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Abstract. Consider a tiling T of the 2-dimensional Euclidean space made

with copies up to translation of a finite number of polygons meeting each

other full edge to full edge. In this paper, we prove that, associated with T ,
there exists a tiling of a (compact) translation surface, made with copies up

to translation of some of the polygons used to construct T .

Furthermore, when T is repetitive, there exists a tiling of a translation surface,
made with copies up to translation of arbitrarily large polygons chosen in a

finite collection of patches of T ; each of these patches containing copies of all

the polygons used to construct T .
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1. Introduction

Consider the Euclidean 2-space R2. A polygonal tiling of R2 is a countable
collection of polygons called tiles such that:

• the union of the tiles covers the whole plane;
• whenever two tiles intersect, they do it along their boundaries and full edge

to full edge.

We say that a finite collection of polygons P tiles R2 if there exists a polygonal
tiling of R2 such that each of its tiles is a translated copy of one element in P.

Consider now a topological compact orientable surface with no boundary compo-
nent S and, on this surface, a finite set of points p1, . . . , pn. Let S ′ be the punctured
surface S \{p1, . . . , pn}. A translation structure on S is the data of a maximal atlas
on S ′ whose transition maps are translations and S equipped with such a structure
is called a translation surface. This translation structure allows to associate with
any direction θ in R2, an orientable line field Lθ on S ′ and thus a non negative
integer with each singularity pi, which is the index of the line field at pi. This
number is clearly independent of the direction θ. The translation structure also
defines on S ′ a flat metric and thus a distance dS′ . Furthermore, the completion of
the metric space (S ′, dS′) is the closed surface S. Any compact orientable surface
can be equiped with a translation structure and the 2-torus is the only translation
surface with no singularities. Translation structures are well-known objects; on the
one hand they allow to give a combinatorial description of quadratic differentials
on Riemann surfaces (see [HM]); on the other hand, they turn out to be a key tool
in the study of the dynamics of rational billiards (see [KZ]) .

1. Local models of a translation surface

We say that a finite collection of polygons P in R2 tiles a translation surface S if
there exists a finite collection of geodesic polygons in S such that :

• the collection of geodesic polygons covers S;
• whenever two geodesic polygons intersect they do it along their boundaries

and full edge to full edge;
• the set of singularities of the the translation surface is contained in the set

of vertices of the geodesic polygons;
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• for any of these geodesic polygons, there exists a chart of the maximal atlas
associated with the translation structure, which maps the interior of this
geodesic polygon to the interior of one of the polygons in P.

The main result of this paper reads as follows:

Theorem 1.1. Assume that a finite set P of polygonal disks in R2 tiles R2. Then,
there exists a translation surface S such that P tiles S.

Remark 1:
A polygonal tiling T of R2 is periodic if there exists in the vector space R2, a pair
of independent directions called periods, u1 and u2, such that T , T +u1 and T +u2

coincide. For a finite collection of polygons P that tiles R2 periodically, Theorem
1.1 is obviously true. Indeed, let T be a periodic tiling constructed with P and
let u1 and u2 be 2 independent periods of T . The quotient space R2/Zu1 + Zu2

is a 2-torus equipped with a translation structure (inherited from the translation
structure of R2) with no singularity which is also tiled by P.
Remark 2:

In 1966, R. Berger proved that the problem of knowing whether a finite collection
of polygons tiles R2 is undecidable [Ber] (see also R. M. Robinson [Rob]). This
undecidability is a consequence of the fact that there exists a finite collection of
polygons P which tiles R2 but cannot tile R2 periodically. R. Berger gave the first
example of such a collection of polygons. In our language, Berger proved that there
exists a finite collection of polygons P in R2 which tiles R2 but does not tile the
2-torus seen as a translation surface. Theorem 1.1 asserts that nevertheless there
exists a translation surface (with singularity) that can be tiled by P.
Remark 3:

The problem of knowing whether a finite collection of polygons P can or cannot
tile a translation surface is is two-sided.
On the one hand, two types of local rules must be satisfied.

• The edges rule : For any edge E of a polygon in P there exists an edge of a
polygon in P which is parallel to E but with inverse orientation (where the
orientation of the edges is the one induced by the orientation of R2).

• The vertices rule : For any vertex V1 of a polygon in P there exists a
finite sequence of vertices of polygons in P , V2, . . . ,Vp such that the angles
associated with each vertex Vl, for l going from 1 to p, add up to a multiple
of 2π.

On the other hand, these two rules are not enough to insure that P can tile a
translation surface. When P is reduced to the single polygon given in Figure 2,
both local rules are clearly satisfied, however P cannot tile any translation surface.
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2. A polygon that does not tile

Remark 4:
It is important to notice that Theorem 1.1 does not say that all the polygons in P
are used to tile the translation surface. Consider for instance the set of polygons
P = {P1, P2, P3} where:

• P1 is the unit square in R2 with edges parallel to the canonical basis of R2;
• P2 is the same square dilated by a factor 2;
• and P3 is the same square has P2 with three extra vertices respectively

located at the center of the left vertical side, at a distance 1/3 of the upper
left corner on the upper horizontal side, at a distance 1/3 of the lower left
corner on the lower horizontal side.

Since the tiles have to meet full edge to full edge, P1 can be glued with P3 only if
P1 is on the right side of P3 and P3 can be glued with P2 only if P3 is on the right
side of P2 . Thus, there are 3 types of tilings constructed with P:

• Type 1: the periodic tiling made only with copies of P1;
• Type 2: the periodic tiling made only with copies of P2;
• Type 3: the tiling for which there exists a vertical stripe made with copies

of P3, the left side of this stripe being tiled only with copies of P2 and the
right side only with copies of P1.

However, it is easy to show that, except the 2-tori tiled with P1 and the 2-tori tiled
with P2, there is no translation surface tiled with copies of both P1 and P2.

3. A non repetitive tiling
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A patch P of a polygonal tiling is a polygon in R2 which is the union of tiles of
T . A tiling T is repetitive if for each patch P , there exists R > 0 such that each
ball with radius R in R2 contains a translated copy of of P . Clearly the tilings of
type 3 described above are not repetitive.
In the case of repetitive tilings, Theorem 1.1 can be improved as follows:

Theorem 1.2. Assume that a finite set P of polygonal disks in R2 tiles R2 giving
rise to a repetitive tiling T . Then, for any r > 0, there exists a finite collection of
polygons Q such that:

• the polygons in Q are patches of T ;
• each patch in Q contains a ball with radius r;
• each patch in Q contains a translated copy of each polygon in P;
• there exists a translation surface S such that Q tiles S.

The link between tilings of R2 and tilings of a translation surface goes through
the notion of branched translation surface that is developed in Section 2. In Section
3 we recall some background on tiling spaces seen as dynamical systems. Finally
Sections 4 and 5 are respectively devoted to the proofs of Theorems 1.1 and 1.2.

2. Branched Translation surfaces

A branched translation surface can be described using its local models.
• Choose an integer n > 0 and a real number ε > 0.
• Consider n disks D1, . . . , Dn with radius ε, each of them being chosen in

a different translation surface. We can manage so that when ε is small
enough, if a singularity of a translation surface is in one of the disks, it is
at its center.

• For each l = 1 to n, consider the disk Dl partitioned in k(l) geodesic sectors
S1, . . . , Sk(l) issued from the origin of the disk.

• Whenever there exists a map from the interior of one sector to another
sector (possibly in another disk) which is an isometry whose derivative read
in the corresponding charts, is the identity, we can identify both sectors
using this map or not1.

• A local model, denoted by LM, is a connected component of the disjoint
union of the disks D1, . . . , Dn quotiented by the above identifications for ε
small enough.

The singular locus, denoted by Sing, of the model type consists in those points for
which any neighborhood is not homeomorphic to a disk. This set is included in the
set defined by the projection to the quotient of the edges of each sector. Notice that
the identification process allows to define a tangent space at each point of the local
model, including on the singular locus. Notice also that the translation structure
on the disks induces an atlas of LM\Sing whose transition maps are translations.
There are 3 types of local models:

• The face type corresponds to the case when n = 1. The singular locus is
then empty.

• The edge type corresponds to the case when:
– n > 1

1This means that if this identification is possible we are allowed to make it or not.
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– each disk is divided in two sectors (with angle π) along a diameter ∆
which has the same direction for each disk;

– identifications are performed so that, for at least one of these disks,
the local model is not homeomorphic to a face type model.

• The vertex type corresponds to the case when :
– n > 1;
– there exists at least a disk for which the number of sectors is greater

than or equal to 2;
– identifications are performed so that, for at least one of these disks,

the local model is not homeomorphic to a face type model nor to an
edge type model.

A local translation is a map from an open set in a local model to an open set in
another local model such that:

• it is a homeomorphism onto its image;
• it maps the singular locus on the singular locus;
• outside the singular locus, it is a translation when read in the charts.

A branched translation surface Sb is a compact metric space such that, there
exists a cover of Sb with open sets Uα such that each Uα is homeomorphic to a
local model and such that the transition maps are local translations where they
are defined. We denote by Sing(Sb) the singular locus of a branched translation
surface Sb. It induces a natural stratification of the branched translation surface in
faces, edges and vertices. A branched translation surface is regular if none of the
local models used to build the branched translation surface contains a singularity
of a flat surface (at its center).
It is clear that a translation surface is a branched translation surface with no
singular locus.

3. Background on Tilings

3.1. Tilings versus dynamics. Let P be a collection of polygons in R2 and let
Ω(P) be the set of all tilings of R2 equipped with an origin 0, that can be constructed
using the polygons in P. We will assume in the remainder of this paper that Ω(P)
is not empty. The group R2 acts naturally on Ω(P):

(T , u) 7→ T + u.

The set Ω(P) is also equipped with a natural metrizable topology. A metric δ
defining this topology can be chosen as follows: Consider in Ω(P) two tilings T and
T ′. Let Bε(0) stand for the open ball with radius ε centered at 0 in R2 and let A
denote the set of ε in (0, 1) such that there exists u in R2, ε-close to Identity, such
that T + u ∩B1/ε(0) = T ′ ∩B1/ε(0). Then :

δ(T, T ′) =
{

inf A ifA 6= ∅
1 ifA = ∅

The set Ω(P) equipped with this topology is clearly compact and the R2-action
is continuous.

3.2. Tilings versus solenoids. Let us now consider the subset Ω0(P) of Ω(P)
which consists in those tilings in Ω(P) such that the origin 0 coincides with a
vertex of one of its tiles.This subset is compact and totally disconnected. It follows
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that Ω(P) has a laminated structure: it is locally homeomorphic to the product
of an open set in R2 by a totally disconnected set. This local structure can be
described more precisely (see [BG] for more details). Consider an open set U in R2

and a clopen (closed open) subset C in Ω0(P). For U and C with small enough
diameter, the map:

U × C → Ω(P)

(u, c) 7→ φ(u, c) = c + u,

is a homeomorphism onto its image. There exists a a finite set of such parametriza-
tions : φi : Ui × Ci → Ω(P), whose ranges cover Ω(P) and such that whenever
the range of two parametrizations φi and φj intersect, the transition map φ−1

j ◦ φi

reads where it is defined:

(∗) φ−1
j ◦ φi(u, c) = (u + ui,j , c− ui,j),

where ui,j is a vector in R2 which depends only on the two parametrizations. We
say that Ω(P) equipped with such an atlas is a R2-solenoid. In the following it
will be more convenient to consider Ω(P) equipped with a maximal atlas, that is
to say, a maximal collection of parametrizations whose associated transition maps
have the above prescribed form (∗).

3.3. Canonical box decomposition and branched surface. A polygonal box
is the image by a parametrization of a product U × C where U is the interior of
a polygon in R2 and C is a clopen set in Ω0(P). A polygonal box decomposition
of Ω(P) is the data of a collection of polygonal boxes such that the closure of the
union of these boxes is a cover of Ω(P). Associated with each polygon Pl in P,
there is a polygonal box Bl made of all the tilings in Ω(P) such that 0 belongs to
the interior of a translated copy of Pl. The collection B(P) = {B1, . . . ,Bl} is a box
decomposition which is called the canonical box decomposition of Ω(P).
In Ω(P) we consider the reflexive and symmetric relation R defined by T RT ′ if
and only if there exists a box Bl in B(P) and a sequence of pairs (Tn, T ′

n)n≥0 in Bl

such that:
• (Tn, T ′

n) tends to (T , T ′) as n goes to +∞;
• for each n ≥ 0, the origin 0 in Tn and T ′

n project to a same point in the
interior of Pl.

We denote by ∼ the equivalence relation generated by the relation R, by Ω(P)/∼
the quotient space and by π : Ω(P) → Ω(P)/∼ the associated projection. As
a consequence of the rigidity of the transition maps (∗), we easily get (see [AP],
[BG], [S] and [SW]):

Proposition 3.1. The quotient space Ω(P)/∼ is a regular branched translation
surface whose faces are translated copies of the polygons in P.

3.4. Invariant measures and homology. Consider the set of faces of the branched
surface P = {P1, . . . Pi, . . . , Pn} that we equip with an orientation. Consider also
the collection E = {E1, . . . , Ej , . . . , Em} of edges also oriented. Notice that if there
is no natural choice for the orientation of the edges, the orientation of R2 induces
a natural orientation on each Pi.
For i = 1, 2, the vector space of linear combinations with real coefficients of the
oriented edges (resp. faces) is denoted by Ci(Ω(P)/∼, R), its elements are called
i-chains and the coefficients are called coordinates. By convention, for each 1-chain
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or 2-chain c, −c is the chain which corresponds to an inversion of the orientation
of the faces and edges.
We define the linear boundary operator

∂ : C2(Ω(P)/∼, R)) → C1(Ω(P)/∼, R)

which assigns to any face, the sum of the edges at its boundary weighted with a
positive sign (resp. negative) if the induced orientation fits (resp. does not fit) with
the orientation chosen for these edges. The kernel of the operator ∂ is a vector
space of 2-cycles that we denote:

H2(Ω(P)/∼, R) = Ker ∂.

It is well known that (up to an isomorphism), the vector space H2(Ω(P)/∼, R) is
a topological invariant of Ω(P)/∼ that coincides with the 2nd singular homology
group of the branched surface Ω(P)/∼ (see for example [Spa]).
The canonical orientation of the faces allows us to characterize the vector space
H2(Ω(P)/∼, R) in C2(Ω(P)/∼, R). For any edge Ej in E one can split the faces
which contain Ej in 2 components: the positive ones for which the orientation on
the edge is induced by the natural orientation of the face and the negative ones
for which the orientation is different. A 2-chain is a 2-cycle if and only if for each
edge Ej the sum of the coordinates of the positive faces is equal to the sum of the
coordinates of the negative faces. This gives a set of m linear equations with integer
coefficients for n variables (where m is the dimension of C1(Ω(P)/∼, R) and n the
dimension of C2(Ω(P)/∼, R) ). These equations are called the switching rules.
Let us call positive a 2-cycle with coordinates greater than or equal to zero and
denote by H+

2 (Ω(P)/∼, R), the closed cone of positive cycles. Finally, let us say
that a 2-cycle is integral if its coordinates are integers.

Consider the set of finite measures M(Ω(P)) on Ω(P). There exists a natural
map:

Ev : M(Ω(P)) → C2(Ω(P)/∼, R)
defined by:

Ev(µ) =
i=n∑
i=1

µ(π−1(Pi))
λ(Pi)

.Pi,

where λ stands for the Lebesgue measure in R2.
The group R2 acts continuously on the compact metric space Ω(P) and thus, the
cone of finite invariant measures Minv(Ω(P)) is not empty. The smooth structure
of the branched surface allows us to show that this cone satisfies the following
property:

Proposition 3.2. [BG]

Ev(Minv(Ω(P))) ⊂ H+
2 (Ω(P)/∼, R).

4. Proof of Theorem 1.1

Lemma 4.1. There exist integral 2-cycles in H2(Ω(P)/∼, R) which are positive
and different from zero.

Proof of Lemma 4.1: Let µ be a finite invariant measure in Minv(Ω(P)). Using
Proposition 3.2, the 2-chain Ev(µ) is a 2-cycle in H+

2 (Ω(P)/∼, R) which is not
zero. This means that its coordinates (µt

1, . . . , µ
t
n) satisfy the switching rules,and
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are nonnegative and not all of them equal to zero. Let H+,+
2 (Ω(P)/∼, R) be the

intersection of the cone H+
2 (Ω(P)/∼, R) with the cone generated by the Pi’s with

strictly positive coefficients in Ev(µ). Since the switching rules consist in a system
of linear equations with integer coefficients, the set of rational solutions (rational
coordinates) is dense in the set of solutions. It follows that there exist 2-cycles with
rational coordinates arbitrarily close to Ev(µ) in the interior of H+,+

2 (Ω(P)/∼, R).
By multiplying such a rational cycle by an appropriate integer we conclude the
proof of Lemma 4.1. �

Consider now an integral positive 2-cycle different from zero in H2(Ω(P)/∼, R)
and with coordinates (l1, . . . , ln), we construct inductively a translation surface
tiled with the polygons in P as follows:

• Let Q0 be a collection of polygons which consists in n piles of polygons,
where, for each i ∈ {1, . . . , n}, the ith pile is made of li copies of the polygon
Pi .

• Choose a polygon in Q0, say one copy of Pi1 in the ith1 pile. We denote by
S1 the surface which consists in Pi1 and call Q1 the collection Q0 where
one polygon Pi1 has been taken out.

• Choose a free edge of S1 (i.e. an edge on the boundary of S1) and a polygon
Pi2 in Q1 such that S1 and Pi2 correspond to faces of different signs sharing
this common edge. We denote by S2 the surface with boundary which
consists in gluing S1 and Pi2 along their common edge. We call Q2 the
collection Q1 where one polygon Pi2 has been taken out.

• Choose a free edge in S2 and a polygon Pi3 in Q2, such that S2 and Pi3

correspond to faces of different signs sharing this common edge. We denote
by S3 the surface with boundary which consists in gluing S2 and Pi3 along
their common edge. We call Q3 the collection Q2 where one polygon Pi3

has been taken out.
• We iterate this process which necessarily has to stop because we started

with a finite collection of polygons Q0.

Assume we reached a step l with a surface Sl which is composed of l′i polygons Pi

for i = 1, . . . , n, and that we cannot go on. This means that for each free edge E
of the surface Sl, there is no polygons in Ql which can share this edge with Sl and
with a different sign. This implies that the coordinates l′i satisfy the switching rules
and that the free edge E appears by consecutive pairs (the edges are adjacent) on
the boundary of Sl and the sign of Sl is different for both members of the pair. It
follows that we can glue both parts of Sl along the edge E and do it for all free
edges of Sl. We get this way an oriented closed surface S which naturally inherits
a translation structure and is tiled by polygons in P. This completes the proof of
Theorem 1.1.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 requires more information on tiling spaces dynamics.
Let T be a tiling constructed with a collection of polygons P and consider the
closure Ω(T ) of the R2-orbit of T in Ω(P). It turns out (see for instance [KP]) that
the R2-action is minimal on Ω(T ) if and only if the tiling T is repetitive.
Assume now that T is repetitive. A polygonal box decomposition of Ω(T ) is the
data of a collection of polygonal boxes in Ω(P) such that the closure of the union
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of these boxes is a cover of Ω(T ). In [BG], one can find a proof of the following
statement:

Proposition 5.1. [BG] Let T be a repetitive polygonal tiling of R2. For each
r > 0, there exists a box decomposition Br = {B1, . . . , Blr} of Ω(T ) such that for
each l = 1, . . . , lr, the box Bl is the image by a parametrization of a product Ul×Cl

where Cl is a clopen set in Ω0(P) and the polygon Ul

• is a patch of T ;
• contains a ball with radius r;
• and contains a translated copy of each polygon in P.

Using this proposition, the proof of Theorem 1.2 follows exactly the same lines as
the proof of Theorem 1.1 using the box decomposition Br instead of the canonical
box decomposition of Ω(P) and the existence of a finite invariant measure for the
R2-action with support in Ω(T ).
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