Algebraic Topology for Minimal Cantor Sets

Jean-Marc Gambaudo and Marco Martens

Abstract

It will be shown that every minimal Cantor set can be obtained as a projective limit of directed graphs. This allows to study minimal Cantor sets by algebraic topological means. In particular, homology, homotopy and cohomology are related to the dynamics of minimal Cantor sets. These techniques allow to explicitly illustrate the variety of dynamical behavior possible in minimal Cantor sets.

1 Introduction

A minimal Cantor set is a dynamical system defined by a continuous map on the Cantor set whose orbits are dense. These dynamical systems have been widely studied, mainly by symbolic dynamical means. See for example [BSY], [BH], [D], [DKL], [Du], [DHS], [G], [GPS] and [W]. In this paper we study in a self contained manner minimal Cantor sets by algebraic topological means without any use of symbolic dynamics. In particular, we show that classical concepts such as homology, homotopy and cohomology are related to the dynamics of minimal Cantor sets.

The first result is a structure Theorem which says that every minimal Cantor set can be obtained as a projective limit of directed graphs.

It is then possible to define a homology group for the minimal Cantor as a projective limit of the homology groups of the directed graphs, the Cech-homology of the suspension of the minimal Cantor set. This allows to identify the set of invariant measures with a cone in this homology group.

Examples of uniquely ergodic minimal Cantor sets, minimal Cantor sets with finitely many ergodic measures were already known, see $[\mathrm{D}]$ and $[\mathrm{W}]$. The projective limit structure allows us to construct such examples, using elementary linear algebra, in a very explicit way. Using this homological approach an example of a minimal Cantor set whose set of ergodic (probability) measures is homeomorphic to a n-dimensional sphere, is also presented.

As invariant measures are related to homology it will be shown that entropy is linked to homotopy of the directed graphs. Using a homotopical argument minimal Cantor sets with positive and even infinite topological entropy are constructed. Combining homological and homotopical arguments uniquely ergodic examples of minimal Cantor sets with infinite topological entropy are explicitly given. See also [G].

It is also possible to define a cohomology group over S^{1} for the minimal Cantor as a direct limit of the cohomology groups of the directed graphs. Using
this cohomology group, the minimal Cantor sets which admit a semi-conjugation to an irrational rotation of the circle are identified. In particular, the group of rotation numbers which allow such semi-conjugations is defined. Explicit examples of minimal Cantor sets are constructed which do not allow semi-conjugations to rotations, do have non-trivial semi-conjugations to circle rotations and to minimal torus shift of arbitrary dimension.

2 Minimal Cantor sets

A Cantor set is a perfect 0-dimensional compact metric space. It can be covered by a partition of clopen sets ${ }^{1}$ with arbitrary small diameters. It follows that a Cantor set can be seen in many different ways as the projective limit of finite sets labeling the elements of a successive sequence of partitions (see for instance [Mi1], [Mi2] for an interesting use of this idea). A dynamical system given by a continuous map on a Cantor set is called a minimal Cantor set if all orbits are dense. In this section we will give a combinatorial description of minimal Cantor sets. The idea is to make clopen covers of the Cantor set reflecting the action of the map. The same idea was used for studying minimal Cantor sets appearing in unimodal dynamics ([M]) but turned out to be strong enough to describe abstract minimal Cantor sets.

Let $f: C \rightarrow C$ be a minimal Cantor set. We are going to construct arbitrarily small covers consisting of clopen sets which represent the dynamics of f. Unless otherwise stated all considered subsets of C will be clopen.

The construction of such a cover \mathcal{X} starts with the choice of a partition \mathcal{P} of C. The partition \mathcal{P} is used for getting control on the size of the sets in \mathcal{X}. Choose $U_{0} \subset P \in \mathcal{P}$. The cover \mathcal{X} of C will consist of clopen sets whose points pass trough the same sets of the partition \mathcal{P} before they return to U_{0}. The definition can be given inductively. Let $\mathcal{X}=\bigcup_{n \geq 0} \mathcal{X}(n)$ where $\mathcal{X}(n)$ is defined as follows. Let

$$
\begin{aligned}
\mathcal{X}(0) & =\left\{U_{0}\right\} \\
\mathcal{X}(n+1) & =f_{\mathcal{P}}^{-1}(\mathcal{X}(n))
\end{aligned}
$$

The pullback $f_{\mathcal{P}}^{-1}(\mathcal{X}(n))$ consists of the sets

$$
\left(f^{-1}(V) \cap Q\right)-U_{0}
$$

where $V \in \mathcal{X}(n)$ and $Q \in \mathcal{P}$. Observe that the definition depends only on $U_{0} \subset C$ and the partition \mathcal{P}. The collection $\mathcal{X}=\cup \mathcal{X}(n)$ is a pairwise disjoint clopen cover of C. In particular it is finite. The cover \mathcal{X} reflects the dynamics of f : the image of every set $V \in \mathcal{X}(n+1)$ is a subset of some set in $\mathcal{X}(n), n \geq 0$.

The path of a set $V_{n} \in \mathcal{X}(n)$ is

$$
\lambda\left(V_{n}\right)=\left\{V_{n}, V_{n-1}, \ldots, V_{1}, V_{0}=U_{0}\right\}
$$

[^0]where $V_{j} \in \mathcal{X}(j)$ and $f\left(V_{j+1}\right) \subset V_{j}$. The following Lemma summarizes how this cover \mathcal{X} reflects the action of f.

Lemma 2.1

a) \mathcal{X} is a pairwise disjoint clopen cover of C;
b) let $U_{1}, U_{2}, \ldots, U_{d} \in \mathcal{X}$ be all the sets such that $f\left(U_{0}\right) \cap U_{j} \neq \emptyset$ for $j=1, \ldots, d$. Then

$$
C=\cup_{j=1}^{d} \lambda\left(U_{j}\right)
$$

c) the diameter of every $V \in \mathcal{X}$ is smaller than $\operatorname{mesh}(\mathcal{P})$.

Although the above properties follow directly from the definition they form the fundamental tool for describing minimal Cantor sets. In particular the above defined cover can be considered to be an approximation of the map f. It can be naturally represented by a directed graph. The elements of \mathcal{X} serve as vertices and the action of f defines the edges.

Definition 2.2 A directed topological graph X is called a combinatorial cover iff
a) X is finite and the set of vertices carries the discrete topology;
b) X is irreducible (every two vertices can be connected by a directed path);
c) except for one vertex $0_{X} \in X$, every vertex of X has exactly one out going edge. This vertex 0_{X} is called the splitting vertex and can have more out going edges.
A vertex $y \in X$ is called an image of a vertex $x \in X$ if there is an edge going from x to y. The shortest directed path $\lambda(x)$ from a vertex $x \in X$ to 0_{X} is called the path of x.

Figure 1. A combinatorial cover.

The above constructed cover \mathcal{X} can be considered as a combinatorial cover. The combinatorial covers as described in Lemma 2.1 consist of a finite number of loops, corresponding to the path of the sets $U_{1}, U_{2}, \ldots, U_{d}$, starting and ending in the splitting vertex.

The projection $h_{\mathcal{X}}: C \rightarrow \mathcal{X}$ is given by $h_{\mathcal{X}}(x)=V$ iff $x \in V \in \mathcal{X}$. This projection preserves the action of f and the graph structure, that is if $x \in V$ and $f(x) \in W$ then $h_{\mathcal{X}}(W)$ is an image of $h_{\mathcal{X}}(V)$.

The (combinatorial) cover \mathcal{X} is considered to be an approximation of f. The next step is to make a consistent sequence of finer and finer (combinatorial) covers.

Assume that the (combinatorial) cover \mathcal{X}_{n} is defined using the partition \mathcal{P}_{n}, with $\operatorname{mesh}\left(\mathcal{P}_{n}\right) \leq \frac{1}{n}$, and $U_{0} \in \mathcal{X}_{n}$ as splitting vertex. Choose a clopen partition \mathcal{P}_{n+1} which refines \mathcal{X}_{n}. This can be done by taking $\operatorname{mesh}\left(\mathcal{P}_{n+1}\right)$ small enough. Assume it smaller than $\frac{1}{n+1}$. Choose a clopen set $U^{\prime} \subset U_{0}$ such that for some $U_{1} \in \mathcal{X}_{n} f\left(U^{\prime}\right) \subset U_{1}$. Choose $P \in \mathcal{P}_{n+1}$ with $P \cap U^{\prime} \neq \emptyset$. Finally choose a clopen $U \subset P \cap U^{\prime}$ and construct \mathcal{X}_{n+1} by using U and \mathcal{P}_{n+1}. By construction, the cover \mathcal{X}_{n+1} refines the cover \mathcal{X}_{n}. Let $\pi_{n}: \mathcal{X}_{n+1} \rightarrow \mathcal{X}_{n}$ be the projection between the combinatorial covers induced by the inclusion map.

Definition 2.3 A map $\pi: Y \rightarrow X$ between two combinatorial covers is called a combinatorial refinement iff
a) π preserves the graph structure;
b) $\pi\left(0_{Y}\right)=0_{X}$;
c) There is an image $1_{X} \in X$ of $0_{X} \in X$ such that

$$
1_{X}=\pi\left(\left\{V \mid V \text { image of } 0_{Y} \in Y\right\}\right)
$$

The inclusion of \mathcal{X}_{n+1} into \mathcal{X}_{n} is denoted by $\pi_{n}: \mathcal{X}_{n+1} \rightarrow \mathcal{X}_{n}$. The inductive construction of \mathcal{X}_{n} was done such that

Lemma 2.4 The projection $\pi_{n}: \mathcal{X}_{n+1} \rightarrow \mathcal{X}_{n}$ is a combinatorial refinement.
Consider the sequence of refinements $\pi_{n}: \mathcal{X}_{n+1} \rightarrow \mathcal{X}_{n}, n \geq 1$. The projective limit

$$
\mathcal{X}=\lim \mathcal{X}_{n}
$$

will be a topological graph. In particular, the edges can be described by a continuous function. This follows from the following observation. In general, the image of a vertex $U \in \mathcal{X}_{n+1}$ is not well defined. However, by construction it follows directly that

$$
\pi_{n}\left(\left\{V \in \mathcal{X}_{n+1} \mid V \text { is image of } U\right\}\right)=U^{\prime} \in \mathcal{X}_{n}
$$

is uniquely defined. The graph structure on \mathcal{X} can be described by the map g : $\mathcal{X} \rightarrow \mathcal{X}$ defined by

$$
g\left(\left\{U_{n}\right\}\right)=\left\{U_{n}^{\prime}\right\} .
$$

This map is continuous.

Consider the projections $h_{n}=h_{\mathcal{X}_{n}}: C \rightarrow \mathcal{X}_{n}$. Because the maps h_{n} and π_{n} are inclusions they commute, $h_{n}=\pi_{n} \circ h_{n+1}$. Hence, there is a limit map h : $C \rightarrow \mathcal{X}$ which is continuous and onto. In fact h is a homeomorphism. To show this it is sufficient to proof that h is injective. Take two points $x, y \in C$. Because of Lemma $2.1(\mathrm{c})$ we know that $\operatorname{mesh}\left(\mathcal{X}_{n}\right) \rightarrow 0$, the covers \mathcal{X}_{n} are going to separate points. So there exists an $n \geq 1$ and $U, V \in \mathcal{X}_{n}$ with $x \in U$ and $y \in V$ and $U \neq V$. Hence $h_{n}(x) \neq h_{n}(y)$ which means $h(x) \neq h(y)$. Moreover, by construction we have that h conjugates f to g.

Consider a sequence of combinatorial refinements $\pi_{n}: X_{n+1} \rightarrow X_{n}$ and take the corresponding projective limit

$$
X=\lim X_{n}
$$

The graph structure of this topological graph can, as we saw above, be described by a continuous map $f: X \rightarrow X$. If this system is a minimal Cantor set it is called a combinatorially obtained minimal Cantor set. We proved

Theorem 2.5 Every minimal Cantor set can be conjugated to a combinatorially obtained minimal Cantor set.

In general the dynamical systems obtained by taking projective limits of directed graphs will not be minimal Cantor sets. Let us finish this section describing the, very weak, restriction needed to be made on the refinements to obtain minimal Cantor sets.

Let $f: X \rightarrow X$ be obtained by taking the projective limit corresponding to the combinatorial refinements $\pi_{n}: X_{n+1} \rightarrow X_{n}$. The vertices in the graphs X_{n} form a finite clopen partition of X. The space X has arbitrarily fine finite clopen covers. Hence it is zero-dimensional and compact.

Corresponding to the chosen representation of f there is a special point $0=$ $\left\{0_{X_{n}}\right\} \in X$. If there is a directed path of length t from a vertex $U \in X_{n}$ to a vertex $V \in X_{n}$ which doesn't pass through $0_{X_{n}}$ then $f^{t}(U) \subset V$. This implies that every orbit in X accumulates at 0 . So $\omega(x) \supset \omega(0)$ for $x \in X$ and X is a minimal set iff $\omega(0)=X$. For studying $\omega(0)$ we need to know the intersection properties between loops of X_{n+1} with loops of X_{n}.

Let L_{n} consist of the images of $0_{X_{n}}$, that is $U_{1}, \ldots, U_{d_{n}}$. The set L_{n} labels the loops of X_{n}. In particular denote the image which contains $f(0)$ by $U_{1} \in L_{n}$. For $U_{i} \in L_{n}$ and $V_{j} \in L_{n+1}$ define $w_{i j}=\#\left\{T \in \lambda\left(V_{j}\right) \mid T \subset U_{i}\right\}$. The loop $\lambda\left(U_{j}\right)$ of X_{n+1} passes $w_{i j}$ times through the loop $\lambda\left(U_{i}\right)$ of X_{n}. The matrix W_{n} with entries $w_{i j}$ is called the winding matrix corresponding to $\pi_{n}: X_{n+1} \rightarrow X_{n}$.

The intersection properties can be summarized by the graph L whose vertices are $\cup L_{n}$ together with edges from $V_{j} \in L_{n+1}$ to $U_{i} \in L_{n}$ with weight $w_{i j}$.

The matrix $W_{m n}$ describes in the same way the projection from X_{m+1} to X_{n}. Clearly, $W_{m n}=\Pi_{j=m-1}^{n} W_{j}$. The graph L is said to be 2 -connected if for every $n \geq 1$ there exists an $m \geq 1$ such that all entries of the first column of $W_{m n}$ are at least 2 . If the first column of $W_{m n}$ are positive then the path $\lambda\left(V_{1}\right), V_{1} \in L_{m+1}$
passes through all loops of X_{n}. If this holds for all n the orbit of 0 will be dense. We need the 2 in the definition to be sure that X is a Cantor set and not just a periodic orbit, the loop of $V_{1}, V_{1} \in L_{m+1}$ passes through the loops of X_{n} in at least 2 ways.

Proposition 2.6 The map $f: X \rightarrow X$ is a minimal Cantor set if and only if L is 2-connected.

3 Invariant measures and Homology

In this section we are going to discuss the space $\mathcal{M}(X)$ consisting of signed invariant measures of a minimal Cantor set $f: X \rightarrow X$. A signed invariant measure is the difference of two finite measures. On $\mathcal{M}(X)$ we use the following norm

$$
|\mu|=\sup _{\phi \in B^{0}(X)}\left|\int \phi d \mu\right|
$$

where $B^{0}(X)$ stands for the unit ball on the space of continuous functions on X equipped with the sup norm. All measure spaces under consideration will be equipped with similar norms.

Fix a projective limit representation for the minimal Cantor set $f: X \rightarrow X$, say $X=\lim X_{n}$ with $\pi_{n}: X_{n+1} \rightarrow X_{n}$ the corresponding projections. The number of loops in X_{n} is d_{n}. Consider the space of signed measures on X_{n}, the σ-algebra is generated by the elements of X_{n}. Each loop of X_{n} carries an "invariant measure". More precisely, let $\lambda\left(U_{1}\right), \ldots, \lambda\left(U_{d_{n}}\right)$ be the loops of X_{n}. The measure ν_{j}^{n} on X_{n} has $\lambda\left(U_{j}\right)$ as support and

$$
\nu_{j}^{n}(A)=1 \text { iff } A \in \lambda\left(U_{j}\right)
$$

The first homology group $H_{1}\left(X_{n}\right)$ is the vector space generated by these measures ν_{j}^{n}. Formally, $H_{1}\left(X_{n}\right)$ is a measure space. However, the generators correspond to the loops of the graph X_{n} and we can also think about $H_{1}\left(X_{n}\right)$ as the first homology group of the graph X_{n}.

The inclusion $p_{n}: X \rightarrow X_{n}$ induces a map

$$
\left(p_{n}\right)_{*}: \mathcal{M}(X) \rightarrow H_{1}\left(X_{n}\right),
$$

the $\left(p_{n}\right)_{*}$-image of a measure in $\mathcal{M}(X)$ is the measure obtained when the σ-algebra is restricted to the one generated by the sets of the cover X_{n}.

Lemma 3.1 The map $\pi_{n}: X_{n+1} \rightarrow X_{n}$ induces a linear map

$$
\left(\pi_{n}\right)_{*}: H_{1}\left(X_{n+1}\right) \rightarrow H_{1}\left(X_{n}\right)
$$

which represented using the bases above equals the winding matrix of π_{n},

$$
\left(\pi_{n}\right)_{*}=W_{n}
$$

Proof. Observe that every measure in $H_{1}\left(X_{n}\right)$ is determined by its values on the U_{j} 's,

$$
\left(p_{n}\right)_{*}(\mu)=\Sigma_{j=1}^{d_{n}} \mu\left(U_{j}\right) \nu_{j}^{n} .
$$

Furthermore a computation shows

$$
\left(\pi_{n}\right)_{*}(\mu)=\Sigma_{i=1}^{d_{n}}\left\{\Sigma_{j=1}^{d_{n+1}} w_{i j} \mu\left(U_{j}\right)\right\} \nu_{i}^{n}
$$

which proves $\left(\pi_{n}\right)_{*}=W_{n}$.
The set $\mathcal{I}(X) \subset \mathcal{M}(X)$ consists of the invariant measures of $f: X \rightarrow X$.
Define

$$
H_{1}^{+}\left(X_{n}\right)=\left\{\Sigma_{j=1}^{d_{n}} \alpha_{j} \nu_{j}^{n} \mid \alpha_{j} \geq 0\right\}
$$

Again denote the composition $W_{n} W_{n+1} \ldots W_{m}$ by $W_{m n}$ and let

$$
I\left(X_{n}\right)=\bigcap_{j=n+1}^{\infty} W_{j n}\left(H_{1}^{+}\left(X_{j}\right)\right)
$$

The sets $I\left(X_{n}\right)$ are cones in $H_{1}\left(X_{n}\right)$. Clearly $W_{n}\left(I\left(X_{n+1}\right)\right)=I\left(X_{n}\right)$. Hence the projective limit $\lim _{W_{n}} I\left(X_{n}\right)$ is well defined. Finally, let $\mathcal{P}(X) \subset \mathcal{I}(X)$ and $P\left(X_{n}\right) \subset I\left(X_{n}\right)$ consist of corresponding probability measures.

Because all maps under consideration are inclusion maps the induced maps $\left(p_{n}\right)_{*}: \mathcal{M}(X) \rightarrow H_{1}\left(X_{n}\right)$ satisfy $\left(p_{n+1}\right)_{*} \circ W_{n}=\left(p_{n}\right)_{*}$. Furthermore they are closed continuous maps. This enables us to extend the maps $\left(p_{n}\right)_{*}$ to a bounded map

$$
p_{*}: \mathcal{M}(X) \rightarrow \lim _{W_{n}} H_{1}\left(X_{n}\right)
$$

Proposition 3.2 The map

$$
p_{*}: \mathcal{I}(X) \rightarrow \lim _{W_{n}} I\left(X_{n}\right)
$$

is an isomorphism. In particular the map

$$
p_{*}: \mathcal{P}(X) \rightarrow \lim _{W_{n}} P\left(X_{n}\right)
$$

is as such.
Proof. Observe that $\left(p_{m}\right)_{*}(\mathcal{I}(X)) \subset H_{1}^{+}\left(X_{m}\right)$ for all $m \geq 1$ and $\left(p_{n}\right)_{*}=W_{n} W_{n+1}$ $\ldots W_{m-1} \circ\left(p_{m}\right)_{*}$. Finally because W_{n} is a non-negative matrix we get $W_{m}\left(H_{1}^{+}\right.$ $\left.\left(X_{m+1}\right)\right) \subset H_{1}^{+}\left(X_{m}\right)$. Hence, $\left(p_{n}\right)_{*}(\mathcal{I}(X)) \subset I\left(X_{n}\right)$ for all n, This implies $p_{*}(\mathcal{I}(X))$ $\subset \lim _{W_{n}} I\left(X_{n}\right)$.

Every point in $\lim _{W_{n}} I\left(X_{n}\right)$ gives rise to a positive additive set function on the clopen sets of X. It gives rise to an invariant measure, the map $p_{*}: \mathcal{I}(X) \rightarrow$ $\lim _{W_{n}} I\left(X_{n}\right)$ is onto.

A minimal Cantor set is said to have bounded combinatorics if it can be obtained combinatorially such that the winding matrices W_{n} are positive and the size and entries of these matrices are uniformly bounded.

Proposition 3.3 Let $f: X \rightarrow X$ be a minimal Cantor set with representation $X=$ $\lim X_{n}$.
a) If the number of loops in X_{n} is uniformly bounded by d then f has at most d ergodic invariant probability measures.
b) If f has bounded combinatorics then it is uniquely ergodic.

Proof. To prove the first statement we may assume that $d_{n}=d$ for all $n \geq 1$. Normalize the basis measures from Lemma 3.1 to probability measures, $\mu_{j}^{m}=$ $\frac{1}{t_{j}^{m}} \nu_{j}^{m}$ where $\left\{\nu_{j}^{m} \mid j=1, \ldots, d\right\}$ is the basis and t_{j}^{m} the period of the corresponding loop.

Let $P_{m} \subset H_{1}^{+}\left(X_{m}\right)$ be the set of probability measures and $P_{n}^{m}=W_{n m}\left(P_{m}\right)$. Because P_{m} is the convex hull of the $\left\{\mu_{j}^{m}\right\}, P_{n}^{m}$ is the convex hull of the measures $\mu_{j}^{n m}=W_{n m}\left(\mu_{j}^{m}\right)$. By taking a subsequence we may assume that the measures $\mu_{j}^{n m}$ converge to measures $\mu_{j} \in P_{n}$ for $j=1, \ldots, d$. Because $P\left(X_{n}\right)=\bigcap P_{n}^{m}$ we get that $P\left(X_{n}\right)$ equals the convex hull of the measures $\left\{\mu_{j} \mid j=1, \ldots, d\right\}$. Hence it is the convex hull of at most d points. Suppose that X had more than d ergodic measures. Then, for n large enough, the projection of these ergodic measures would be distinct extremal points of $P\left(X_{n}\right)$ which has at most d extremal points.

To prove the second statement we have to show that $\mathcal{I}(X)$ is one-dimensional. The hyperbolic distance between two points $x, y \in H_{1}^{+}\left(X_{n}\right)$ is

$$
\operatorname{hyp}(x, y)=-\ln \frac{(m+l) \cdot(m+r)}{l \cdot r}
$$

where m is the length of the line segment $[x, y]$ and l, r are the length of the connected components of $T \backslash[x, y]$. The line segment T is the largest line segment in $H_{1}^{+}\left(X_{n}\right)$ containing $[x, y]$. Positive matrices contract the hyperbolic distances on the positive cones. The winding matrices W_{n} have uniformly bounded size and entries. This implies that the contraction is uniform.

The set

$$
I\left(X_{n}\right)=\bigcap_{j=n+1}^{\infty} W_{j n}\left(H_{1}^{+}\left(X_{n}\right)\right)
$$

is one-dimensional because of the uniform contraction of each W_{n}. In particular, by using Proposition 3.2, we have that $\mathcal{I}(X)$ is one-dimensional. The map f has only one invariant probability measure.

There exist minimal Cantor sets which can be combinatorially obtained by covers X_{n} which all have $d \geq 1$ loops and have $d-1$ ergodic invariant probability measures. To describe such an example arrange the projections π_{n} such that the
corresponding winding matrices W_{n} have all entries equal to 1 except for the diagonal entries of the second and following columns which equal a large number w_{n}. In particular, the basis measure μ_{j}^{n+1} which is concentrated on the $j^{\text {th }}$ loop of X_{n+1} will be projected to a measure very close to μ_{j}^{n}, the measure concentrated on the $j^{\text {th }}$ loop of X_{n}. By taking a sequence w_{n} growing fast enough we can assure that $\mathcal{I}\left(X_{n}\right)$ is a cone spanned by $d-1$ different ergodic measures. The corresponding minimal Cantor set has $d-1$ ergodic invariant (probability) measures.

Theorem 3.4 For every n there exists a minimal Cantor whose set of ergodic invariant (probability) measures is homeomorphic to the sphere S^{n}.

Proof. For all dimensions the idea for the construction is the same. We will give the proof for $n=1$.

Let X_{1} be a combinatorial cover with three tubes. Hence the probability measures $P_{1} \subset H_{1}\left(X_{1}\right)$ form a 2-dimensional simplex. The convex hull of a finite set $E \subset P_{1}$ is denoted by $\operatorname{hull}(E)$. A set E is called the set of extremal points of $\operatorname{hull}(E)$ if $\operatorname{hull}\left(E^{\prime}\right) \neq \operatorname{hull}(E)$ for every strict subset $E^{\prime} \subset E$.

We are going to define the combinatorial covers X_{n+1} and the projections $\pi_{n}: X_{n+1} \rightarrow X_{n}$ inductively. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and the corresponding projections are defined. Using the notation of the proof of Proposition 3.3 we get that P_{1}^{n}, the projection of the probability measures P_{n} into P_{1}, form a convex set spanned by $E_{n}=\left\{\mu_{j}^{1 n} \mid j=1, \ldots, d_{n}\right\}$, where d_{n} is the number of loops in X_{n}. The induction hypothesis assumes that E_{n} is the set of extremal points of P_{1}^{n}. Assume that the measures in E_{n} are ordered in such a way that hull $\left(\left\{\mu_{j}^{1 n}, \mu_{j+1}^{1 n}\right\}\right)$, $j=1, \ldots, d_{n}-1$ and $\operatorname{hull}\left(\left\{\mu_{d_{n}}^{1 n}, \mu_{1}^{1 n}\right\}\right)$ are the sides of P_{1}^{n}.

The cover X_{n+1} is going to have $d_{n+1}=2 d_{n}$ loops. For every loop in X_{n} there is a loop in X_{n+1} which passes a_{n} times through this given loop and exactly once through all other loops in X_{n}. This gives a group of d_{n} loops in X_{n+1}.

For every pair $\left\{\mu_{j}^{n}, \mu_{j+1}^{n}\right\}, j=1, \ldots, d_{n}-1$ and the pair $\left\{\mu_{d_{n}}^{n}, \mu_{1}^{n}\right\}$ there will be a loop in X_{n+1} which passes b_{n} times through both corresponding supporting loops in X_{n} and exactly once through all other loops in X_{n}. This gives another group of d_{n} loops in X_{n+1}. All loops of X_{n+1} are going to pass at least once through all loops of X_{n}. This is to assure that $X=\lim X_{n}$ becomes a minimal Cantor set.

Observe that by choosing the number a_{n} very big, the measures on the loops of the first group are going to have their masses concentrated mainly on the loop through which it passes a_{n} times. Their projections into P_{n} are going to converge to the corresponding measure μ_{j}^{n}. By choosing the number b_{n} very big, the measures on the loops of the second group are going to be equally concentrated over the two loops through which it passes b_{n} times. Their projections are going to converge to the mean of the corresponding measures: $\frac{1}{2}\left(\mu_{j}^{n}+\mu_{j+1}^{n}\right)$.

Let $E_{n+1}^{1}(a)$ consist of the projections in P_{1} of the measures concentrated on the loops of the first group in X_{n+1} when constructed with a and $E_{n+1}^{2}(b)$ consist of the projections of the measures in the second group when constructed with b.

By the discussion above we know that $E_{n+1}^{1}(a)$ converges to E_{n} when $a \rightarrow \infty$ and $E_{n+1}^{2}(b)$ converges to the middle points of the sides of hull $\left(E_{n}\right)$ when $b \rightarrow \infty$.

We are going to define the values a_{n} and b_{n} inductively. Assume that E_{j}, $j=1, \ldots, n$ is defined inductively together with finite sets $E_{j}^{\prime}, 1, \ldots, n$, satisfying

1) $\operatorname{hull}\left(E_{j}^{\prime}\right)$ is strictly contained in $\operatorname{hull}\left(E_{j}\right)$;
2) The annulus $A_{j}=\operatorname{hull}\left(E_{j}\right) \backslash \operatorname{hull}\left(E_{j}^{\prime}\right)$ satisfies the metrical property

$$
\epsilon\left(A_{j}\right) \leq 2 l_{j-1}
$$

where $\epsilon\left(A_{j}\right)$ is the length of the longest straight line in A_{n} and l_{n} the longest side of hull $\left(E_{n}\right)$;
3) $A_{j-1} \supset A_{j}$ and $l_{j} \leq 0.6 l_{j-1}$.

Let us define E_{n+1} and E_{n+1}^{\prime} extending the above property. By taking a_{n+1}^{\prime} sufficiently big, $E_{n+1}^{1}\left(a_{n+1}^{\prime}\right)$ converges to E_{n}, and we can manage so that the annulus $A=\operatorname{hull}\left(E_{n}\right)-\operatorname{hull}\left(E_{n+1}^{1}\left(a_{n+1}^{\prime}\right)\right)$ is part of A_{n} and $\epsilon(A) \leq 2 l_{n}$. Let $E_{n+1}^{\prime}=E_{n+1}^{1}\left(a_{n+1}^{\prime}\right)$. By the same reason as above there is an a_{n+1} such that $\operatorname{hull}\left(E_{n+1}^{\prime}\right)$ lies strictly in $\operatorname{hull}\left(E_{n+1}^{1}\left(a_{n+1}\right)\right)$. We may assume that all points in $E_{n+1}^{1}\left(a_{n+1}\right)$ have distance to E_{n} less than $0.01 l_{n}$. Because all loops in X_{n+1} pass through all loops of X_{n} the hull $\left(E_{n+1}^{1}\left(a_{n+1}\right)\right)$ lies strictly inside hull $\left(E_{n}\right)$. Now take b_{n+1} such that $E_{n+1}^{2}\left(b_{n+1}\right) \cap \operatorname{hull}\left(E_{n+1}^{1}\left(a_{n+1}\right)\right)=\emptyset$. By taking b_{n+1} big enough we may assume that $l_{n+1} \leq 0.6 l_{n}$.

Let $E_{n+1}=E_{n+1}^{1}\left(a_{n+1}\right) \cup E_{n+1}^{2}\left(b_{n+1}\right)$ and $E_{n+1}^{\prime}=E_{n+1}^{1}\left(a_{n+1}^{\prime}\right)$. This finishes the inductive definition.

Claim 3.5 The set $P\left(X_{1}\right)=\bigcap P_{1}^{n}=\bigcap \operatorname{hull}\left(E_{n}\right) \subset P_{1}$ is a strictly convex disk, every line connecting two points on the boundary intersects the boundary only in the begin and end point.

Observe that the topological boundary of $P\left(X_{1}\right)$ equals $\bigcap A_{n}$. Hence if the boundary of $P\left(X_{1}\right)$ contains a straight line L then $L \subset A_{n}$ for every n. So $|L| \leq$ $\epsilon\left(A_{n}\right) \rightarrow 0$. Contradiction.

First we will show that $\mathcal{P}(X)=\lim _{A_{n}} P\left(X_{n}\right)$ contains a set homeomorphic to a circle. Take a refining sequence of equal distributed partitions of the circle S^{1} with d_{n} pieces. Let $\phi_{1 n}: S^{1} \rightarrow \partial \operatorname{hull}\left(E_{n}\right)$ be the homeomorphism which maps the pieces of the $n^{\text {th }}$ partition linearly to the sides of hull $\left(E_{n}\right)$. These homeomorphisms can be factorized as $\phi_{1 n}=W_{1 n} \circ \phi_{n}$, where $\phi_{n}: S^{1} \rightarrow \partial P_{n}$ maps the pieces of the $n^{\text {th }}$ partition linearly onto the corresponding sides of P_{n}. Let $\phi_{n m}=W_{n m} \circ \phi_{m}$.

If the $\phi_{1 n}$ are chosen coherently then this sequence converges to an embedding $h_{1}: S^{1} \rightarrow P_{1}$. The construction implies that all $\phi_{n m}: S^{1} \rightarrow P_{n}$ converge to a continuous map $h_{n}: S^{1} \rightarrow P_{n}$ satisfying $h_{n}=W_{n} \circ h_{n+1}$. Furthermore the factorization shows that all $h_{n}: S^{1} \rightarrow \gamma_{n}=h_{n}\left(S^{1}\right) \subset P_{n}$ are embeddings of the circle and $W_{n}: \gamma_{n+1} \rightarrow \gamma_{n}$ is a homeomorphism. Let $\gamma=\lim _{W_{n}} \gamma_{n} \subset \mathcal{P}(X)$. This γ is homeomorphic to S^{1}.

Claim 3.6 Let $\operatorname{Erg}(X)$ be the set of ergodic (probability) measures of f. Then

$$
\operatorname{Erg}(X)=\gamma
$$

First we will show that $\gamma \subset \operatorname{Erg}(X)$. Let $\mu \in \gamma$. Suppose that μ is not ergodic then $\mu=\alpha \mu_{1}+(1-\alpha) \mu_{2}$ where the μ_{i} 's are two invariant probability measures. Consider $\left(p_{1}\right)_{*}(\mu)=\alpha\left(p_{1}\right)_{*}\left(\mu_{1}\right)+(1-\alpha)\left(p_{1}\right)_{*}\left(\mu_{2}\right)$. Because $\left(p_{1}\right)_{*}(\mu) \in \gamma_{1}$ and $P\left(X_{1}\right)$ is strictly convex this is only possible if $\left(p_{1}\right)_{*}\left(\mu_{1}\right)=\left(p_{1}\right)_{*}\left(\mu_{2}\right)=\left(p_{1}\right)_{*}(\mu)$. But $W_{n}: \gamma_{n+1} \rightarrow \gamma_{n}$ is bijective which implies $\mu=\mu_{1}=\mu_{2}$. Contradiction, $\gamma \subset \operatorname{Erg}(X)$.

To finish the proof of Theorem 3.5 we have to show that every invariant measure can be disintegrated over the supports of the ergodic measures in γ. For $m>n$ let $\mu_{j}^{m}, j \leq d_{m}$ be the probability measure concentrated on the $j^{\text {th }}$ loop and $\mu_{j}^{n m}$ the projection of μ_{j}^{m} into P_{n}.

Let $\mu \in \mathcal{P}(X)$. Then for $m \geq n,\left(p_{m}\right)_{*}(\mu)=\sum_{j=1}^{d_{m}} \alpha_{j}^{m} \mu_{j}^{m}$ with $\alpha_{j}^{m} \geq 0$ and $\Sigma_{j=1}^{d_{m}} \alpha_{j}^{m}=1$. So $\left(p_{n}\right)_{*}(\mu)=\Sigma_{j=1}^{d_{m}} \alpha_{j}^{m} \mu_{j}^{n m}$ which induces a discrete measure $\epsilon_{n m}$ on P_{n} by $\epsilon_{n m}\left(\mu_{j}^{n m}\right)=\alpha_{j}^{m}$. By taking subsequences we may assume that for all $n \geq 1$ the sequences $\epsilon_{n m}, m \geq n$ will converge weakly to a measure ϵ_{n}. Clearly the support of ϵ_{n} is part of γ_{n} and we may assume $\left(W_{n}\right)_{*}\left(\epsilon_{n+1}\right)=\epsilon_{n}$. Hence there is also an induced measure ϵ on γ.

Let $\phi: X \rightarrow \mathbf{R}$ be a function which is constant on the vertices of X_{n}. Now for every $m \geq n$

$$
\begin{aligned}
\int \phi d \mu & =\Sigma_{j=1}^{d_{m}} \alpha_{j}^{m} \int \phi d \mu_{j}^{n m} \\
& =\Sigma_{j=1}^{d_{m}} \epsilon_{n m}\left(\mu_{j}^{n m}\right) \int \phi d \mu_{j}^{n m} \\
& =\int\left[\int \phi d \nu\right] d \epsilon_{n m}
\end{aligned}
$$

The function on P_{n} defined by $\nu \rightarrow \int \phi d \nu$ is continuous and because $\epsilon_{n m} \rightarrow \epsilon_{n}$ weakly $\int \phi d \mu=\int\left[\int \phi d \nu\right] d \epsilon_{n}$. Using the fact that ϕ is piecewise constant it follows easily that the same formula holds on γ with the measure ϵ concentrated on γ and by using standard arguments the formula can be shown to hold for measurable functions ϕ,

$$
\int \phi d \mu=\int\left[\int \phi d \nu\right] d \epsilon .
$$

This desintegration shows that a measure whose corresponding measure ϵ is not concentrated in a single point of γ, is not ergodic. Hence $\gamma=\operatorname{Erg}(X)$.

A variation of the above construction could be to approximate every point in E_{n} by two close points in E_{n+1}. In this way the set of ergodic measures will be homeomorphic to a Cantor set. Countable sets of ergodic measures can be obtained by approximating every point in E_{n} by one in E_{n+1} except for one special chosen point which is approximated by two points in E_{n+1}, one of which is the special one
for E_{n+1}. Even we can make examples having $\operatorname{Erg}(X)$ to be a union of manifolds, Cantor sets and discrete parts.

4 Entropy and homotopy

In Section 3 it was shown that invariant measures are homological objects. The prove of the theorem below shows that entropy reflects homotopical properties of the system. Other examples of the type described in this theorem were already constructed in [G] using symbolic dynamical methods.

Theorem 4.1 ([G]) There exist uniquely ergodic minimal Cantor sets with infinite topological entropy.

Let $C \subset \mathbf{R}^{d}$ be an open cone. The hyperbolic distance on C is defined as follows. For $x, y \in C$ let $T \subset C$ be the maximal line segment containing x, y. Then

$$
\operatorname{hyp}_{C}(x, y)=-\ln \frac{(m+l) \cdot(m+r)}{l \cdot r}
$$

where m is the length of the line segment $[x, y]$ between x and y and l, r are the lengths of the connected components of $T \backslash[x, y]$. In the case when l (or r) is infinite the hyperbolic distance is defined to be $\operatorname{hyp}_{C}(x, y)=-\ln \frac{m+r}{r}$. The hyperbolic distance on the positive cone in \mathbf{R}^{d} is denoted by hyp ${ }_{d}$. Let

$$
C_{s}^{d}=\left\{x \in \mathbf{R}^{d} \mid \operatorname{hyp}_{d}(x, \mathbf{1})<s\right\}
$$

The proof of the following lemma is a continuity argument.
Lemma 4.2 For every $d \geq 1, \epsilon>0$ there exists $s=s(d, \epsilon)$ such that

$$
\operatorname{hyp}_{d}(x, y) \leq \epsilon \cdot \operatorname{hyp}_{C_{s}^{d}}(x, y)
$$

for $x, y \in C_{s}^{d}$.
The elements in the set $W_{a}^{d}=\{0,1, \ldots, d-1\}^{a}$ are called words of length a. For every word $w=\left(w_{i}\right)_{i=1,2, \ldots, a}$ the frequency vector $\nu_{w} \in \mathbf{R}^{d}$ is defined as follows

$$
\nu_{w}(j)=\frac{1}{a} \cdot \#\left\{i \leq a \mid w_{i}=j\right\}
$$

Let

$$
V_{a}^{d, s}=\left\{w \in W_{a}^{d} \mid w_{1}=0, \nu_{w} \in C_{s}^{d}\right\}
$$

Lemma 4.3

$$
\lim _{a \rightarrow \infty} \frac{\# V_{a}^{d, s}}{d^{a}}=1
$$

Proof. The statement is a reformulation of the Birkhoff Ergodic Theorem applied to the full shift over d symbols.

The construction of an example with infinite entropy is a generalization of the construction of an example with positive entropy. For expository reasons we first present the finite entropy example and the main part of the construction.

Fix a small $\delta>0$. Let X be a combinatorial cover with d loops and $s=s\left(d, \frac{1}{2}\right)$ given by Lemma 4.2. Lemma 4.3 assures that we can choose $a \gg 1$ such that

$$
\# V_{a}^{d, s} \geq(1-\delta) \cdot d^{a}
$$

The combinatorial refinement $\pi: X^{\prime} \rightarrow X$ is defined as follows. Each word in $V_{a}^{d, s}$ can be interpreted as a path through X which starts to follow the 0-loop of X. Let X^{\prime} be a combinatorial cover whose loops are in 1 to 1 correspondence with the words in $V_{a}^{d, s}$. The projection π is intrinsically defined. Choose one of the loops of X^{\prime} to be the 0-loop of X^{\prime}.

Proposition 4.4 There exist uniquely ergodic minimal Cantor sets with arbitrary high entropy.

Proof. Choose d_{0}, T_{0} and $\delta>0$ such that

$$
\frac{\ln d_{0}}{T_{0}}+2 \ln (1-\delta) \gg 1
$$

and let X_{0} be a combinatorial cover which has d_{0} loops all of length T_{0}. Now define inductively the combinatorial refinements

$$
X_{0} \leftarrow X_{1} \leftarrow X_{2} \leftarrow \cdots
$$

by $X_{N+1}=\left(X_{N}\right)^{\prime}$ and let X be the inverse limit. We will use the following notation. The number of loops in X_{N} is denoted by d_{N} and s_{N}, a_{N} are the numbers defining the refinement X_{N+1}. In particular,

$$
d_{N+1}=\# V_{a_{N}}^{d_{N}, s_{N}} \geq(1-\delta) \cdot d_{N}^{a_{N}}
$$

Observe that the periods of the loops in each X_{N} are the same, say T_{N}. By construction we get

$$
T_{N+1}=a_{N} \cdot T_{N}
$$

In particular,

$$
T_{N}=T_{0} \cdot \Pi_{i=0}^{N-1} a_{i} .
$$

Let $N>N_{1} \geq N_{0}$ and $n=\Pi_{i=N_{1}}^{N-1} a_{i}$. Then to each loop λ of X_{N}, of period T_{N}, we can assign a word $w_{\lambda} \in W_{n}^{d_{N_{1}}}$ describing the order in which the loop of X_{N} passes through the loops of $X_{N_{1}}$. By construction we have

Claim 4.5 If $w_{\lambda_{1}}=w_{\lambda_{2}}$ then $\lambda_{1}=\lambda_{2}$.
Claim 4.6 X is a uniquely ergodic Cantor set.

Proof. Observe that every loop of X_{N+1} passes at least twice through every loop of X_{N}. In fact every loop passes many times trough any loop of X_{N}. This implies that X is a minimal Cantor set.

By construction, the positive cone in $H_{1}\left(X_{N+1}\right)$ is mapped by the winding matrix W_{N} into the $C_{s_{N}}^{d_{N}} \subset H_{1}\left(X_{N}\right)$. In particular,

$$
\operatorname{hyp}_{d_{N}}\left(W_{N} x, W_{N} y\right) \leq \frac{1}{2} \cdot \operatorname{hyp}_{d_{N+1}}(x, y)
$$

The hyperbolic distances are contracted uniformly, X is uniquely ergodic.
Claim 4.7 The entropy of X is larger than $\frac{\ln d_{0}}{T_{0}}+2 \ln (1-\delta) \gg 1$.
Proof. Let $h_{N}=\frac{\ln d_{N}}{T_{N}}$. The construction was done such that $d_{N+1} \geq(1-\delta) \cdot d_{N}^{a_{N}}$ and $T_{N+1}=a_{N} \cdot T_{N}$. This implies

$$
h_{N+1} \geq h_{N}+\frac{\ln (1-\delta)}{T_{N+1}} .
$$

By using $a_{N} \geq 2$ we get

$$
\limsup _{N \rightarrow \infty} h_{N} \geq \frac{\ln d_{0}}{T_{0}}+2 \ln (1-\delta) .
$$

Let $S(T, \epsilon)$ be the number of points in the largest set consisting of points which can be pairwise separated ϵ apart within T steps. Then, see [B], the entropy of X is

$$
h=\lim _{\epsilon \rightarrow 0} \limsup _{T \geq 1} \frac{\ln S(T, \epsilon)}{T} .
$$

Let $\epsilon>0$ be given and let $X_{N_{1}}$ and be such that all the vertices of $X_{N_{1}}$ are at least ϵ apart. Let $N \geq N_{1}$ and $E_{N} \subset X_{N}$ be the set of initial points of the loops of X_{N}. Claim 4.5 implies that E_{N} consists of points which can be separated ϵ apart within T_{N} steps. Hence,

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \frac{\ln S\left(T_{N}, \epsilon\right)}{T_{N}} & \geq \limsup _{N \rightarrow \infty} \frac{\ln \# E_{N}}{T_{N}} \\
& =\limsup _{N \rightarrow \infty} \frac{\ln d_{N}}{T_{N}} \\
& \geq \frac{\ln d_{0}}{T_{0}}+2 \ln (1-\delta) .
\end{aligned}
$$

This implies that the entropy h of this example satisfies

$$
h \geq \frac{\ln d_{0}}{T_{0}}+2 \ln (1-\delta) .
$$

This finishes the construction of minimal Cantor sets with arbitrary high entropy.

The example with infinite entropy is a limit of minimal Cantor sets with increasing entropy. The limiting process will be described by combinatorial covers $X_{n}^{k}, k \leq K, k \leq n \leq K$ which will be defined inductively in K such that

- X_{n}^{k} is a refinement of X_{n-1}^{k};
- There are projections $X_{n}^{k+1} \rightarrow X_{n}^{k}$ which commute with the refinements $X_{n}^{k} \rightarrow X_{n-1}^{k}$ and map 0-loops to 0-loops.
- The induced projections $H_{1}\left(X_{n}^{k+1}\right) \rightarrow H_{1}\left(X_{n}^{k}\right)$ map positive cones onto positive cones.
- The induced projections $H_{1}\left(X_{n}^{k_{2}}\right) \rightarrow H_{1}\left(X_{n-1}^{k_{1}}\right), K \geq k_{2} \geq k_{1}, n \leq N$ contract uniformly the hyperbolic distance of the positive cones.
- The number of loops of X_{n}^{k} is denoted by d_{n}^{k}. Each loop has the same period, denoted by T_{n}^{k}, and

$$
\begin{aligned}
& T_{n+1}^{k}=a_{n} T_{n}^{k}, a_{n} \geq 2 \\
& d_{n+1}^{n+1} \geq(1-\delta) \cdot\left(d_{n}^{n}\right)^{2 a_{n}}
\end{aligned}
$$

Assume $X_{n}^{k}, k \leq n \leq K$ are defined.
Claim 4.8 There exists $C_{s}^{d_{K}^{K}} \subset H_{1}\left(X_{K}^{K}\right)$ such that $C^{\prime}=\pi\left(C_{s}^{d_{N}^{N}}\right)$, where $\pi: H_{1}\left(X_{K}^{K}\right)$ $\rightarrow H_{1}\left(X_{K}^{k}\right)$ is the induced projection, satisfies

$$
\operatorname{hyp}_{d_{K}^{k}}(x, y) \leq \frac{1}{2} \cdot \operatorname{hyp}_{C^{\prime}}(x, y)
$$

for $x, y \in C^{\prime}$.
The cone $C_{s}^{d_{K}^{K}} \subset H_{1}\left(X_{K}^{K}\right)$ is used to define, as before,

$$
X_{K+1}^{K}=\left(X_{K}^{K}\right)^{\prime}
$$

Let a_{K} be the corresponding number used to define X_{K+1}^{K}. To each loop λ in X_{K+1}^{K} and each $k \leq K$ we can assign a word

$$
\lambda \mapsto w_{\lambda} \in \pi_{1}\left(X_{K}^{k}\right)
$$

Let X_{K+1}^{k} be a combinatorial refinement of X_{K}^{k} such that each word which arises is represented exactly once by a loop. This construction induces projections

$$
X_{K+1}^{k} \rightarrow X_{K+1}^{k-1}
$$

which commute with the refinements. The choice of the 0 loop in X_{K+1}^{K} determines the 0-loop in each X_{K+1}^{k}.

The $m^{\text {th }}$ multiple $X^{(m)}$ of a combinatorial cover X is a combinatorial cover which is obtained by re placing each loop of X by m copies. The 0 loop of $X^{(m)}$ is chosen to be one of the copies of the 0 loop of X. To finish the inductive definition we define

$$
X_{K+1}^{K+1}=\left(X_{K+1}^{K}\right)^{(2)}
$$

It is easily seen that the definition of $X_{K+1}^{k}, k \leq K+1$, satisfy the previous conditions.

Let X^{k} be the projected limit of

$$
X_{k}^{k} \leftarrow X_{k+1}^{k} \leftarrow X_{k+2}^{k} \leftarrow \cdots
$$

Observe that the induced maps

$$
X_{K+1}^{K+1} \rightarrow X_{K}^{K}
$$

are combinatorial refinements. Let X be the projected limit of

The following Proposition reformulates the Theorem 4.1.

Proposition 4.9

X^{k} is a uniquely ergodic minimal Cantor set and

$$
h_{X^{k}} \rightarrow \infty
$$

X is a uniquely ergodic minimal Cantor set.
There are factor maps $X \rightarrow X^{k}$. In particular, the entropy of X is infinite.
Proof. Every loop of X_{n}^{k} passes at least twice through every loop of X_{n-1}^{k}. This implies that every X^{k} is a minimal Cantor set. Every loop of X_{K+1}^{K+1} passes at least twice through every loop of $X_{K}^{K}: X$ is a minimal Cantor set.

The induced maps $H_{1}\left(X_{n}^{k_{2}}\right) \rightarrow H_{1}\left(X_{n-1}^{k_{1}}\right), k_{2} \geq k_{1}$, contract the hyperbolic distance on the corresponding positive cones. This implies that X and all X_{k} are uniquely ergodic.

Each X^{k} is an example as in Proposition 4.4. In particular,

$$
h_{X^{k}} \geq \frac{\ln d_{k}^{k}}{T_{k}^{k}}+2 \ln (1-\delta)=h_{k}
$$

Observe that

$$
d_{k+1}^{k+1} \geq\left\{(1-\delta) \cdot\left(d_{k}^{k}\right)^{a_{k}}\right\}^{2}
$$

and

$$
T_{k+1}^{k+1}=a_{k} \cdot T_{k}^{k}
$$

Hence,

$$
h_{k+1} \geq 2 \cdot h_{k}+2 \ln (1-\delta)+\frac{2 \ln (1-\delta)}{T_{k+1}^{k+1}}
$$

By taking δ small enough we can assure that $h_{k} \rightarrow \infty$.

5 Semi-conjugations to circle rotations and cohomology

In this section we are going to study semi-conjugations between minimal Cantor sets and rotation on the circle. In particular, we will construct for every minimal Cantor set a topological invariant $P_{X} \subset S^{1}$. The invariant P_{X} is a countable subgroup of S^{1} and it is defined by first defining the cohomology group of the minimal Cantor set X.

Let X be a minimal Cantor set and suppose it can be combinatorially obtained by the refinements

$$
\pi_{n}: X_{n+1} \rightarrow X_{n}
$$

where X_{n} has d_{n} loops. The corresponding winding matrix is W_{n}. Let

$$
H^{1}\left(X_{n}, S^{1}\right)=T^{d_{n}}
$$

be the first cohomology group of the graph X_{n}, the group of functionals on $H_{1}\left(X_{n}\right)$. This group is isomorphic to $S^{1} \times \cdots \times S^{1}=T^{d_{n}}$, the d_{n} dimensional torus. Let $\mu_{j} \in H_{1}\left(X_{n}\right), j=1, \ldots, d_{n}$ correspond to the $j^{\text {th }}$ loop of X_{n}. The value of an element $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{d_{n}}\right) \in S^{1} \times \cdots \times S^{1}=T^{d_{n}}=H^{1}\left(X_{n}, S^{1}\right)$ on the cycle $\mu=\sum_{j=1}^{d_{n}} a_{j} \mu_{j} \in H_{1}\left(X_{n}\right)$ is given by

$$
\underline{\theta}(\mu)=\sum_{j=1}^{d_{n}} a_{j} \theta_{j} \in S^{1}
$$

The projection $\pi_{n}: X_{n+1} \rightarrow X_{n}$ induces a linear map $\left(\pi_{n}\right)^{*}: H^{1}\left(X_{n}, S^{1}\right) \rightarrow$ $H^{1}\left(X_{n+1}, S^{1}\right)$ given by

$$
\left(\pi_{n}\right)^{*}(\underline{\theta})(\mu)=\underline{\theta}\left(\left(\pi_{n}\right)_{*}(\mu)\right)
$$

It is easily seen that by using the basis generated by the loops in X_{n} we get
Lemma 5.1 Let W_{n}^{T} be the transpose of the winding matrix W_{n}. Then

$$
\left(\pi_{n}\right)^{*}=W_{n}^{T}
$$

In the sequel we will be working on these bases. We define the first cohomology group of X as the direct limit of the sequence

$$
H^{1}\left(X_{0}, S^{1}\right) \rightarrow H^{1}\left(X_{1}, S^{1}\right) \rightarrow H^{1}\left(X_{2}, S^{1}\right) \rightarrow \cdots H^{1}\left(X_{n}, S^{1}\right) \rightarrow \cdots H^{1}\left(X, S^{1}\right)
$$

where the maps are the induced maps $\left(\pi_{n}\right)^{*}$.
Consider the situation when the minimal Cantor set $f: X \rightarrow X$ admits a semi-conjugation to the rotation of the circle over $\rho, R_{\rho}: S^{1} \rightarrow S^{1}$. That means, there is a continuous map $h: X \rightarrow S^{1}$ with

$$
h \circ f=R_{\rho} \circ h .
$$

Let $U \subset X$ correspond to a vertex of X_{n} which is the first vertex of a loop and $V=f(U)$ corresponds to the image vertex of U. Then $h(V)=h(U)+\rho$. The same holds for every vertex and its image in any loop on X_{n}. Let $x \in U$ and t_{j}^{n} be the length of the loop starting at U. Then

$$
h\left(f^{t_{j}^{n}}(x)\right)=h(x)+\rho \cdot t_{j}^{n} .
$$

So, passing through the $j^{\text {th }}$ loop of X_{n} will cause a jump over $\rho \cdot t_{j}^{n}$ in the circle. The cohomology group $H^{1}\left(X_{n}, S^{1}\right)$ allows us to keep track of the total jump made in the circle when passing through the loops of X_{n}. In particular, consider the following map $\gamma_{n}: S^{1} \rightarrow H^{1}\left(X_{n}, S^{1}\right)$ defined by

$$
\rho \mapsto\left(\rho \cdot t_{j}^{n}\right),
$$

where t_{n}^{i} are the periods of the loops of X_{n}. The map γ_{n} commutes with the maps W_{n}^{T}. Hence, γ_{n} extends to a map

$$
\gamma: S^{1} \rightarrow H^{1}\left(X, S^{1}\right)
$$

The stable set $W^{s}(X) \subset H^{1}\left(X, S^{1}\right)$ is defined as

$$
W^{s}(X)=\left\{\underline{\theta}=\left(\theta_{n}\right)_{n \geq n_{0}} \in H^{1}\left(X, S^{1}\right) \mid \theta_{n} \rightarrow 0\right\} .
$$

Definition 5.2 The set of rotation numbers for X is

$$
P_{X}=\gamma^{-1}\left(W^{s}(X)\right)
$$

Lemma 5.3 The set P_{X} is a topological invariant of the minimal Cantor set X. Moreover, it is a subgroup of S^{1}.

Proof. The construction of the set of rotation numbers implies immediately that it is a topological invariant. The group structure of P_{X} follows from the fact that the map γ is a morphism and the maps $\left(\pi_{n}\right)^{*}$ are morphisms.

Lemma 5.4 Let X be a minimal Cantor set. If there exists a continuous $h: X \rightarrow S^{1}$ which semi-conjugates X with a rotation of the circle over $\rho \in S^{1}$ then

$$
\rho \in P_{X}
$$

Proof. Consider the $j^{\text {th }}$ loop of X_{n} and take a point $x \in 0_{X_{n}}$ which will follow this loop. $0_{X_{n}}$ corresponds to a small set in X. In particular, the diameter $\left|h\left(0_{X_{n}}\right)\right|$ of $h\left(0_{X_{n}}\right)$ can be taken arbitrary small by taking n large enough. This is because of the continuity of h. Observe,

$$
\left|\gamma_{n}(\rho)_{j}-0\right|=\left|\rho \cdot t_{j}^{n}-0\right|=\left|h\left(f^{t_{j}^{n}}(x)\right)-h(x)\right| \leq\left|h\left(0_{X_{n}}\right)\right| \rightarrow 0
$$

when $n \rightarrow \infty$. So $\gamma(\rho) \in W^{s}(X)$.
Proposition 5.5 Let $W_{n}=\left(w_{i j}^{n}\right)$ be the winding matrices of a representation for the minimal Cantor set X. Assume there is a $K \geq 0$ such that for all $n \geq 0$

$$
\sum_{j} w_{i j}^{n} \leq K
$$

If for some $\delta<1$ the rotation number $0 \neq \rho \in P_{X}$ has the property

$$
\left|\gamma_{n}(\rho)-0\right| \leq C \delta^{n}
$$

for all $n \geq 0$ then the minimal Cantor set X is semi-conjugated with the rotation R_{ρ}.

The condition on the winding matrices above means that every loop in X_{n+1} winds at most K times trough the loops of X_{n}. The proof of this Proposition relies on

Lemma 5.6 Assume that the winding matrix $W_{n}=\left(w_{i j}^{n}\right)$ corresponding to π_{n} : $X_{n+1} \rightarrow X_{n}$ satisfies

$$
\sum_{j} w_{i j}^{n} \leq K
$$

Let $n \geq 1$ and $x \in 0_{X_{n}}$ be such that

$$
\left\{f(x), f^{2}(x), \ldots, f^{n}(x)\right\} \cap 0_{X_{n+1}}=\emptyset
$$

Then

$$
\#\left\{f(x), f^{2}(x), \ldots, f^{n}(x)\right\} \cap 0_{X_{n}} \leq K
$$

Proof. The condition on the piece of the orbit of x under consideration implies that this piece has to lie completely within a loop of X_{n+1}. Any loop of X_{n+1} passes at most K times through $0_{X_{n}}$. In particular, this piece of the orbit of x also passes at most K times through $0_{X_{n}}$.

Let $\rho \in P_{X}$ be as given in Proposition 5.6 and define the map

$$
h:\left\{f^{k}(0) \mid k \geq 0\right\} \rightarrow S^{1}
$$

by

$$
h\left(f^{k}(0)\right)=k \cdot \rho \in S^{1} .
$$

In order to prove Proposition 5.5 it is enough to check that the map h is uniformly continuous. To do so it is enough to prove the continuity of h in 0 . Because of the specific graph structure of X_{n} and the construction of h the uniform continuity will follow. In particular, if $\left|h\left(0_{X_{n}}\right)\right|=r$ then for every vertex $U \in X_{n}$ we have $|h(U)| \leq r$.

Lemma 5.7 There exists a constant C such that, for any $n \geq 0$ and for any $s \geq 1$ with $f^{s}(0) \in 0_{X_{n}}$ we have

$$
\left|h\left(f^{s}(0)\right)-0\right| \leq C \cdot \delta^{n}
$$

An appropriate decomposition of the orbit of $0 \in X$ is the key of this lemma. Take $s \geq 1$ such that $f^{s}(0) \in 0_{X_{n}}$. Let n_{1} be the smallest integer so that the orbit $\left\{f(0), \overline{f^{2}}(0), \ldots, f^{s}(0)\right\}$ does not visit $0_{X_{m}}$ whenever $m \geq n_{1}$. For $n \leq l<n_{1}$ define

$$
s_{l}=\max \left\{0<k \leq n \mid f^{k}(0) \in 0_{X_{l}}\right\}
$$

Lemma 5.6 implies that

$$
\#\left\{s_{l+1}<k \leq s_{l} \mid f^{k}(0) \in 0_{X_{l}}\right\} \leq K
$$

Observe that

$$
\begin{aligned}
\left|h\left(f^{s}(0)\right)-0\right| & \leq \sum_{l=n}^{n_{1}-1}\left|h\left(f^{s_{l}}(0)\right)-h\left(f^{s_{l+1}}(0)\right)\right| \\
& \leq \sum_{l=n}^{n_{1}-1} K \cdot\left|\gamma_{l}(\rho)\right| \\
& \leq \sum_{l=n}^{n_{1}-1} K \cdot C \cdot \delta^{l} \\
& =C_{1} \cdot \delta^{n} .
\end{aligned}
$$

This finishes the proof of Lemma 5.7 and Proposition 5.5.

5.1 Remarks

- The Fibonacci minimal Cantor set is a minimal Cantor set which can be combinatorially obtained in such a way that the winding matrices are

$$
W_{n}=W=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

$n \geq 0$. In this case the first cohomology group $H^{1}\left(X, S^{1}\right)$ is isomorph with the two dimensional torus T^{2}. The set $W^{s}(X) \subset H^{1}\left(X, S^{1}\right)$ is the stable manifold of the affine torus map W^{T}. Observe, that W has two eigenvalues, one bigger than 1 and the other smaller than one. The eigenspace of the smaller eigenvalue corresponds to the set $W^{s}(X)$. The set P_{X} is generated by one irrational number.

- The minimal Cantor sets obtained when used winding matrices $W_{n}=(a)$ are called adding machines. The set P_{X} equals the backward orbit of 0 under the $\operatorname{map} x \mapsto a x \bmod 1$ on the circle. Observe, that all the rotation numbers are rational and that there are semi-conjugations to the corresponding rational rotations.
- Consider minimal Cantor sets which can be combinatorially obtained with 3×3 winding matrices $W_{n}=W, n \geq 1$ where W has determinant 1 and two eigenvalues with absolute value larger than 1 . The absolute value of the third eigenvalue is smaller than 1 . In such a case the set W^{s} corresponds to the eigenspace of the third eigenvalue. By adjusting the first winding matrix we can assure that $P_{X}=\{0\}$ and hence that the minimal Cantor set does not allow any semi-conjugation to a non-trivial rotation.
- Let X be a minimal Cantor set which has a representation where the winding matrices are all equal, say $W_{n}=W$, where W is a $d \times d$ matrix. Consider the action of W^{T} on the d-dimensional torus T^{d} and let

$$
W^{s}=\left\{x \in T^{d} \mid\left(W^{T}\right)^{n} x \rightarrow 0\right\} .
$$

Let

$$
Q=\left\{x \in T^{d} \mid \exists n\left(W^{T}\right)^{n} x=0\right\} .
$$

Lemma 5.8 There exist a subspace $V \subset R^{d}$ such that

$$
W^{s}=\{v+q \mid v \in V, q \in Q\} \subset T^{d}
$$

Corollary 5.9 If the generating winding matrix W has determinant 1 then the group P_{X} is finitely generated. There exists $\rho_{1}, \rho_{2}, \ldots, \rho_{s} \in S^{1}$ with $s \leq$ $\operatorname{dim} V \leq d-1$ such that

$$
P_{X}=\left\{\sum_{i=1}^{s} x_{i} \rho_{i} \mid x_{i} \text { integer }\right\} .
$$

Kroneckers Theorem [HW] implies
Corollary 5.10 If the generating winding matrix has determinant 1 and P_{X} has s generators then the minimal Cantor set X can be semi-conjugated to a minimal shift on the s-dimensional torus.

Proposition 5.11 If the generating winding matrix has determinant 1 and $\operatorname{codim}\left(W^{s}(X)\right)=\operatorname{codim}(V)=1$ then P_{X} has $d-1$ generators and the minimal Cantor set X admits a semi-conjugation to a minimal shift on the (d-1)-dimensional torus.

Proof. Let V be the stable subspace of W^{T}

$$
V=\left\{x \in \mathbf{R}^{d} \mid\left(W^{T}\right)^{n} x \rightarrow 0\right\}
$$

The matrix W^{T} is an isomorphism with integer entries. This implies that V does not contain non zero lattice points.
Let $t_{j}, j=1, \ldots, d$ be the periods of the loops of X_{1}, the first combinatorial cover and \underline{t} the vector whose entries are t_{j}. Because the codimension of V equals 1 we can find $\rho_{1}, \ldots, \rho_{d-1} \in P_{X}$ and integer vectors \underline{n}_{i} such that

$$
V \ni \underline{x}_{i}=\underline{n}_{i}+\rho_{i} \underline{t}, i=1, \ldots, d-1
$$

are independent points in V. We claim that the points $\rho_{i} \in P_{X}$ are rationally independent. Assume by contradiction that they are dependent: there are integers k_{1}, \ldots, k_{d-1} and k such that

$$
\sum_{i=1}^{d-1} k_{i} \rho_{i}=k .
$$

Then

$$
V \ni \sum_{i=1}^{d-1} k_{i} \underline{x}_{i}=\sum_{i=1}^{d-1} k_{i} \underline{n}_{i}+k \underline{t} .
$$

This contradicts the fact that V does not contain non zero lattice points and that the \underline{x}_{i} 's are independent. We showed that P_{X} has $d-1$ generators. In particular, X admits a semi-cojugation to a minimal shift in the $(d-1)$ dimensional torus.

Don Coppersmith suggested the following elegant set of winding matrices satisfying the condition of the previous Proposition. Let W be a $d \times d$ matrix such that all entries are zero except the entries of the first row and the lower diagonal which all equal 1 . The determinant of W equal 1 and $\operatorname{codim}\left(W^{s}\right)$ $=1$. Also observe that there is some $k>0$ such that $(W)^{k}$ is a positive matrixe: indeed a projective limit of combinatorial covers with W as winding matrix defines a minimal Cantor set. This minimal Cantor set is uniquely ergodic and semi-conjugated to a minimal shift on the $(d-1)$-dimensional torus.

An open question is whether a similar cohomological analysis allows to construct a minimal Cantor set which is semi-conjugated to a minimal shift in the infinite dimensional torus.

Acknowledgments. Both authors acknowledge the Institute of Mathematical Sciences at Stony Brook, IBM T.J. Watson Research Center at Yorktown Heights and the Laboratoire de Topologie in Dijon where this work has successively be done. It is also a pleasure to thank François Blanchard for his motivating interest in this work and Don Coppersmith for suggesting the specific matrices used in section 5.

References

[BSY] A. Berger, S. Siegmund, Y. Yi, On almost automorphic functions in symbolic lattices, Ergod. Th. \& Dynam. Sys. 24, 677-696 (2004).
[B] R. Bowen, Entropy for group endomorphism and homogeneous spaces, Trans. Amer. Soc. 153, 401-414 (1971).
[BH] M. Boyle, D. Handelman, Entropy versus orbit equivalence for minimal homeopmorphisms, Pacific J. Math. 164, 1-13 (1994).
[D] M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics 527, Springer Verlag, 1976.
[DKL] T. Downarowicz, J. Kwiatkowski, Y. Lacroix, A criterium for Toeplitz flows to be topologically isomorphic and applications, Colloq. Math. 68, 219-228 (1995).
[Du] F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179, 89-101 (1998).
[DHS] F. Durand, B. Host, C. Skau, Substitution dynamical systems. Brateli diagrams and dimension groups, Ergod. Th. 63 Dyn. Sys. 19, 953-993 (1999).
[G] C. Grillenberger, Constructions of strictly ergodic systems. I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25, 323-334 (1972/73).
[GPS] T. Giordano, I. Putnam, C. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111, 285-320 (1999).
[HW] G.H. Hardy, E.M. Wright, An introduction to the Theory of Numbers, Oxford University Press, 1956.
[M] M. Martens, Distortion Results and Invariant Cantor Sets of Unimodal Maps, Erg. Th. \mathcal{B} Dyn. Sys. 14, 331-349 (1994).
[Mi1] G. Michon, Les Cantor réguliers, C.R. Acad. Sc. Paris 300, Série I, 673-675 (1985).
[Mi2] G. Michon, Quantification et phases d'un ensemble de Cantor, C.R. Acad. Sc. Paris 302, Série I, 123-126 (1986).
[W] S. Williams, Toeplitz minimal flows that are not uniquely ergodic, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 67, 95-107 (1984).

Jean-Marc Gambaudo
Centro de Modelamiento Matemático
U.M.I 2807 CNRS
Universidad de Chile
Blanco Encalada 2120
Santiago
Chile

Marco Martens
Department of Mathematics
University of Groningen
P.O. Box 800

9700 AV Groningen
The Netherlands
email: m.martens@math.rug.nl

[^0]: ${ }^{1}$ i.e. closed open sets

