
Reasoning with Temporal Constraints in RDF�

Carlos Hurtado1 and Alejandro Vaisman2

1 Universidad de Chile
churtado@dcc.uchile.cl

2 Universidad de Buenos Aires
avaisman@dc.uba.ar

Abstract. Time management is a key feature needed in any query lan-
guage for web and semistructured data. However, only recently this has
been addressed by the Semantic Web community, through the study of
temporal extensions to RDF (Resource Description Framework). In this
paper we show that the ability of the RDF data model of handling un-
known resources by means of blank nodes, naturally yields a rich frame-
work for temporal reasoning in RDF. That is, even without knowing the
interval of validity of some statements we can still entail useful knowledge
from temporal RDF databases. To take advantage of this, we incorpo-
rate a class of temporal constraints over anonymous timestamps based
on Allen’s interval algebra. We show that testing entailment in temporal
graphs with the constraints proposed reduces to closure computation and
mapping discovery, that is, an extended form of the standard approach
for testing entailment in non-temporal RDF graphs.

1 Introduction

The Resource Description Framework (RDF) [22] is a metadata model and lan-
guage recommended by the W3C in order to create an infrastructure that will
allow to build the so-called Semantic Web. In the RDF model, the universe to
be modeled is a set of resources, essentially anything that can have a univer-
sal resource identifier, URI. The language to describe them is a set of binary
predicates denoted properties. Descriptions are statements of the form subject-
predicate-object. Both subject and object can be anonymous objects, known as
blank nodes. In addition, the RDF specification includes a built-in vocabulary
with a normative semantics (RDFS) [6]. This vocabulary deals with inheritance
of classes and properties, as well as typing, among other features that allow de-
scribing the concepts and relationships that may exist in a community of people
and software agents. The RDF specification can be seen as a graph where each
subject-predicate-object triple is represented as a node-edge-node structure.

Time is present in almost any Web application. Thus, there is a clear need
of applying temporal database concepts to RDF in order to be able to repre-
sent temporal knowledge. We illustrate this claim with the following motivat-
ing example, where RDF data is used to describe a collection of web services.
� This research was supported by Millennium Nucleus, Center for Web Research (P01-

029-F), Mideplan, Chile. C. Hurtado was supported by FONDECYT 1030810, Chile.

Reasoning with Temporal Constraints in RDF

Web services are software applications that interact using web standards. The
Semantic Web has been proposed as a tool for making applications able to au-
tomatically discover or invoke web services. In this way, ontologies of services
could be used by service-seeking agents for representing a service profile (a mech-
anism for describing services offered by a web site). Our example is based on
the web service ontology introduced by Antoniou et al [5] for a non-temporal
RDF model. In order to keep track of the changes that can occur throughout
the life cycle of the web service we introduce temporal features to a standard
RDF graph representing the ontology, according to [17].

Figure 1 shows an example of an RDF representation of an evolving ontology
for a web service denoted Sport News, first offered by the sports network ESPN,
and later by another network, Fox Sports. The web site delivers up-to-date ar-
ticles about sports. As input, the service receives a sports category and the
customer’s credit card number; it returns the requested articles. The arcs in the
graph are labeled with their interval of validity. 1 The interval [0,3] over the edge
between ‘Sport News’ and ‘ESPN’ means that the triple (Sports News, provided
by, ESPN) is valid from time instant “0” to time instant “3”. Analogously, the
interval [3,Now] over the edge between ‘Sport News’ and ‘ESPN’ means that the
triple (Sports News, provided by, Fox Sports) is valid from time instant “3” to
the current time. For the sake of clarity, no temporal labels over an edge means
that triple is valid in the interval [0,Now]. There is also an anonymous node
(of type “service provider”), created at time “6”. Anonymous (or blank) nodes
are needed in an RDF graph when we do not know the global name for a node
(or there is no name for it, no matter the reason why), and we need to write
statements about this node. The impact of blank nodes in a temporal setting
was given an in-depth study in [17,16].

1.1 Problem Statement

In former work we studied the problem of adding the time dimension to RDF
documents, and we discussed the main problems and possibilities that arise when
we address the problem of keeping track of the changes occurring over an RDF
graph. We denoted this problem Temporal RDF [17,16]. The work was based on
the theoretical framework provided by Gutierrez et al [15].

In a nutshell, a Temporal RDF graph is a set of temporal triples labeled with
their interval of validity. These triples are of the form (a, b, c) : [t1, t2]. The graph
in Figure 1 is an example of a Temporal RDF graph. We showed that temporal
RDF can be implemented within the RDF specification, making use of a simple
additional vocabulary. We also defined constructs that allow moving between
point-based and interval-based representations in a discrete time dimension. An
RDF graph can be regarded as a knowledge base from which new knowledge,

1 Note that the standard graph(ical) representation of an RDF graph is not the most
faithful to convey the idea of statements(triples) being labeled by a temporal element.
Technically, temporal labels should be attached to a whole subgraph u

p→ v, and not
only to an arc.

C. Hurtado and A. Vaisman

provided by

service

offered service

parameter

input

input

sports category

customer ccard

article

provided by

input

output

(5411) 4892−8939

www.foxsports.com

(5411) 4902−0462

www.espn.com

phone

ESPN

phoneFox Sports

web page
web page

[3,Now]

output

[3,Now]

[3,Now]

X

service provider

type

type

type
type

domain
domain

domain

domain

sportsNews

type type

provided by

sc

[6,Now]
type

[0,3]

[0,3]

[0,3]

Fig. 1. An RDF graph for web services profiling of Sports networks

i.e., other graphs, may be entailed. In temporal RDF, entailment is slightly more
involved. We studied this problem, and called it temporal entailment.

An important issue here is the treatment of blank nodes. Defining the seman-
tics of temporal RDF in the presence of blank nodes turns out to be non-trivial,
because we cannot consider the temporal database as the union of all its snap-
shots (a snapshot at time t of a temporal RDF graph G is the corresponding
subgraph formed by triples labeled by an instant t). This means that even though
two temporal graphs G1 and G2 are such that all snapshots of G1 entail a snap-
shot of G2, we cannot say that G1 entails G2.

The work in [16] also includes a first study of the problem of anonymous time
in temporal RDF graphs, i.e., graphs containing temporal triples labeled with
blanks. In this setting, we admit triples of the form (a, b, c) : [X], where X is an
anonymous timestamp stating that the triple (a, b, c) is valid in some time we
do not exactly know yet (in [16] we called these graphs general temporal graphs
to differentiate them from temporal graphs without blank timestamps). In our
model, the sets of anonymous timestamps and blank nodes are disjoint, as we
will explain later in the paper (actually they belong to different frameworks,
namely time labels and triples, respectively).

Temporal blanks considerably extend the capabilities of the temporal RDF
model by allowing representing incomplete temporal information [20]. In this

Reasoning with Temporal Constraints in RDF

paper we show that they also allow defining temporal constraints over the model.
In this way, a richer treatment of time, along the lines of constraint databases
[10] is possible (in relational constraint databases, the time of validity of a tuple
can be defined by a formula Φ). There has been a substantial amount of work
from the Artificial Intelligence community on temporal reasoning systems that
use constraint propagation. Thus, adding constraints to temporal RDF allows
reasoning about RDF graphs in order to infer useful knowledge. However, as
Allen points out [2,3], the point-based representation of time cannot naturally
capture some interval relationships used in reasoning about constraints. Thus, we
also include intervals with anonymous starting and/or ending points (anonymous
intervals) in in temporal RDF graphs.

Example 1. Consider the following extended temporal graph:

{(a, sc, b) : i1, (b, sc, c) : i2, i1 during i2}.

here i1 and i2 are intervals whose endpoints are unknown. The temporal triple
(a, sc, b) : i1 states that (a, sc, b) holds in all the timestamps inside the interval
(which are infinite), and the constraint i1 during i2 states that the i1 is inside
i2. Then, our approach allows inferring the graph {(a, sc, c) : i3}. Intuitively,
this means that, given the original temporal graph, we can infer that in some
unknown interval i3, a was a subclass of c.

Relation Meaning
[l1, l2] before [l3, l4] l2 < l3
[l1, l2] meets [l3, l4] l2 = l3
[l1, l2] overlaps [l3, l4] l3 < l2 < l4 and l1 < l3 < l2
[l1, l2] starts [l3, l4] l1 = l3 and l2 < l4
[l1, l2] during [l3, l4] l3 < l1 and l2 < l4
[l1, l2] ends [l3, l4] l1 > l3 and l2 = l4
[l1, l2] equals [l3, l4] l1 = l3 and l2 = l4

Fig. 2. Basic Interval Relations

The temporal RDF graphs with constraints and anonymous intervals we intro-
duce in this paper (denoted c-temporal graphs), expand the expressive power of
the temporal RDF data model, allowing to represent information about events
occurring within some unknown intervals. Without this capability, this informa-
tion could not be represented in a natural way, as the following example shows.

Example 2. Let us suppose that, in the example depicted in Figure 1, we are
not certain about the time when ‘Sport News’ was transferred from ESPN to
Fox Sports. A c-temporal graph for representing this situation is shown in Figure
3. The triple (Sports News, provided by, ESPN) is now labeled with an anony-
mous interval i1. (instead of [0,2]). Analogously, (Sports News, provided by, Fox
Sports) is labeled with an anonymous interval i3 (instead of [3,Now]). We have

C. Hurtado and A. Vaisman

provided by

service

offered service

parameter

input

input

sports category

customer ccard

article

provided by

input

output

(5411) 4892−8939

www.foxsports.com

(5411) 4902−0462

www.espn.com

phone

ESPN

phoneFox Sports

web page
web page

output

X

service provider

type

type

type
type

domain
domain

domain

domain

sportsNews

type

provided by

sc

type

type

i1

i1

i1

i2

i4
i3

i3

i3

Fig. 3. The RDF graph of Figure 1 with Anonymous Time

also labeled with anonymous intervals the triples (Sports News, type, offered
service), and (X,type, service provider) has been labeled with temporal blanks.

Now, we can use the basic Allen’s interval relations [2] depicted in Figure 2
to place constraints over the anonymous intervals. As an example, we can use
the constraint i1 meets i3 to state that Fox Sports started offering ‘Sport News’
immediately after ESPN stops offering it. We can also state that ESPN started
offering the service at time 0 with the constraint i1 starts [0,Now]. We can
model that during interval i1 the service was of type ’offered service’ using the
constraint i1 during i2.

Although the addition of anonymous time enriches the model, it introduces some
problems that we study in the paper. Many of the results obtained in [16] do
not work any more in the presence of temporal blank nodes and constraints.
For example, the notion of slice closure must be modified. Consequently, testing
temporal entailment must be modified accordingly, as well as the proofs that were
obtained under the assumption that the temporal labels were only concrete time
instants.

Even though our approach is close to temporal logics and constraint databases,
temporal reasoning about RDF and RDFS ontologies introduces additional diffi-
culties not present in the other settings. In this paper we study in detail temporal
graphs with constraints, extending our previous results to these kinds of graphs.

Reasoning with Temporal Constraints in RDF

1.2 Contributions and Outline

In this paper we incorporate temporal constraints and intervals (with unknown
starting and/or ending time instants) to temporal RDF graphs, and denote the
resulting graphs c-temporal graphs.

We extend temporal graphs in a stepwise manner. First, we include intervals
and study the inference problem for temporal graphs with intervals. We consider
intervals over a dense time domain, which allows a full treatment of intervals in
temporal RDF.

Then, we generalize the former framework incorporating a fragment of Allen’s
interval algebra [2] for temporal constraints. We formalize c-temporal graphs, al-
lowing modeling anonymous timestamps, anonymous intervals, and constraints
over them. We define and study a notion of entailment for c-temporal graphs.
Further, a new notion of closure is proposed for c-temporal graphs, and tempo-
ral entailment is characterized in terms of this notion of closure. In particular,
we show that testing entailment for temporal graphs with the fragment of con-
straints studied, reduces to closure computation and mapping discovery, that
is, an extended form of the standard approach for testing entailment in non-
temporal RDF graphs. We also provide an algorithm for computing the slice
closure of c-temporal graphs.

The remainder of the article is organized as follows. Section 2 reviews related
work. Section 3 presents preliminary notation related to RDF and RDFS and
temporal RDF graphs from previous work [15,17,16]. Section 4 studies tempo-
ral graphs with intervals. Section 5 introduces constraints to temporal graphs
and their semantics, presents the notion closure, and characterizes entailment in
terms of them. Finally, in Section 6 we conclude and outline some prospects for
future work.

2 Related Work

The RDF model was introduced in 1998 by the World Wide Web Consortium
(W3C) [22]. Formal work includes the study of formal aspects of RDF data and
query languages [14,15,28], considering RDF features like entailment, the impact
of blank nodes, reification, premises in queries, and the RDFS vocabulary with
predefined semantics. Several query languages for RDF have been proposed and
implemented. Some of them along the lines of traditional database query lan-
guages (e.g. SQL, OQL), others based on logic and rule languages. Good surveys
are [18,21]. Temporal database management has been extensively studied, includ-
ing data models, mostly based on the relational model and query languages [26],
leading to the TSQL2 language [25]. Chomicki [10] provides a comprehensive
survey of temporal query languages. Beyond the relational model, several works
proposed temporal extensions for non-temporal models, like the semistructured
data model and XML [9,4,12,13,24].

Regarding temporal extensions to RDF, Visser et al [27] proposed a temporal
reasoning framework for the Semantic Web, which has been applied in BUSTER,
an ontology-based prototype developed at the University of Bremen, supporting

C. Hurtado and A. Vaisman

the so-called concept@location in time type of query. Bry et al [8,7], in the context
of the REWERSE project [23], have stated the need of providing query languages
and models for the web with temporal reasoning capabilities.

To the best of our knowledge, our previous work [17,16] constitutes the first
formal study of temporality issues in RDF graphs and RDF query languages. In
the present paper we continue this line of research with the study of Temporal
RDF graphs with constraints and anonymous time.

3 Preliminaries

3.1 RDF Notation

The following is an excerpt of notation introduced in [6,15,19] that will be used
subsequently in this paper.

In this paper we work with RDF graphs whith RDFS vocabulary. An RDF
graph is a set of triples (v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L), where U is a set
of URIs, B is a set of blank nodes, and L is a set of literals (the sets are pairwise
disjoint). An RDF term is a URI, a blank, or a literal. We consider RDF graphs
that can mention the RDFS vocabulary. The RDFS vocabulary defines Classes
as sets of resources. Elements of a class are known as instances of that class.
To state that a resource is an instance of a class, the property rdf:type may be
used. The following are the most important classes (in brackets the name we will
use in this paper) rdfs:Resource [res], rdfs:Class [class], rdfs:Literal [literal],
rdfs:Datatype [datatype], rdf:XMLLiteral [xmlLit], rdf:Property [property].
Properties are binary relations between subject resources and object resources.
The built-in properties are: rdfs:range [range], rdfs:domain [dom], rdf:type [type],
rdfs: subClassOf [sc], rdfs:subPropertyOf [sp].

In this paper, we work with a characterization of entailment of RDF graphs
in term of the notions of map and closure.

A map is a function μ : (U ∪ B ∪ L) → (U ∪ B ∪ L) preserving URIs and
literals, i.e., μ(u) = u and μ(l) = l for all u ∈ U and l ∈ L. Given a graph G,
we define μ(G) as the set of all (μ(s), μ(p), μ(o)) such that (s, p, o) ∈ G. We will
overload the meaning of map and speak of a map μ : G1 → G2 if there is a map
μ such that μ(G1) is a subgraph of G2. A map μ is consistent with G if μ(G) is
an RDF graph, i.e., if s is the subject of a triple, then μ(s) ∈ U ∪ B, and if p
is the predicate of a triple, then μ(p) ∈ U . In this case, we say that the graph
μ(G) is an instance of the graph G. An instance of G is ground if μ(G) does not
mention blanks.

In this paper, we use a working characterization of the standard notion of
entailment between RDF graphs (cf. [19]), which will be denoted by |=. We use
the known notion of closure of a RDFS graph G, denoted cl(G), which is the
maximal graph that can be derived from the set of inference rules given in [19,15].

Theorem 1 (cf. [19,15]). G1 |= G2 if and only if there is a map from G2 to
the closure of G1.

Reasoning with Temporal Constraints in RDF

3.2 Temporal Graphs

In this section, we present in a compressed form relevant notation and results
for temporal graph from previous work [17,16].

A temporal triple is an RDF triple (a, b, c) with a temporal timestamp t, which
is a positive rational number. We will use the notation (a, b, c) : [t]. The snapshot
of a temporal graph G at t, is defined as the graph G(t) = {(a, b, c) | (a, b, c) :
[t] ∈ G}. Usually for a temporal graph G we will apply the same notions used for
standard RDF graphs, for example, we will say “G is ground” meaning that u(G)
is ground, write μ(G) for {(μ(a), μ(b), μ(c)) : [t] | (a, b, c) : [t] ∈ G}, and so on.

Definition 1 (Entailment (c.f. [16])). Let G1, G2 be RDF temporal graphs.
(1) For ground temporal RDF graphs G1, G2 define G1|=τG2 if and only if
G1(t) |= G2(t) for each t; (2) For temporal RDF graphs, define G1|=τG2 if and
only if for every ground instance μ1(G1) there exists a ground instance μ2(G2)
such that μ1(G1)|=τμ2(G2).

Temporal entailment can be characterized in terms of a notion of clousure of
temporal graphs, denoted slice closure.

For an RDF graph H and a time stamp t, define Ht as the temporalization of
all its triples by a temporal mark t, that is, Ht = {(a, b, c) : [t] | (a, b, c) ∈ H}.
The slice closure of G, denoted scl(G), is a temporal graph defined by the
expression

⋃
t(cl(G(t)))t, where cl(G(t)) is any closure of the RDF graph G(t).

Theorem 2 (c.f. [17]). Let G1, G2 be temporal RDF graphs. Then G1 |=τ G2
if and only if there is a map from G2 to scl(G1).

This result yields an algorithm for testing temporal entailment. Indeed, the slice
closure can be obtained by computing the closures of the snapshots of the tem-
poral graph.

4 Temporal Graphs with Time Intervals

In this section we extend temporal graphs introduced in Section 3.2 to model
time intervals defined by timestamps, that is, intervals whose extremes are pos-
itive rational numbers.

4.1 Basic Definitions

We extend temporal triples to triples of the form (a, b, c) : i, where i = [t1, t2] is
an interval defined by the timestamps (positive rational numbers) t1, t2, t1 ≤ t2,
yielding temporal graphs with intervals. For the case where t1 = t2 a triple
(a, b, c) : [t1, t2] is equivalent to temporal triple (a, b, c) : [t1], as defined in Sec-
tion 3.2, therefore temporal graphs with intervals subsume temporal graphs.
Given a temporal graph with intervals G, we denote by I(G) the intervals men-
tioned in G, and denote by T (G) the set of timestamps that appear as bounds
in the intervals in I(G). Two timestamps t1, t2 ∈ T (G) are consecutive if there is

C. Hurtado and A. Vaisman

no timestamp t′ ∈ T (G), such that t1 < t′ < t2. Given an interval i ∈ I(G), we
denote by G(i), the set containing RDF triples (a, b, c) such that (a, b, c) : i ∈ G.

A temporal graph with intervals represents a (possibly infinite) temporal
graph, that is, each triple p : [t1, t2] represents the set of temporal triples
{p : [t] | t1 ≤ t ≤ t2}. Given a temporal graph with intervals G, we denote
by G+ the temporal graph that represents G. In this form, the notion of en-
tailment from Definition 1 can be naturally extended to temporal graph with
intervals. Formally, we write G|=τH iff G+|=τH+.

4.2 Reasoning

Theorem 2 also characterizes entailment for temporal graphs with intervals (just
consider the underlying temporal graphs involved). However, the theorem has
no practical application, since underlying graphs (and therefore mappings) may
be infinite. In this section, we give a characterization of entailment that yields
a procedure for the testing entailment of temporal graphs with intervals.

Given two intervals [t1, t2], [t3, t4], we write that [t1, t2] contains [t3, t4] iff
t1 ≤ t3 and t4 ≤ t2. Given an interval i and a set of intervals S, we denote by
CoverSet(i, S) the set containing intervals i′ ∈ S such that i′ contains i.

The following definition extends the notion of slice closure (Section 3.2) to
temporal graphs with intervals.

Definition 2. Let G be a temporal graph with intervals. The slice closure of G,
denoted H = iscl(G), is defined as follows:

1. Let H ′ be the following temporal graph with intervals: for each pair of times-
tamps t1, t2 ∈ T (G), H ′([t1, t2]) = cl(

⋃
i∈CoverSet([t1,t2],I(G)) G(i)).

2. Then, for each set of consecutive timestamps t1, t2, t3, . . . , tn−1, tn in T (G),
we have H([t1, tn]) =

⋂
[ti,tj+1]∈S H ′([tj , tj+1]).

Example 3. Consider the temporal graph with constraints G = {(a, sc, b) :
[1, 3], (b, sc, c) : [2, 4], (a, sc, c) : [3, 5]}. First, we illustrate condition 1 of Def-
inition 2. As an example, consider the two timestamps 2, 3 ∈ T (G). Then
CoverSet([2, 3], I(G)) = {[1, 3], [2, 4]}. Therefore, H ′([2, 3]) = cl((a, sc, b),
(b, sc, c)}), which is {(a, sc, b), (b, sc, c), (a, sc, c)}. Now, in order to explain
condition 2 of Definition 2, consider the set of consecutive timestamps 2, 3, 4, 5
in T (G). Then, H([2, 5]) = H ′([2, 3])∩H ′([3, 4])∩H ′([4, 5]), which is {(a, sc, c)}.

For simplicity, the previous example use only the subclass property (sc). The
example could be easily turned much more complex if we include in the graphs
other RDFS built-in-properties.

Observe that G ⊆ iscl(G). The following lemma states other important
properties of the slice closure.

Lemma 1. Let G be a temporal graph with intervals.
(1) scl(G+) = (iscl(G))+.
(2) G ≡τ iscl(G).

Reasoning with Temporal Constraints in RDF

(3) If there is a triple (a, b, c) ∈ scl(G+)(t) for all timestamps t in some arbi-
trary interval i, then there is an interval i′ ∈ I(iscl(G)) such that i′ contains i
and (a, b, c) : i′ ∈ iscl(G).

We define interval mappings as follows. Given two sets of intervals S, S′ an
interval mapping is a function γ : S → S′, such that for each interval i ∈ S,
i′ = γ(i) should satisfy i′ contains i. When we apply an interval mapping to
a temporal graph with intervals G, we obtain the temporal graph with interval
G′ containing the triples (a, b, c) : γ(i) such that (a, b, c) : i ∈ G. In addition,
we extend maps between temporal graphs (see Section 3.2) to maps between
temporal graphs with intervals.

Theorem 3. Let G, H be temporal RDF graphs with intervals. Then G |=τ H
if and only if there is an interval mapping γ : I(H) → I(G), and a mapping μ
from γ(H) to iscl(G).

Theorem 3 yields a two-steps procedure for testing implication for temporal
graphs with intervals, which requires to first compute a slice closure and then an
interval mapping. In Section 5.4, we study the complexity of testing entailment.

5 Temporal Graphs with Temporal Constraints

In this section, we define temporal graphs with temporal constraints (c-temporal
graphs in short), which generalize temporal graphs with intervals introduced in
Section 4.

5.1 Temporal Constraints

In this paper, we focus on a basic fragment of the known Allen’s interval alge-
bra [2]. The temporal primitive here is an interval [li, lf] which is an ordered
pair of time labels li, lf . Time labels may be timestamps (positive rational num-
bers) or anonymous timestamps, which are temporal variables. In our model
RDF terms and temporal labels belong to different frameworks: time labels and
triples, and are therefore disjoint. Temporal labels are interpreted as points in
the temporal domain, which is the set of positive rational numbers. So we assume
a dense temporal domain.

The algebra considers one of the seven relationships depicted in Figure 2 to
state relationships between intervals. By a temporal constraint we refer to an
expression of the form li ω lj , where ω is one of the seven relationships of
Allen’s algebra.

Given a set of temporal constraints Σ we denote I(Σ) the intervals in Σ
and by L(Σ) the temporal labels that appears in intervals in I(Σ). A map for
a set of temporal constraints Σ is a function γ from I(Σ) to ground intervals
(intervals whose limits are timestamps) preserving timestamps. We denote by
γ(Σ) the set of constraints resulting from Σ by replacing each interval i by γ(i).

C. Hurtado and A. Vaisman

An instance for a set of temporal constraints Σ = {α1, . . . , αn} is a map μ such
that μ(Σ) is ground (i.e., mentions only timestamps) and each γ(αi) holds in the
temporal domain. If Σ is empty the empty set is its unique ground instance. Σ is
consistent iff it has at least one instance. Notice that an empty set of constraints
is consistent. Given two sets of temporal constraints Σ1, Σ2, define Σ1|=constrΣ2
if and only if for each instance γ of Σ1, there is also an instance of γ(Σ2).

Testing entailment and consistency for the class of temporal constraints con-
sidered can be done in polynomial time. Following standard results in inequal-
ity constraints (e.g. [3,1]), we can represent the fragment we presented in a
point based algebra, by building the inequality graph for the labels in the con-
straints (which is a particular case of a temporal constraint network [11]), that
is, a directed graph with a node for each temporal label in L(Σ), and edges
(li, lj) labeled with the arithmetic comparisons =, <, ≤, that models Allen’s
relationships in Σ. As an example, the constraint [l1, l2] during [l3, l4] yields
l1 ≤ l2, l3 ≤ l4, l3 < l1, and l2 < l4. The graph has also edges that capture the
natural ordering between timestamps mentioned in the constraints and between
each pair of time labels that mark the bound of an interval. The arithmetic con-
straint in the inequality graph can be propagated by simple transitive closure
computation, yielding the closed inequality graph, which can be used for imple-
menting an efficient testing of entailment and consistency of a set of constraints.
We refer the reader to e.g., [3,1,11] for further details.

In this paper we consider constraints Σ whose inequality graph is totally
ordered (modulo renaming time labels that are entailed to be equal). Therefore,
even though the intervals themselves may be unknown, the relationship between
any two of them is fully determined by the constraints, that is for all i, i′ ∈ I(Σ)
we have Σ|=constri ω i′ (or the inverse i′ ω i) for some interval relation ω .

5.2 Basic Definitions

We extend the notion of temporal graph to handle anonymous labels in times-
tamps and interval. So we consider a temporal triple to be an element of the
form p : i, where p is an RDF triple and i is an interval.

Definition 3. A temporal graph with temporal constraints (subsequently called
a c-temporal graph) is a pair C = (G, Σ), where G is a graph with temporal triples
and Σ is a set of temporal constraints over the intervals of G.

For simplicity, we sometimes write the temporal constraints and the temporal
triples in a single set. Given a c-temporal graph C = (G, Σ), we denote by I(C)
and L(C) the intervals and time labels that appear in the triples in G.

Interval maps defined in Section 4 can be naturally extended to consider inter-
vals defined with temporal labels. If we apply an interval map ν to a c-temporal
graph C, we obtain another c-temporal graph, denoted ν(C), by renaming each
interval r with ν(r). A time-ground instance of a c-temporal graph C = (G, H)
is a temporal graph with intervals ν(C) (i.e., ν maps each interval to an interval
defined by timestamps) such that ν(Σ) is consistent.

Reasoning with Temporal Constraints in RDF

Definition 4 (Entailment). Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-
temporal graphs. Define C1|=τ(constr)C2 if and only if for each time-ground in-
stance ν1(C1) of C1 there is a time ground instance ν2(C2) of C2 such that
ν1(C1)|=τν2(C2).

Example 4. Let C1 be the c-temporal graph

{(a, sc, b) : i1, (b, sc, c) : i2, i1 during i2, i1 starts [3,now]}.

The following entailment holds: C1|=τ(constr){(a, sc, c) : i3, i3 starts [3,now]}.

The following lemma can be easily verified.

Lemma 2. Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-temporal graphs. If
C1|=τ(constr)C2, then C1|=τ(constr)(G2, ∅).

5.3 Reasoning

First, we extend the interval containment relationship of Section 4.2 to intervals
over anonymous timestamps restricted by constraints. Given a set of intervals
S, and an interval i, we denote by CoverSetΣ(i, S) the set of intervals i′ ∈ S
that can be entailed from Σ to contain i.

The following definition extends the notion of slice closure (Definition 2) to
c-temporal graphs.

Definition 5. Let C = (E, Σ) be a c-temporal graph. The slice closure of C,
denoted H = cscl(C), is a c-temporal graph (F, Σ), where F is defined as
follows:

1. Let F ′ be the following c-temporal graph. For each pair of labels l1, l2 ∈ L(C),
F ′([l1, l2]) = cl(

⋃
i∈CoverSetΣ([l1,l2],I(C)) C(i)).

2. Then, for each set of consecutive labels l1, l2, l3, . . . , ln−1, ln in L(C), we have
F ([l1, ln]) =

⋂
[lj ,lj+1]∈S F ′[lj, lj+1].

Lemma 3. Let C = (G, Σ) be a c-temporal graph.
(1) For each time-ground instance γ(C) of C, γ(cscl(C)) = iscl(γ(C)).
(2) cscl(C)≡τ(constr)C.

A c-temporal graph is consistent if it has at least one temporal-ground instance.
Since we can entail anything from a inconsistent c-temporal graph, we will study
entailment from consistent graphs. In order to simplify the presentation, we
subsequently assume that c-temporal graphs C = (G, Σ) are consistent.

We define interval mappings between c-temporal graphs. Let C1 = (G1, Σ1)
and C2 = (G2, Σ2) be two independent c-temporal graphs. An interval mapping
from C2 to C1 is a function μ : I(C2) → I(C1), which satisfies Σ1|=constr(Σ2 ∪
Σu), where Σu is the following set of constraints {l3 ≤ l1, l2 ≤ l4 : μ([l1, l2]) =
[l3, l4]}.

Theorem 4. Let C1 = (G1, Σ1), C2 = (G2, Σ2) be c-temporal RDF graphs.
Then C1|=τ(constr)C2 if and only if there exist an interval map γ from C2 to C1
and a map μ from γ(C2) to cscl(C1).

C. Hurtado and A. Vaisman

5.4 Algorithm and Complexity

Theorem 4 yields an algorithm for testing the entailment C1|=τ(constr)C2, which
consists of the following two steps: (i) compute the slice closure cscl(C1) by
applying rules (1) and (2) of Definition 5; and (ii) find an interval map γ from
C2 to C1 and a map μ from γ(C2) to cscl(C1). Step (ii) is similar to finding a
mapping between non-temporal graphs [15]. In the remaining of this section we
study the complexity of the two steps of the algorithm.

A standard result regarding RDFS entailment is that the closure cl(G) of
an RDF G graph is of polynomial size in |G|; computing the closure also takes
polynomial time (an upper bound for both is O(n3), where n is the number
of RDF terms mentioned in G). We consider a polynomial p(|G|) that bounds
the size of the closure and the time it takes to compute it. We also consider a
polynomial q(|Σ|) that bounds the time of computing an implication of temporal
constraints.

Lemma 4. Let C = (G, Σ) be a temporal graph with intervals and let (E, Σ) =
cscl(C). (1) The graph E is of size O(N2p(|G|)), where N = |L(C)|. (2) The
slice closure cscl(C) can be computed in time O(N4(q(|Σ| + p(|G|))).

Better complexity bounds for computing the slice closure could be certainly
obtained by developing more efficient algorithms, an issue we do not address in
this paper. We next show that the decision problem of entailment for c-temporal
graphs is NP-complete, thus maintaining the complexity of temporal graphs (and
also of the non-temporal case).

Theorem 5. (1) Given two temporal c-temporal graphs C1, C2, the problem of
deciding whether C1|=τ(constr)C2 is NP-complete. (1) Given two temporal graphs
with intervals G1, G2, the problem of deciding whether G1|=τG2 is NP-complete.

As stated previously, for testing whether C1|=τ(constr)C2, Theorem 4 requires the
inequality graph of Σ1 to yield a total ordering of time labels. However, if this
is not the case, the condition can be adapted to be required by each topological
ordering of the inequality graph. So, testing entailment for graphs with few
topological orderings still does not add extra complexity to RDF entailment.
Further techniques can be used to make this case of entailment more efficient.
As an example, if the graph has connected components it is enough to consider
combinations of topological orderings inside each component, while keeping a
fixed ordering for the components themselves, thus reducing significantly the
processing. We left this problem for future work.

6 Conclusion

In this paper we have extended temporal RDF graphs with a class of temporal
constraints over intervals. In this way, temporal reasoning about these constructs
is enabled. First, taking advantage of the support of blank nodes in RDF, we

Reasoning with Temporal Constraints in RDF

introduced intervals such that boundaries may be anonymous timestamps. We
developed a notion of closure for temporal RDF graphs with intervals.

Then, we introduced c-temporal graphs (temporal graphs with constraints
and the intervals previously defined), and gave a notion of closure for these
temporal graphs. We also proved that entailment from such graphs reduces to
finding mappings to the “closed” version of the graphs. These results show that
query processing for temporal graphs with constraints also reduces to computing
a matching between the query and the closed graphs.

We left as future work the study of entailment for more expressive classes
of constraints based either in Allen’s interval algebra or point algebras [10]. In
particular, we plan to study entailment for the case where the constraints do
not entail a total ordering of anonymous timestamps. We are also beginning to
work on an implementation of the theoretical framework presented here.

References

1. F. Afrati, C. Li, and P. Mitra. On containment of conjunctive queries with arith-
metic comparisons. In UCIISC Technical Report, 2003.

2. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), pages 832–843, 1983.

3. J. Allen. Time and time again: The many ways to represent time. International
Journal of Intelligent Systems, 6(4), pages 341–355, 1990.

4. T. Amagasa, M. Yoshikawa, and S. Uemura. A temporal data model for XML
documents. In Proceedings of DEXA Conference, pages 334–344, 2000.

5. G. Antoniou and F. van Harme. A Semantic Web Primer. MIT Press, London,
England, 2004.

6. D. Brickley and R.V.(Eds.) Guha. RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, 10 February 2004.

7. F. Bry, B. Lorenz, H.J. Ohlbach, and S. Spranger. On reasoning on time and
location on the web. In Proceedings of ICLP03, Mumbai, India, 2003.

8. F. Bry and S. Spranger. Temporal constructs for a web language. In Proceedings
of the 4 Workshop on Interval Temporal Logics and Duration Calculi, ESSLLI’03,
Austria, 2003.

9. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured
data. In Theory and Practice of Object Systems, Vol 5(3), pages 143–162, 1999.

10. J. Chomicki. Temporal query languages: a survey. In Proceedings of First Interna-
tional Conference on Temporal Logic. Lecture Notes in Artificial Intelligence 827,
Springer-Verlag, Bonn, Germany, 1994.

11. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. In Artificial
Intelligence 40:61, pages 49: 61–95, 1991.

12. C.E. Dyreson. Observing transaction-time semantics with TTXPath. In Proceed-
ings of WISE 2001, pages 193–202, 2001.

13. C. Gao and R. Snodgrass. Temporal slicing in the evaluation of XML queries. In
Proceedings of the 29th International Conference on Very Large Data Bases, pages
632–643, Berlin, Germany, 2003.

14. C. Gutierrez, C. Hurtado, and A.O. Mendelzon. Formal aspects of querying RDF
databases. In Proceedings of SWDB, pages 293–307, 2003.

C. Hurtado and A. Vaisman

15. C. Gutierrez, C. Hurtado, and A.O. Mendelzon. Foundations of semantic web
databases. In 23rd. Symposium on Principles of Database Systems (PODS’04),
pages 95–106, 2004.

16. C. Gutierrez, C. Hurtado, and A. Vaisman. Introducing time into RDF. In (to
appear) IEEE Transactions on Knowledge and Data Engineering, Special Issue on
Knowledge and Data Engineering in the Semantic Web Era, 2007.

17. C. Gutierrez, C. Hurtado, and A. Vaisman. Temporal RDF. In European Confer-
ence on the Semantic Web (ECSW’05) (Best paper award), pages 93–107, 2005.

18. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query
languages. In International Semantic Web Conference, 2004.

19. Patrick Hayes(Ed.). RDF semantics. W3C Recommendation, 10 February 2004.
20. M. Koubarakis. Temporal query languages: a survey. Information Systems,

19(2):141-174, 1993.
21. A. Magkanaraki, G. Karvounarakis, T.T. Anh, V. Christophides, and D. Plex-

ousakis. Ontology storage and querying. Technical Report No. 308 Foundation
for Research and Technology Hellas, Institute of Computer Science, Information
System Laboratory, 2002.

22. F. Mannola and E.(Eds.) Miller. Rdf primer. W3C Recommendation, 10 February
2004.

23. The REWERSE Project. http://www.rewerse.net.
24. F. Rizzolo, A.O. Mendelzon, and A. Vaisman. Indexing temporal XML documents.

In Proceedings of the 30th International Conference on Very Large Databases, pages
216–227, Toronto, Canada, 2004.

25. Richard Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, 1995.

26. A. Tansel, J. Clifford, and S. Gadia (eds.). Temporal Databases: Theory, Design
and Implementation. Benjamin/Cummings, 1993.

27. U. Visser. Intelligent information integration for the semantic web. Lecture Notes
in Artificial Intelligence (3159), 2004.

28. G. Yang and M. Kifer. On the semantics of anonymous identity and reification.
In Proceedings of the First International Conference on Ontologies, Databases and
Applications of Semantics (ODBASE), pages 1047–1066, 2002.

	Introduction
	Problem Statement
	Contributions and Outline

	Related Work
	Preliminaries
	RDF Notation
	Temporal Graphs

	Temporal Graphs with Time Intervals
	Basic Definitions
	Reasoning

	Temporal Graphs with Temporal Constraints
	Temporal Constraints
	Basic Definitions
	Reasoning
	Algorithm and Complexity

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

