop λ of XN , of period TN ,

we can assign a word wλ ∈ W
dN1
n describing the order in which the loop of XN

passes through the loops of XN1 . By construction we have

Claim 4.5 If wλ1 = wλ2 then λ1 = λ2.

Claim 4.6 X is a uniquely ergodic Cantor set.
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Proof. Observe that every loop of XN+1 passes at least twice through every loop
of XN . In fact every loop passes many times trough any loop of XN . This implies
that X is a minimal Cantor set.

By construction, the positive cone in H1(XN+1) is mapped by the winding
matrix WN into the CdN

sN
⊂ H1(XN ). In particular,

hypdN
(WNx, WNy) ≤ 1

2
· hypdN+1

(x, y).

The hyperbolic distances are contracted uniformly, X is uniquely ergodic.

Claim 4.7 The entropy of X is larger than ln d0
T0

+ 2 ln(1 − δ)� 1.

Proof. Let hN = ln dN

TN
. The construction was done such that dN+1 ≥ (1− δ) · daN

N

and TN+1 = aN · TN . This implies

hN+1 ≥ hN +
ln(1− δ)

TN+1
.

By using aN ≥ 2 we get

lim sup
N→∞

hN ≥ ln d0

T0
+ 2 ln(1 − δ).

Let S(T, ε) be the number of points in the largest set consisting of points
which can be pairwise separated ε apart within T steps. Then, see [B], the entropy
of X is

h = lim
ε→0

lim sup
T≥1

ln S(T, ε)
T

.

Let ε > 0 be given and let XN1 and be such that all the vertices of XN1 are at
least ε apart. Let N ≥ N1 and EN ⊂ XN be the set of initial points of the loops
of XN . Claim 4.5 implies that EN consists of points which can be separated ε
apart within TN steps. Hence,

lim sup
N→∞

ln S(TN , ε)
TN

≥ lim sup
N→∞

ln #EN

TN

= lim sup
N→∞

ln dN

TN

≥ ln d0

T0
+ 2 ln(1− δ).

This implies that the entropy h of this example satisfies

h ≥ ln d0

T0
+ 2 ln(1− δ).
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This finishes the construction of minimal Cantor sets with arbitrary high
entropy.

The example with infinite entropy is a limit of minimal Cantor sets with
increasing entropy. The limiting process will be described by combinatorial covers
Xk

n, k ≤ K, k ≤ n ≤ K which will be defined inductively in K such that

• Xk
n is a refinement of Xk

n−1;

• There are projections Xk+1
n → Xk

n which commute with the refinements
Xk

n → Xk
n−1 and map 0-loops to 0-loops.

• The induced projections H1(Xk+1
n )→ H1(Xk

n) map positive cones onto pos-
itive cones.

• The induced projections H1(Xk2
n ) → H1(Xk1

n−1), K ≥ k2 ≥ k1, n ≤ N
contract uniformly the hyperbolic distance of the positive cones.

• The number of loops of Xk
n is denoted by dk

n. Each loop has the same period,
denoted by T k

n , and
T k

n+1 = anT k
n , an ≥ 2

dn+1
n+1 ≥ (1− δ) · (dn

n)2an .

Assume Xk
n, k ≤ n ≤ K are defined.

Claim 4.8 There exists C
dK

K
s ⊂ H1(XK

K ) such that C′ = π(CdN
N

s ), where π : H1(XK
K )

→ H1(Xk
K) is the induced projection, satisfies

hypdk
K

(x, y) ≤ 1
2
· hypC′(x, y),

for x, y ∈ C′.

The cone C
dK

K
s ⊂ H1(XK

K ) is used to define, as before,

XK
K+1 = (XK

K )′.

Let aK be the corresponding number used to define XK
K+1. To each loop λ in

XK
K+1 and each k ≤ K we can assign a word

λ �→ wλ ∈ π1(Xk
K).

Let Xk
K+1 be a combinatorial refinement of Xk

K such that each word which arises
is represented exactly once by a loop. This construction induces projections

Xk
K+1 → Xk−1

K+1
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which commute with the refinements. The choice of the 0 loop in XK
K+1 determines

the 0-loop in each Xk
K+1.

The mth multiple X(m) of a combinatorial cover X is a combinatorial cover
which is obtained by re placing each loop of X by m copies. The 0 loop of X(m) is
chosen to be one of the copies of the 0 loop of X . To finish the inductive definition
we define

XK+1
K+1 = (XK

K+1)
(2).

It is easily seen that the definition of Xk
K+1, k ≤ K + 1, satisfy the previous

conditions.

Let Xk be the projected limit of

Xk
k ← Xk

k+1 ← Xk
k+2 ← · · · .

Observe that the induced maps

XK+1
K+1 → XK

K

are combinatorial refinements. Let X be the projected limit of

X1
1 ← X2

2 ← X3
3 ← · · ·

. . .
...

...
...

...
↖ ↑ ↑ ↑ ↑

XK−1
K−1 ← XK−1

K ← XK
K+1 ← · · · XK−1

↖ ↑ ↑ ↑

XK
K ← XK

K+1 ← · · · XK

↖ ↑ ↑

XK+1
K+1 ← · · · XK+1

↖ ↑
. . .

...

X

The following Proposition reformulates the Theorem 4.1.
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Proposition 4.9

Xk is a uniquely ergodic minimal Cantor set and

hXk →∞.

X is a uniquely ergodic minimal Cantor set.
There are factor maps X → Xk. In particular, the entropy of X is infinite.

Proof. Every loop of Xk
n passes at least twice through every loop of Xk

n−1. This
implies that every Xk is a minimal Cantor set. Every loop of XK+1

K+1 passes at least
twice through every loop of XK

K : X is a minimal Cantor set.
The induced maps H1(Xk2

n ) → H1(Xk1
n−1), k2 ≥ k1, contract the hyperbolic

distance on the corresponding positive cones. This implies that X and all Xk are
uniquely ergodic.

Each Xk is an example as in Proposition 4.4. In particular,

hXk ≥ ln dk
k

T k
k

+ 2 ln(1− δ) = hk.

Observe that
dk+1

k+1 ≥ {(1− δ) · (dk
k)ak}2

and
T k+1

k+1 = ak · T k
k .

Hence,

hk+1 ≥ 2 · hk + 2 ln(1− δ) +
2 ln(1− δ)

T k+1
k+1

.

By taking δ small enough we can assure that hk →∞.

5 Semi-conjugations to circle rotations and cohomology

In this section we are going to study semi-conjugations between minimal Cantor
sets and rotation on the circle. In particular, we will construct for every minimal
Cantor set a topological invariant PX ⊂ S1. The invariant PX is a countable
subgroup of S1 and it is defined by first defining the cohomology group of the
minimal Cantor set X .

Let X be a minimal Cantor set and suppose it can be combinatorially ob-
tained by the refinements

πn : Xn+1 → Xn,

where Xn has dn loops. The corresponding winding matrix is Wn. Let

H1(Xn, S1) = T dn



J. - M . Gambaudo and M . M ar tens

be the first cohomology group of the graph Xn, the group of functionals on H1(Xn).
This group is isomorphic to S1 × · · · × S1 = T dn, the dn dimensional torus. Let
μj ∈ H1(Xn), j = 1, . . . , dn correspond to the j th loop of Xn. The value of an
element θ = (θ1, . . . , θdn) ∈ S1 × · · · × S1 = T dn = H1(Xn, S1) on the cycle
μ =

∑dn

j=1 ajμj ∈ H1(Xn) is given by

θ(μ) =
dn∑

j=1

ajθj ∈ S1.

The projection πn : Xn+1 → Xn induces a linear map (πn)∗ : H1(Xn, S1) →
H1(Xn+1, S

1) given by

(πn)∗(θ)(μ) = θ((πn)∗(μ)).

It is easily seen that by using the basis generated by the loops in Xn we get

Lemma 5.1 Let WT
n be the transpose of the winding matrix Wn. Then

(πn)∗ = WT
n .

In the sequel we will be working on these bases. We define the first cohomology
group of X as the direct limit of the sequence

H1(X0, S
1)→ H1(X1, S

1)→ H1(X2, S
1)→ · · ·H1(Xn, S1)→ · · ·H1(X, S1)

where the maps are the induced maps (πn)∗.

Consider the situation when the minimal Cantor set f : X → X admits a
semi-conjugation to the rotation of the circle over ρ, Rρ : S1 → S1. That means,
there is a continuous map h : X → S1 with

h ◦ f = Rρ ◦ h.

Let U ⊂ X correspond to a vertex of Xn which is the first vertex of a loop and
V = f(U) corresponds to the image vertex of U . Then h(V ) = h(U)+ρ. The same
holds for every vertex and its image in any loop on Xn. Let x ∈ U and tnj be the
length of the loop starting at U . Then

h(f tn
j (x)) = h(x) + ρ · tnj .

So, passing through the j th loop of Xn will cause a jump over ρ · tnj in the circle.
The cohomology group H1(Xn, S1) allows us to keep track of the total jump made
in the circle when passing through the loops of Xn. In particular, consider the
following map γn : S1 → H1(Xn, S1) defined by

ρ �→ (ρ · tnj ),
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where tin are the periods of the loops of Xn. The map γn commutes with the
maps WT

n . Hence, γn extends to a map

γ : S1 → H1(X, S1).

The stable set W s(X) ⊂ H1(X, S1) is defined as

W s(X) = {θ = (θn)n≥n0 ∈ H1(X, S1) | θn → 0}.

Definition 5.2 The set of rotation numbers for X is

PX = γ−1(W s(X)).

Lemma 5.3 The set PX is a topological invariant of the minimal Cantor set X.
Moreover, it is a subgroup of S1.

Proof. The construction of the set of rotation numbers implies immediately that
it is a topological invariant. The group structure of PX follows from the fact that
the map γ is a morphism and the maps (πn)∗ are morphisms.

Lemma 5.4 Let X be a minimal Cantor set. If there exists a continuous h : X → S1

which semi-conjugates X with a rotation of the circle over ρ ∈ S1 then

ρ ∈ PX .

Proof. Consider the j th loop of Xn and take a point x ∈ 0Xn which will follow this
loop. 0Xn corresponds to a small set in X . In particular, the diameter |h(0Xn)| of
h(0Xn) can be taken arbitrary small by taking n large enough. This is because of
the continuity of h. Observe,

|γn(ρ)j − 0| = |ρ · tnj − 0| = |h(f tn
j (x))− h(x)| ≤ |h(0Xn)| → 0,

when n→∞. So γ(ρ) ∈W s(X).

Proposition 5.5 Let Wn = (wn
ij) be the winding matrices of a representation for

the minimal Cantor set X. Assume there is a K ≥ 0 such that for all n ≥ 0
∑

j

wn
ij ≤ K,

If for some δ < 1 the rotation number 0 �= ρ ∈ PX has the property

|γn(ρ)− 0| ≤ Cδn,

for all n ≥ 0 then the minimal Cantor set X is semi-conjugated with the rota-
tion Rρ.
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The condition on the winding matrices above means that every loop in Xn+1

winds at most K times trough the loops of Xn. The proof of this Proposition relies
on

Lemma 5.6 Assume that the winding matrix Wn = (wn
ij) corresponding to πn :

Xn+1 → Xn satisfies ∑
j

wn
ij ≤ K.

Let n ≥ 1 and x ∈ 0Xn be such that

{f(x), f2(x), . . . , fn(x)} ∩ 0Xn+1 = ∅.

Then
#{f(x), f2(x), . . . , fn(x)} ∩ 0Xn ≤ K.

Proof. The condition on the piece of the orbit of x under consideration implies
that this piece has to lie completely within a loop of Xn+1. Any loop of Xn+1

passes at most K times through 0Xn . In particular, this piece of the orbit of x also
passes at most K times through 0Xn .

Let ρ ∈ PX be as given in Proposition 5.6 and define the map

h : {fk(0)|k ≥ 0} → S1

by
h(fk(0)) = k · ρ ∈ S1.

In order to prove Proposition 5.5 it is enough to check that the map h is
uniformly continuous. To do so it is enough to prove the continuity of h in 0.
Because of the specific graph structure of Xn and the construction of h the uniform
continuity will follow. In particular, if |h(0Xn)| = r then for every vertex U ∈ Xn

we have |h(U)| ≤ r.

Lemma 5.7 There exists a constant C such that, for any n ≥ 0 and for any s ≥ 1
with fs(0) ∈ 0Xn we have

|h(fs(0))− 0| ≤ C · δn.

An appropriate decomposition of the orbit of 0 ∈ X is the key of this lemma.
Take s ≥ 1 such that fs(0) ∈ 0Xn . Let n1 be the smallest integer so that the orbit
{f(0), f2(0), . . . , fs(0)} does not visit 0Xm whenever m ≥ n1. For n ≤ l < n1

define
sl = max{0 < k ≤ n|fk(0) ∈ 0Xl

}.
Lemma 5.6 implies that

#{sl+1 < k ≤ sl|fk(0) ∈ 0Xl
} ≤ K.
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Observe that

|h(fs(0))− 0| ≤
n1−1∑
l=n

|h(fsl(0))− h(fsl+1(0))|

≤
n1−1∑
l=n

K · |γl(ρ)|

≤
n1−1∑
l=n

K · C · δl

= C1 · δn.

This finishes the proof of Lemma 5.7 and Proposition 5.5.

5.1 Remarks

• The Fibonacci minimal Cantor set is a minimal Cantor set which can be
combinatorially obtained in such a way that the winding matrices are

Wn = W =
(

1 1
0 1

)
,

n ≥ 0. In this case the first cohomology group H1(X, S1) is isomorph with
the two dimensional torus T 2. The set W s(X) ⊂ H1(X, S1) is the stable
manifold of the affine torus map WT . Observe, that W has two eigenvalues,
one bigger than 1 and the other smaller than one. The eigenspace of the
smaller eigenvalue corresponds to the set W s(X). The set PX is generated
by one irrational number.

• The minimal Cantor sets obtained when used winding matrices Wn = (a) are
called adding machines. The set PX equals the backward orbit of 0 under the
map x �→ ax mod 1 on the circle. Observe, that all the rotation numbers are
rational and that there are semi-conjugations to the corresponding rational
rotations.

• Consider minimal Cantor sets which can be combinatorially obtained with
3 × 3 winding matrices Wn = W , n ≥ 1 where W has determinant 1 and
two eigenvalues with absolute value larger than 1. The absolute value of the
third eigenvalue is smaller than 1. In such a case the set W s corresponds to
the eigenspace of the third eigenvalue. By adjusting the first winding matrix
we can assure that PX = {0} and hence that the minimal Cantor set does
not allow any semi-conjugation to a non-trivial rotation.

• Let X be a minimal Cantor set which has a representation where the winding
matrices are all equal, say Wn = W , where W is a d × d matrix. Consider
the action of WT on the d-dimensional torus T d and let

W s = {x ∈ T d | (WT )nx→ 0}.
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Let
Q = {x ∈ T d | ∃n(WT )nx = 0}.

Lemma 5.8 There exist a subspace V ⊂ Rd such that

W s = {v + q | v ∈ V, q ∈ Q} ⊂ T d.

Corollary 5.9 If the generating winding matrix W has determinant 1 then
the group PX is finitely generated. There exists ρ1, ρ2, . . . , ρs ∈ S1 with s ≤
dim V ≤ d− 1 such that

PX = {
s∑

i=1

xiρi |xi integer}.

Kroneckers Theorem [HW] implies

Corollary 5.10 If the generating winding matrix has determinant 1 and PX

has s generators then the minimal Cantor set X can be semi-conjugated to
a minimal shift on the s-dimensional torus.

Proposition 5.11 If the generating winding matrix has determinant 1 and
codim(W s(X)) = codim(V ) = 1 then PX has d − 1 generators and the
minimal Cantor set X admits a semi-conjugation to a minimal shift on the
(d− 1)-dimensional torus.

Proof. Let V be the stable subspace of WT

V = {x ∈ Rd | (WT )nx→ 0}.
The matrix WT is an isomorphism with integer entries. This implies that V
does not contain non zero lattice points.

Let tj , j = 1, . . . , d be the periods of the loops of X1, the first combinatorial
cover and t the vector whose entries are tj . Because the codimension of V
equals 1 we can find ρ1, . . . , ρd−1 ∈ PX and integer vectors ni such that

V � xi = ni + ρit, i = 1, . . . , d− 1

are independent points in V . We claim that the points ρi ∈ PX are rationally
independent. Assume by contradiction that they are dependent: there are
integers k1, . . . , kd−1 and k such that

d−1∑
i=1

kiρi = k.

Then

V �
d−1∑
i=1

kixi =
d−1∑
i=1

kini + kt.
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This contradicts the fact that V does not contain non zero lattice points
and that the xi’s are independent. We showed that PX has d− 1 generators.
In particular, X admits a semi-cojugation to a minimal shift in the (d− 1)-
dimensional torus.

Don Coppersmith suggested the following elegant set of winding matrices
satisfying the condition of the previous Proposition. Let W be a d×d matrix
such that all entries are zero except the entries of the first row and the lower
diagonal which all equal 1. The determinant of W equal 1 and codim(W s)
= 1. Also observe that there is some k > 0 such that (W )k is a positive
matrixe: indeed a projective limit of combinatorial covers with W as winding
matrix defines a minimal Cantor set. This minimal Cantor set is uniquely
ergodic and semi-conjugated to a minimal shift on the (d− 1)-dimensional
torus.

An open question is whether a similar cohomological analysis allows to con-
struct a minimal Cantor set which is semi-conjugated to a minimal shift in
the infinite dimensional torus.
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