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In this article, we review how a condensate builds-up in finite time, by a
self-similar blow-up of the solution of three different models of kinetic equa-
tions. After the blow-up time, the growth of the coherent phase is described
by equations coupling the energy distribution for the normal gas and the
condensate.

1. INTRODUCTION

Bose–Einstein condensation in atomic vapors opens the way to test
predictions of the equilibrium and non-equilibrium quantum statistical
physics. As the formation of such a Bose–Einstein condensate is a dynam-
ical process there is hope to compare the predictions of the quantum
kinetic theory with experimental results.

In this article, we describe three models for condensation: the first
one is the Kompaneets equation for a mixture of photons and electrons;
the second one is the full quantum Boltzmann–Nordheim equation for
Bose particles interacting with an uniform scattering cross section; in the
third one we introduce a local approximation of this quantum Boltzmann
equation that preserves many of the properties of the original collision
integral.

Essentially all three models possess the main properties needed for
condensation: conserved quantities, an H-theorem that drives the system
to equilibrium, Bose–Einstein distribution at equilibrium, positivity of the
solutions if one starts with a positive initial condition, stationary fluxes,
etc. Moreover, there is a lack of smooth solution beyond a certain critical
value of density (for instance) at a given temperature.
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We shall focus our study on the finite time singularities of those mod-
els under certain conditions. The idea that finite time singularities in solu-
tions of kinetic equations may explain Bose–Einstein condensation seems
to be due to Ref. 1, who applied it to the Kompaneets equation, as consid-
ered below. Finally, we discuss the post-singularity behavior, the condensa-
tion and the growth of long range phase order.

2. KINETIC EQUATIONS FOR CONDENSATION

2.1. Radiation in a Homogeneous Plasma: Kompaneets Equation

Electromagnetic radiation (or photons) interact with charged particles
(practically electrons) via Compton scattering. Whenever the electrons are
at equilibrium, the energy distribution of the photons relaxes according to
a Fokker–Planck equation, derived first by Kompaneets,2 that reads in a
dimensionless form as:

∂

∂t
f (ε, t)= 1

ε2

∂

∂ε

[
ε4
(
∂f

∂ε
+f +f 2

)]
. (1)

In this equation, ε >0 is the energy of the photons, with a statistical dis-
tribution f (ε, t). This energy distribution evolves by Compton scattering,
as represented by the right-hand-side of the equation (1). This equation
makes sense in the forward time direction only. In such a case, if f (ε, t)≥
0 for some t >0, it remain so at later time. Furthermore, this equation pre-
serves the total number density of photons:a

dN

dt
=0 with N =

∫ ∞

0
f (ε, t)ε2dε

if no flux boundary conditions are satisfied:

Q(ε, t)≡ ε4
(
∂f

∂ε
+f +f 2

)
=0 for ε→0 and ε→∞. (2)

That there is relaxation to equilibrium follows from the existence of a
Lyapunov functional. Define

F [f ]=
∫ ∞

0
[εf − ((1+f ) log(1+f )−f logf )] ε2dε, (3)

aNote that for photons the energy is: ε=|p|, where p is the momentum of the photon, there-
fore the phase space volume element is p2dp= ε2dε.
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Fig. 1. Dependence of the chemical potential µ on the number density of photons
N =2ζ3(e

µ). The chemical potential is negative and it vanishes for Nc =2ζ3(1)≈2.404 . . . .

then, if f (ε, t) satisfies Eq. (1) with no flux boundary conditions (2), one
can show that:b

dF

dt
=−

∫ ∞

0

ε4

f (1+f )
(
∂f

∂ε
+f +f 2

)2

dε≤0. (4)

At equilibrium there is no flux of photons in the energy space: ∂f
∂ε

+f +
f 2 =0, so that, this gives the solution

f eq(ε)= 1
eε−µ−1

, (5)

here µ< 0 is a parameter that depends on the initial number density of
photons, by

N(t=0)=
∫ ∞

0

ε2

eε−µ−1
dε=2

∞∑
n=1

enµ

n3
=2ζ3(e

µ), (6)

where ζs(z)=
∑∞
n=1

zn

ns
is the incomplete Riemann ζ–function.

If the initial number density is smaller than a critical value for which
µ vanishes, that is if N <Nc =2ζ3(1)≈2.404 . . . , then the system is driven
to equilibrium (5) with a negative and finite chemical potential given by
(6) and plotted in Fig. 1.

bThis requires that f (ε, t) belongs to a space of functions such a that the right-hand side of
(3) and (4) is well defined, something we shall assume to be true.
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This can be illustrated with a numerical simulation. Instead of the
distribution f (ε, t) we used the smoother function: N(x, t)=∫ x0 f (ε, t)ε2dε.
Because f (ε, t) > 0 one has that N(x, t) is a growing function and
f (x, t)= 1

x2
∂N
∂x

. Integrating (1) once, one gets

∂tN(x, t)=Q(x, t)≡x2 ∂
2N

∂x2
−2x

∂N

∂x
+x2 ∂N

∂x
+
(
∂N

∂x

)2

. (7)

where Q(x, t) is the particle flux from large energies to low energies. The
boundary condition (2) at x = 0 is now ∂N(x,t)

∂x
= 0. For the numerics we

have implemented a simple routine in Mathematica.
In Fig. 2, an initial condition N(t,0)= 2 relaxes to equilibrium with

µ=−0.145.
However, if the initial number density is greater than the critical num-

ber, Nc = 2ζ3(1)≈ 2.404 . . . the smooth equilibrium distribution cannot be
a solution.

Zel’dovich and Levich1 have shown that an initial distribution may
develop a shock wave in finite time. Under certain approximations they
derived a Burgers-like equation (ρt − 2ρρε = 0) for the spherical distribu-
tion (ρ(ε, t)= ε2f (ε, t)). Later, Caflisch and Levermore3 showed, using,
in particular, a Comparison Principle, that the formation of a conden-
sate does not change the entropy. From the physical point of view one
expects condensation to zero energy, that is the spontaneous occurrence of

Fig. 2. (Color online) Evolution of N(x, t) as a function of x. The initial condition is such
a that N(x→ ∞)= 2< 2ζ3(1). We also plot the final evolution approach equilibrium distri-

bution Neq(x)=
∫ x

0
s2

es−µ−1 ds with µ=−0.144885.
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a singularity for ε = 0 in the solutions of (1) leading to a solution such
that limη→0

∫ η
0 x

2f (x, t)dx= n0> 0 and tends to the equilibrium form as
t→∞:

f (ε, t)→ 1
eε −1

for ε >0.

The free parameter n0 is actually the mismatch between the total number
of particles and the critical one, i.e. n0 =N −Nc.

However, let-us comment that finite time singularities in the sense
of Zel’dovich and Levich, may occur independent of the initial mass is
greater or smaller than Nc. According to Ref. 4, “there exist solutions of
(1) and (2) which develop singularities near ε=0 in a finite time, regardless
of how small the initial number of photons is.”

In Sec. 3.1 we study the structure of this singularity and show how
a self-similar solution sets-up. In particular it is shown that the self-simi-
lar solution, when conveniently crafted, is valid before the singularity and
remains so after the singularity.

2.2. The Quantum Boltzmann (or Boltzmann–Nordheim) Equation

Soon after the final conception of non-relativistic quantum theory,
Nordheim5 proposed a Boltzmann-like quantum kinetic theory for gases
of Bosons and Fermions, describing in particular relaxation to equilib-
rium. This kinetic equation describes the dynamics of the momentum dis-
tribution that is also the Wigner transform of the one-particle density
matrix. The Boltzmann–Nordheim kinetic equation for a homogeneous
distribution in space for Bosons is greatly simplified for isotropic distri-
butions and for s-wave scattering, dominant at low energies, the domain
where Bose–Einstein condensation occurs. After integrations over various
angles, one introduces as a new variable the kinetic energy εp= |p|2

2 .
Lastly, the only scaled quantity that appears in the kinetic equation

is the transition rate in the energy space, defined as:

Sε1,ε2;ε3,ε4 =a2min
{√
ε1,

√
ε2,

√
ε3,

√
ε4
}
,

where a is the scattering length (we shall take a2 = 1 throughout the
analysis). The quantum Boltzmann–Nordheim kinetic equation takes the
rather simple form:6,7

∂tnε1(t) = Coll[nε1 ]≡ 1√
ε1

∫
D

dε3 dε4 Sε1,ε2;ε3,ε4

× (nε3nε4(1+nε1)((1+nε2)−nε1nε2(1+nε3)(1+nε4)
)
. (8)



C. Josserand et al.

where ε2 = ε3 + ε4 − ε1 must be positive, therefore one integrates in a
domain D such as ε3 +ε4>ε1 (see Fig. 3). This is an equation of evolution
toward positive times of the energy distribution nε1(t). It satisfies conser-
vation of mass (or number of particles, the integral

∫∞
0 nε

√
εdε) and of

energy (the integral
∫∞

0 nεε
√
εdε).

The H–theorem for the entropy

S =
∫ ∞

0
[(1+nε) log(1+nε)−nε lognε ]

√
εdε (9)

shows that solutions of (8) relax to

neq
ε =1/(e(ε−µ)/T −1)

(T absolute temperature in energy units) constrained by the conservation
of the number of particles and of the energy.

Take the initial condition (A and γ are related to the initial number
of particles and energy)

nε(t=0)=A
(

1+γ ε+ (γ ε)2

2

)
e−γ ε (10)

the relaxation preserves
∫∞

0 nε
√
εdε and

∫∞
0 εnε

√
εdε. That yields a rela-

tion between A and the dimensionless chemical potential µ/T characterizing
the asymptotic state:

ε 3ε 1

IV

III

II

I

O

ε 1

εεε 3  4  1

ε 4

+ =

Fig. 3. The integration domain D= I∪ II∪ III∪ IV of the kinetic Eq. (8).
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A= 216
(
ζ3/2(e

µ/T )
)5/2

175
√

5
(
ζ5/2(e

µ/T )
)3/2 . (11)

At low-densities (small A) µ is negative as in an ideal classical gas.
As A increases µ increases too, until a critical value for µ= 0 and inde-

pendent of γ : Ac = 216(ζ3/2(1))
5/2

175
√

5(ζ5/2(1))
3/2 =3.91868 . . . If A>Ac, it is impossible

to satisfy (11) and the transition predicted by Einstein8 occurs.
The question now is: let nε(t = 0), e.g. the above form (10), be a

smooth initial (non-equilibrium) condition for (8), what is the time evolu-
tion of nε(t)? In particular what happens whenever A is larger than the
critical amplitude Ac? In Sec. 3.2 we describe the finite time singularity
of eq. (8) by means of a self-similar solution of the full kinetic equation
(Fig. 4).

2.3. Local (or Fokker-Planck) Approximation of the Boltzmann–Nordheim
Kinetic Equation

A local approximation of Boltzmann–Nordheim equation (8) can be
derived the same way as the Landau kinetic equation for fast particles.
The core of the approximation is the assumption that the main contribu-
tion to the collision integral on the right-hand-side of (8) comes from the
neighborhood of the intersection of the four domains: I, II, III, and IV in
Fig. 3, where ε1 ≈ ε2 ≈ ε3 ≈ ε4. Following the same approach as in Refs. 9
and 10 one multiplies the right-hand side of (8) by

√
ε1ξ(ε1), where ξ(ε1)

Fig. 4. The amplitude of the initial condition A as a function of µ/T . The asymptotics for
µ→0− reaches the critical value Ac =3.91868 . . .
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is a test function, and integrates over all ε1>0. Interchanging the order of
integration, one obtains:

I ≡
∫ ∞

0
Coll[n]ξ(ε1)

√
ε1dε1 = 1

4

∫ ∞

0
Sε1,ε2;ε3,ε4δ(ε1 + ε2 − ε3 − ε4)

× (nε3nε4(1+nε1)((1+nε2)−nε1nε2(1+nε3)(1+nε4)
)

× (ξ(ε1)+ ξ(ε2)− ξ(ε3)− ξ(ε4)) dε1dε2dε3dε4.

Using the change of variables: εi = ε1(1 + qi) (for i = 2,3,4) and
expanding both parenthesis to second order in ε1 one has

I ≈ 1
16

∫ ∞

0
Sε1,ε1(1+q2);ε1(1+q3),ε1(1+q4)

(
q2

2 −q2
3 −q2

4

)2

×
(
n4
ε1

∂2

∂ε2
1

(
1
nε1

)
−n2

ε1

∂2 log(nε1)

∂ε2
1

)
∂2ξ(ε1)

∂ε2
1

×ε7
1δ(ε1(q2 −q3 −q4))dε1dq2dq3dq4.

Because Sλε1,λε2;λε3,λε4 =√
λSε1,ε2;ε3,ε4 and extending the integrals over

the qi ’s to the full real line, one finds

I ≈ S0

∫ ∞

0
ε

13/2
1

(
n4
ε1

∂2

∂ε2
1

(
1
nε1

)
−n2

ε1

∂2 log(nε1)

∂ε2
1

)
∂2ξ(ε1)

∂ε2
1

dε1,

where

S0 = 1
16

∫ ∞

−∞
S1,(1+q2);(1+q3),(1+q4)

(
q2

2 −q2
3 −q2

4

)2
δ(q2 −q3 −q4)dq2dq3dq4.

Finally, integrating twice by part and assuming that boundary terms van-
ish and because the test function ξ(ε1) is arbitrary, one finds that the
collision integral may be approximated by the right-hand-side of:

∂tnε(t)= S0√
ε

∂2

∂ε2

[
ε13/2

(
n4
ε

∂2

∂ε2

(
1
nε

)
−n2

ε

∂2 lognε
∂ε2

)]
. (12)

This approximation preserves the conservation of total mass N =∫∞
0 nε

√
εdε and of the kinetic energy E = ∫∞

0 εnε
√
εdε, if the boundary

conditions for Eq. (12) are:

∂

∂ε

[
ε13/2

(
n4
ε

∂2

∂ε2

(
1
nε

)
−n2

ε

∂2 lognε
∂ε2

)]
= 0, ε→0, ε→∞, (13)

ε13/2

(
n4
ε

∂2

∂ε2

(
1
nε

)
−n2

ε

∂2 lognε
∂ε2

)
= 0, ε→0, ε→∞. (14)
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Moreover, the entropy (9) also increases continuously up to its equilibrium
value, if the no flux boundary conditions (13) and (14) are satisfied. This
equilibrium is reached when: nε = 1

e
ε−µ
T −1

, as for the original Boltzmann

equation (8).
Same conclusions and questions as in Sec. 2.2 arise here for equation

(12) with the boundary conditions (13) and (14): if (10) is the initial con-
dition,c and if A<Ac =3.91868 . . . (independently of the value of γ ), then
solutions of Eq. (12) relaxes to equilibrium (11) but if A>Ac this cannot
happen.

3. FINITE-TIME SINGULARITIES BEFORE CONDENSATION

3.1. Finite-Time Singularity of Solutions of the Kompaneets Equation

We shall use Eq. (7) instead of (1). The interest of this choice is that
a singular part of the distribution f (ε, t) is replaced simply by a finite and
positive value of N(x, t) at x= 0. More importantly, after the singularity
the equation continues to make sense and it describes well the formation
and growth of the condensate, the no-flux boundary condition ∂N

∂x
= 0 at

x=0 leaves free the value of N(x=0, t).
For low-energies x≈0 one neglects formally in (7) the terms propor-

tional to x and x2 and obtains the eikonal equation ∂tN(x, t) = (
∂N
∂x

)2
that develops a derivative jump in finite time for a large class of initial
conditions. Such a jump is regularized by the “diffusive” term x2 ∂2N

∂x2 . A
self-similar solution of (7) of the form

N(x, t)= [x0(t)]
2φ

(
x−x0(t)

[x0(t)]2

)
(15)

is possible, near t=0, if ẋ0 =−c and φ(s) satisfies the ordinary differential
equation:

φ′′ +φ′2 = cφ′.

Its solution is

φ(s)= ln
(

1+ ec(s−s0)
)

+φ0, (16)

φ′(s)= c

2

(
1+ tanh

( c
2
(s− s0)

))
.

cNote that the initial condition (10) is chosen in a way that dnε
dε

= d2nε
dε2 = 0 at ε= 0, in order

to satisfy the boundary conditions (13) and (14).
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Here c2 is the flux of particles to the origin coming from infinity , s0 and
φ0 are fixed by the boundary conditions, in particular as s→−∞ one has
that φ→0, therefore φ0 =0.

The self-similar evolution (15) is shown in Fig. 5.
From the structure of (15) one sees that at the origin x=0, N(x, t) is

not singular as t→0−, in fact it is zero. However the derivative:

∂N

∂x
|x=0 =φ′

( −1
x0(t)

)

jumps from zero for t <0 to +c, for t >0. Note that this self-similar solu-
tion formally does not satisfy the boundary condition ∂N

∂x
=0 at x=0. Sim-

ilarly (15) is valid near the origin x≈0 only and the outer behavior of the
self-similar solution (15): N(x, t)= c(x− x0(t)) should match the non-sin-
gular large energy behavior and the boundary condition at x= 0, see the
numerical evolution of the full Eq. (7) in Fig. 6.

For t >0 the condensate fraction starts to increase and reach equilib-
rium at a value N − Nc with the equilibrium distribution
Neq(x)=

∫ x
0

s2

es−1ds for which µ=0.
The interest of this simple model of condensation is to show that the

same analysis and basically the same equations can be used to describe
what happens before and after blow-up. This is significant, because it
gives ideas on how to handle the far more complicated problem of the

Fig. 5. (Color online) Plot of the self-similar evolution of N(x, t) (15), for different times
from t=−0.1 to t=0.3 (the singularity is at t=0) and we used x0(t)=−ct , c=1, and s0 =0.
One sees that the post-singularity is well described by (15). Notice that the smooth transition
from a linear behavior to N = 0 takes place in a interval of values of x becoming narrower
and narrower as t tends to 0 like (−t)2.
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Fig. 6. (Color online) Evolution of N(x, t) as a function of x. The initial condition is such
that N(x→∞)=3>2ζ3(1).

singularity in the full Boltzmann–Nordheim kinetic equation, the purpose
of the coming section.

3.2. Finite–Time Singularity in the Quantum Boltzmann Equation

If A>Ac, we expect condensation to zero momentum (zero energy in
the isotropic case we study), namely the spontaneous occurrence of a sin-
gularity in the solutions of (8) for ε=0 (a singularity leading to a solution
of the type nε= n0√

ε
δ(ε)+ϕε , ϕε smooth function,d) an interesting phenom-

ena on its own. Therefore we expect that just before the singularity the
occupation number (i.e. the energy distribution nε , a dimensionless num-
ber in quantum mechanics) of small energies becomes very large, nε � 1,
which allows to neglect, for that purpose, the quadratic term in Eq. (8)
with respect to the cubic one. This yields a simpler “degenerate” form of
the kinetic equation6,12 (Fig. 7):

∂tnε1(t) = Coll3[n]≡ 1√
ε1

∫
D

dε3dε4Sε1,ε2;ε3,ε4

× (nε3nε4nε1 +nε3nε4nε2 −nε1nε2nε3 −nε1nε2nε4

)
(17)

with ε2 = ε3 + ε4 − ε1 and the domain D is defined by the condition
ε3 + ε4>ε1 (see Fig. 3).

dThe singular function δ(ε) is such that
∫∞

0 g(ε)δ(ε)dε=g(0), for any smooth function g(ε).
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Fig. 7. (Color online) Growth of the condensate N(0, t) as a function of t . The initial con-
dition is such a that N(x→∞)=3>2ζ3(1). Inset: detail near the singularity.

The equilibrium solution: nε = T
ε−µ of this equation follows from the

maximization of entropy S =∫∞
0 log(nε(t))

√
εdε. This is a formal solution

only, because it does not yield a converging expressions for the energy and
the total mass.e For finite total mass and energy the solution of the cubic
equation (17) spreads forever in energy space,11 a spreading stopped in the
full Boltzmann–Nordheim equation by the quadratic part of the collision
term in (8).

Besides the equilibrium solution, Zakharov found two others
stationary solutions6,12

nε =P 1/3ε−3/2, and nε =J 1/3ε−7/6. (18)

Here (P/J ) is the (energy/mass) flux in the ε-space. Those solutions can
be derived by a Kolmogorov–like analysis, for P and J constant, but, as
shown by Zakharov, they make vanish exactly the collisional integral in
(17). However, it does not seem possible to use this kind of solution for
the present problem because we expect the collapse to be a dynamical pro-
cess, so that stationary solutions can help at best to understand qualita-
tively the transfer of mass and energy through the spectrum. In particular,
as shown later on, the actual exponents for the self-similar solution do not
follow from simple scaling estimates (in Zel’dovich terminology this makes
a self-similarity of the second kind).

eGenerally speaking, this kind of divergence at “large momentum/energy” is irrelevant for the
present analysis, because for this momentum, the cubic approximation to the collision oper-
ator is not valid anymore, so that the power solution for nε merge with solutions “at large”
(actually non-small) energies that take care of the convergence of the integrals for mass and
energy.
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We remark that, because of its structure (in particular because the
right-hand-side of (8) is cubic homogeneous in nε), Eq. (8) admits a self-
similar dynamical solution which tends to accumulate particles at zero
energy (although, at the singularity time there is still no mass stacked at
zero energy). A general self-similar solution is of the form:

nε(t)= 1
τ(t)ν

φ

(
ε

τ(t)

)
, (19)

where τ(t) goes to zero as t→ t∗ and ν >0. Naturally, this kind of singu-
larity has no sense outside of the limit range of validity of the quantum
Boltzmann equation, that is for time scales of the order or shorter that of
the collision time: tcoll, i.e. (19) is valid for |t∗ − t |� tcoll only. Putting (19)
into (17) and imposing separation of pure temporal (τ(t)) and re-scaled(
ω= ε

τ(t)

)
variables, one has:

Coll3[φ(ω)]
(νφ(ω)+ωφ′(ω))

=−τ(t)2ν−3 dτ(t)

dt
≡1 (20)

for ν >1 one has thatf

τ(t)= (2(ν−1)(t∗ − t)) 1
2(ν−1) . (21)

Moreover φ(ω) satisfies an integro-differential equation

νφ(ω)+ωφ′(ω) = Coll3[φ(ω)]≡ 1√
ω

∫
D

dω3 dω4Sω,ω2;ω3,ω4

×φωφω2φω3φω4

(
1
φω

+ 1
φω2

− 1
φω3

− 1
φω4

)
(22)

together with the boundary conditions (here we have chosen an arbitrary
normalization of φ)

φ(ω) → φ0 as ω→0, (23)

φ(ω) → 1
ων

as ω→∞ (24)

the large ω behavior for φ(ω) is such a that, as τ(t)→ 0, the function
nε(t), as given in (19) does not depend on time as ε�τ(t). The non-linear
integro-differential equation (22) and the boundary conditions: (23) and
(24) define a kind of non-linear eigenvalue problem. Here φ0 and ν>1 are
the only remaining undefined parameters.

f For ν=1 one has that τ(t) decreases to zero in infinite time as τ(t)∼ e−t .
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Several solutions of the kind (19) were first considered in Ref. 13.
Indeed, Svistunov displays a bunch of possible self-similar solutions with
ν = 3/2, ν = 5/2, ν = 7/6 and, finally, a solution with an exponent ζ
which “apparently, . . . cannot be determined from general considerations.”
Svistunov,13 as well as in a later paper,14 considered that the relevant value
for ν is ν = 7/6. Later on, Semikoz and Tkachev15 recognized a signifi-
cant difference between the Kolmogorov–Zakharov exponent 7/6 ≈ 1.167
and their observed numerical value ν≈1.24. High numerical resolution is
required for a result of this kind, therefore it is conceivable that Svistunov
and kagan et al.13,14 considered the exponent 7/6 as the correct one.

As suggested in Ref. 16 the exponent ν is a non-linear eigenvalue
of (22) allowing to satisfy the boundary conditions (23) and (24), which
makes a similarity of the second kind. Improving the numerics of Ref. 15
we have obtained, in Ref. 16, a power law spectrum φ(ω)∼1/ων with ν≈
1.234 (see Fig. 8).

Besides the direct numerical evidence of Ref. 15, 16 no physical or
mathematical insight seems to give the exact value of the exponent ν but
various bounds can be found. We have seen that ν > 1, and it is easy
to prove that ν < 3/2. The total mass inside the peak cannot diverge (at
ε=0). Therefore let be ε∗(t)= ε∗τ(t) the “stretched” peak energy (ε∗ a
constant), then:

Npeak =
∫ ε∗(t)

0
τ(t)−νφ

(
ε

τ(t)

)√
εdε= τ(t)(3/2−ν)

∫ ε∗

0
φ (ω)

√
ωdω (25)

because the integral on the right-hand side is a pure number, one has
that ν <3/2. From a physical point of view one expects that ν >7/6 too,
because for ν <7/6 the flux of particles

Jpeak =
∫ ε∗(t)

0
Coll3[nε1 ]

√
ε1dε1 = τ(t)(7/2−3ν)

∫ ε∗

0
Coll3[φ(ω1)]

√
ω1dω1

vanishes as t → t∗ (or τ(t)→ 0), but for ν > 7/6 it diverges allowing the
possibility to feed the singularity at ε=0.

Another relevant physical quantity is the entropy of the peak

Speak =
∫ ε∗(t)

0
log[nε1 ]

√
ε1dε1 = τ(t)3/2

∫ ε∗

0
(log[φ(ω1)]−ν log τ(t))

√
ω1 dω1.

It vanishes as t→ t∗ (or τ(t)→ 0) as well as the rate of entropy produc-
tion at the peak, which is a better defined quantity because it could give
a convergent result:

Rpeak =
∫ ε∗(t)

0

Coll3[nε1 ]
nε1

√
ε1dε1 = τ(t)−2ν+7/2

∫ ε∗

0

Coll3[φω1 ]
φω1

√
ω1 dω1
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Fig. 8. Self-similar evolution from Ref. 16. The distribution function nε(t) (at times chosen
for successive increase of nε=0(t) by a factor 5). The different time plots show a clear self-
similar evolution. One sees the build-up of the power law distribution −1.234 from the large
energies to the small ones, as well as the ε−ν time independent behaviour of the solution in
a range expanding toward small ε as time goes near the blow-up time.

also vanishes as t → t∗ (or τ(t)→ 0) because ν < 7/4. To conclude, the
bounds for ν are:

7/6<ν<3/2. (26)

It seems difficult to get more informations concerning solution(s) of
(22). Indeed, there is not even a proof that there is a single eigenvalue
ν of (22) with (23) and (24). The possible ν could well make a dis-
crete set, either finite or denumerable, or a continuous set or even fancier
Cantor-like sets. It could well be that, in the case of multiple non-linear
eigenvalues ν, the dynamics selects the unique observed value ν=1.234 . . . ,
as it happens in the well-known Kolmogorov, Petroskii, Piskunov problem
for instance. We shall present some remarks pertinent to this problem in
Sec. 3.4.
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3.3. Finite–Time Singularity in the Local Approximation of the Quantum
Boltzmann Equation

We expect that the local Fokker–Planck approximation (12) of the full
Boltzmann–Nordheim equation gives information on the finite time col-
lapse of the distribution. We carried a numerical simulation of Eq. (12)
with the boundary conditions (13) and (14). As expected for A>Ac an
accumulation of matter appears at low energies indicating a possible finite
time singularity (see Fig. 9). We plan to present a full analytical and
numerical study of this Fokker–Planck equation in the coming future.

Looking for a self-similar solution of the same type as (19) and keep-
ing only the cubic term on nε because it makes the leading order for large
nε , one obtains the fourth order ordinary differential equation:

νφ(ω)+ωdφ
dω

= 1√
ω

d2

dω2

[
ω13/2φ4 d

2

dω2

(
1
φ

)]
. (27)

As in previous section φ(ω) → ω−ν as ω → ∞ and φ(ω)→φ0 as
ω→0, the remaining boundary conditions should avoid divergences in
both limit.

An important characteristic of the cubic part of the local approxi-
mation (12), is that it has the same Kolmogorov–Zakharov spectra (18)
as the full Boltzmann–Nordheim equation. Moreover the right-hand-side
of equation (27) acts in a similar way as the collision integral of the

Fig. 9. (Color online) Log-log plot of the evolution of n(ε, t) as a function of ε at different
times for A= 4>Ac = 3.918 . . . . With a rather crude numerical implementation (a simple set
of instructions in Mathematica) an incipient power law is observed. The straight line repre-
sents the slope −1.35 as a reference.



Self-similar Singularities in the Kinetic

right-hand-side of (22) on power-law distributions. In fact, let be a power
law solution nε = ε−s then the right-hand-side of (12) gives

1√
ε

d2

dε2

[
ε13/2n4

ε

d2

dε2

(
1
nε

)]
=9s(s−1)(s−7/6)(s−3/2)ε−3s+2.

Therefore s = 0, s = 1, s = 7/6, and s = 3/2 make vanish the right-hand-
side of (27) with the same exponents as for the full Boltzmann–Nordheim
equation.

The asymptotic analysis of equation (27) as ω → ∞ leads to a
Laurent series:

φ(ω)= 1
ων

(
1+

∞∑
n=1

an(ν)ω
2n(1−ν)

)
. (28)

This asymptotic series (that is seemingly divergent, because its general
term grows faster than n!) could be pushed, in principle, up to very large
order. The two first coefficients are

a1(ν) = −3
8
ν(3−2ν)(−7+6ν),

a2(ν) = − 3
128

ν(−3+2ν)(2+3ν)(−7+6ν)(−13+10ν)(−11+10ν).

However this seems useless because of the singularity at ω=0.
The asymptotic near ω=0 suggest to look for a solution of the form

φ(ω)=φ0 + δφ(ω),
however, the structure of the fourth-order differential operator of right-
hand-side of (27) leads to exponentially small corrections δφ(ω)∼ e−1/ω3/2

that cannot balance the left-hand-side νφ0. We will see in next section that
this difficulty does not show up for the full integro-differential problem.

Because it does not seem possible to find a solution of the simi-
larity equation (27) with the imposed boundary conditions, the singular-
ity appears to be of the same type as the one discussed before for the
Kompaneets equation, of the form

nε(t)= 1
ε0(t)

α
φ̄

(
ε− ε0(t)

ε0(t)
β

)

with α > 0, and β > 1. The function ε0(t) satisfies an auxiliary equation.
This example shows the sensitivity of the scenario of self-similar collapse
to details of the equation of evolution. Actually, the local approximation
(12) of the Boltzmann–Nordheim equation shares many properties (con-
servation laws, scaling, etc) of the latter, but the scenario for blow-up are
completely different.
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3.4. Remarks on the Eigenproblem νφ(ω)+ωφ′(ω)=Coll3[φ(ω)].

In this section, we will comment on the eigenvalue problem, equation
(22). As for the local model, one may construct order by order a Laurent
expansion of the form of (28) for large ω. Integrating formally Eq. (22),
one transfoms it into the integral equation:

φ(ω)= 1
ων

− 1
ων

∫ ∞

ω

ων−1
1 Coll3[φ(ω1)]dω1. (29)

Introducing φ(ω) = 1/ων into the right-hand-side, one obtains the next
order term in the Laurent expansion at large ω, and so forth:

φ(ω)= 1
ων

− Cν

2(ν−1)ω3ν−2
− CνDν

8(ν−1)2
1

ω5ν−4
+O

(
1

ω7ν−6

)
. (30)

The function C(ν) is defined by the action of the collision functional on
a power law Coll3[ω−ν ]≡Cνω−3ν+2, that is12

Cν =
∫
I

√
zx−νy−νz−ν

(
1+ zν −xν −yν)

×
(

1+ z3ν−7/2 −x3ν−7/2 −y3ν−7/2
)
dx dy,

where z = x + y − 1 and the integral is done in the region I (taken
ε1 ≡ 1) of Fig. 3. Although the convergence of individual integrals is for
ν <5/4, cancellations make the full result convergent in a wider range of
ν, the result is plotted in Fig. 10. As Cν , the function Dν is the next order
correction and it may be expressed in terms of integrals which, in sake of
simplicity, are not written explicitly here.g

The convergence of the integral Cν indicates that one has, in some
sense, locality of the interactions in the energy space: interaction is mostly
between particles with similar energies. This assumption was used in the
expansion (30). Moreover, the local approximation of the collision integral
by a differential operator, as done in Sec. 2.3, is justified by the locality of
the collision integral. On the other hand, the function Cν plays an impor-
tant role in relevant physical quantities. In fact, the flux of matter:

J =
∫ ω

0
Coll3[nω]

√
ωdω= Cν

3(7/6−ν)ω
3(7/6−ν)

the flux of energy

P =
∫ ∞

ω

Coll3[nω]ω
√
ωdω= Cν

3(3/2−ν)ω
3(3/2−ν)

gOne notices that Dν vanishes for ν= 11/10 and ν= 13/10, as the local approximation (see
a2(ν) in Sec. 3.3) does.
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Fig. 10. (Color online) Left: Numerical evaluation of the collision prefactor Cν as a function
of ν. As one clearly sees this coefficient vanishes for ν= 1 (the Rayleigh-Jeans distribution),
ν=7/6 (the wave action inverse cascade) and ν=3/2 (the energy cascade). Right: Numerical
evaluation of Dν as a function of ν. Dν vanishes for ν=11/10 and ν=13/10.

the entropy production rate:

R=
∫ ω

0

Coll3[nω]
nω

√
ωdω= Cν

2(7/4−ν)ω
2(7/4−ν).

These quantities are plotted in Fig. 11. As it is well known in the
literature,9,12 the respective limits ν → 7/6 for the flux of matter J and
ν→ 3/2 for the flux of energy P are well defined via the l’Hôpital rule.
Although, in Ref. 17 it has been noticed that because ν ∈ [7/6,3/2] the
power law spectrum 1/ων has a negative entropy production R, in agree-
ment with the qualitative idea that a condensate builds-up, up to now no
way for deriving the exponent ν by looking at the shape of the function
Cν , has been succesfully.

Because Cν vanishes at ν=7/6 and ν=3/2 one sees why it is impos-
sible to get ν=7/6 or 3/2 as it should follow from (18), because the next
order and any higher order correction (30) vanishes since Cν is zero for
both cases, and the Laurent expansion at large ω stops there.

The solution (30) is already singular at zero energy, although we want
to study evolution of a solution remaining finite at zero energy, which
implies φ(ω = 0) = φ0 finite and positive. One may expect to push the
Laurent expansion in order to capture better and better the behavior near
ω= 0. However, the convergence of higher order integrals is not ensured
at all, an probably locality breaks at some order.

The asymptotic near ω = 0 requires that φ(ω) ≈ φ0 + δφ, thus we
should have limω→0 Coll3[φ(ω)] → νφ0. The limit ω→ 0 of the collisional
integral (22) requires that the regions II and III of the integration domain
in Fig. 3 shrink onto the respective axis, giving a contribution of order
ω, the region I shrinks into the origin giving a contribution of the next
order: ω2, while the region IV becomes for all positive values of ω3 and
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Fig. 11. (Color online) Plot of the function Cν , (i) the flux of matter pre-factor Cν
3(7/6−ν)

(ii) the flux of energy pre-factor Cν
3(3/2−ν) (iii) entropy production Cν

2(7/4−ν) (iiii) The vertical
line is the position of the non-linear eigenvalue displayed by the dynamics ν = 1.234... indi-
cating that nothing exceptional happens for this value.

ω4. Finally, whenever appears φω2 one expands ω2 =ω3 +ω4 −ω in ω. We
get at the end:

lim
ω→0

Coll3[φω] = φω

∫ ∞

0
(φω3φω4 −φω3φω3+ω4 −φω4φω3+ω4)dω3 dω4

+
∫ ∞

0
φω3φω4φω3+ω4dω3 dω4 + 2

3
ω(φω−φ0)

∫ ∞

0
φ2
ω4
dω4

+ω
∫ ∞

0

(
φω(φω3 +φω4)−φω3φω4

)
φ′
ω3+ω4

dω3 dω4 +O(ω2).

Therefore, up to zero-order in ω one has

νφ0 =
∫ ∞

0

[
φ0φω3φω4 + (φω3φω4 −φ0φω3 −φ0φω4)φω3+ω4

]
dω3 dω4. (31)

while, up to first-order one gets

δφ′ =η1δφ− η2

ω
δφ+η3, (32)

where the parameters η1, η2, and η3 depend, as φ0, on the full value of φ:
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η1 = 2
3

∫ ∞

0
φ2
ω4
dω4 +

∫ ∞

0

(
φω3 +φω4

)
φ′
ω3+ω4

dω3 dω4,

η2 = 1
φ0

∫ ∞

0
φω3φω4φω3+ω4dω3 dω4>0,

η3 =
∫ ∞

0

(
φ0(φω3 +φω4)−φω3φω4

)
φ′
ω3+ω4

dω3 dω4.

The ordinary differential equation (32) may be integrated:

δφ=ω−η2eη1ω

(
C−η3

∫ ∞

ω

sη2e−η1sds

)
, (33)

where the constant C should be chosen to avoid the 1/ωη2 singular behav-
ior near ω=0. Indeed C= η3�(η2+1)

η
η2+1
1

, therefore the asymptotics near zero of

φ(ω) is

φ(ω)=φ0 + η3

η2 +1
ω+O(ω2). (34)

Although, φ0 as well as η1, η2, and η3 may be approximated by trial
function, it seems hard to match the inner asymptotic (34) with the outer
(30) one.

Finally, let us comment about few questions:

(i) Does Eq. (22) with the boundary conditions (23) and (24) for
ν=7/6 has a solution?

(ii) Does the usual Boltzmann equation for classical hard core parti-
cles (that is Eq. (8) with out the cubic terms) evolves to a finite
time singularity?

(iii) As is known, Bose–Einstein condensation does not hold in an infi-
nite two dimensional space, thus: does the Boltzmann Eq. (8) in
two space dimensions evolves to a finite time singularity?

(iv) Does a Boltzmann equation with general interaction (i.e. with
a non uniform scattering cross section in (8)) and with a gen-
eral power law energy-momentum dependence in a arbitrary space
dimension D, displays a finite time singularity?

Although, for these cases one may guess a self-similar solution of
the form (19) and write an equation of the type of (22) with the bound-
ary conditions (23) and (24) for the self-similar variable, this does not
mean that the eigenvalue problem has a solution. A non-linear eigenvalue



C. Josserand et al.

problem depends explicitly on the details of problem. Indeed, Eq. (27)
seems not to have a solution for ν positive. Let us comment on these
general questions:

(i) Perturbation series as (30) seems to lead to the conclusion that
equation (22) with ν=7/6 satisfying the boundary conditions (23)
and (24) has no solution because Cν , Dν , etc vanish. However a
singular behavior for large ω is possible. Therefore, ν= 7/6 could
be an exact and very singular solution of (22).

(ii) As shown by Carleman,7 for an adequate initial distribution,
the solution of classical Boltzmann equation for hard spheres
is bounded for t > 0. Therefore, a self-similar solution of the
form (19) displaying finite-time singularity is impossible. This
result could be expected from a more physical point of view.
Although the classical Boltzmann equation possess Kolmogororv–
Zakharov spectra for flux of matter to zero energy of the from
nε = J 1/2/ε7/4, J has the wrong sign.h Moreover, it is expected
that the self-similar function φ(·) possess an infinite mass at the
peak near the zero energy. Indeed, the inequality (26) becomes:
7/4<ν<3/2 which is impossible to satisfy.

(iii) The transition rate S in Boltzmann equation (17) and/or (22)
scales as S ∼ ε3D/2−4 in D space dimension. Therefore the Kol-
mogorov–Zakharov spectrum for the particle constant flux J is
nε = J 1/3/εD/2−1/3, while for the energy flux P , one has nε =
P 1/3/εD/2.i Possible non-linear eigenvalue ν are such that: D/2 −
1/3<ν <D/2, recovering the inequality (26) for D= 3. Is known
that, in an infinite two dimensional space the chemical potential
µ never vanishes at equilibrium, therefore no Bose–Einstein arises
formally in two space dimensions, however we do not see any
objection to the existence of a solution for the non-linear eigen-
value problem in two dimensions, indeed the previous inequality
bounds ν by: 2/3<ν < 1 in two space dimensions. Perhaps a sin-
gularity arises but the future evolution does not allow to feed the

hThe sign of Kolmogorov fluxes depends on the derivative of the corresponding curve Cν
(defined in 10 for the four-resonance wave problem) for the classical Boltzmann equation. In
the present case one expects a self-similar solution of the form

nε(t)= t−
ν

2(ν−1) φ

(
ε/t

1
2(ν−1)

)
,

which satisfies the above mathematical and physical requirements.
i For D=2 the energy spectrum and the Rayleigh–Jeans equilibrium are the same, implying a
zero energy flux (for details see Ref. 9).
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condensate with particles or, perhaps, simply there is no finite time
singularity. This question needs more research.

(iv) Let be a energy spectrum (or dispersion relation) ε(p)=pα, in a
space of dimension D, and let be the scattering cross section of
the interations scale like a2(ε)∼ 1/ε2/�. The Kolmogorov solution
for the particle flux becomes nε=J 1/3/εD/α−1/3−2/3�, while for the
energy nε =P 1/3/εD/α−2/3�. The inequality (26) reads

D

α
− 1

3
− 2

3�
<ν<

D

α
.

In principle, no objection arises for the existence of a self-similar solu-
tion of the form (19). Moreover, the reader could check that, for classi-
cal particles in three space dimensions the inequality (26) reads: 7

4 − 1
�
<

ν < 3
2 , which allows solutions if � ≤ 4.j Naturally, � is related with the

law of inter-particle potential energy U(r)∼ 1
r�

, therefore particles inter-
acting more weakly than the usual Maxwell inter-particle force (this is
the classified so called soft potentials: U(r) ∼ 1

r�
for � < 4 of classical

kinetic theory of gases) could display a finite-time singularity of the kind
of (19).

4. SELF–SIMILAR DYNAMICS AFTER COLLAPSE

At the singularity time, if the scenario of self-similar collapse holds,
as seems to be confirmed by numerical studies, the system is not yet at
equilibrium and exchange of mass between the condensate and the rest is
necessary to reach full equilibrium, because the mass inside the singularity
(25) is still zero at t = t∗. Just after collapse this exchange goes from the
normal gas to the condensate, but could reverse later on. This exchange
of mass can be described by extending the full kinetic equation to singu-
lar distributions. As n(ε = 0) and the flux of matter diverge at t = t∗, let
us consider the following ansatz for times larger than t∗: the distribution
function behaves as nε(t)= n0(t)√

ε
δ(ε)+ϕε , with ϕε a smooth function, and

n0(t∗)=0 (see below for a softening of this last condition). Putting this an-
satz into (8) one gets, after splitting the terms with non-zero integral in a
small sphere around ε1 =0:

∂tn0(t) = n0(t)Coll2,1[ϕ], where (35)

jThe flux of particles toward the origin has a negative sign in the local approximation, and
an unknown sign for the full Boltzmann equation.
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Coll2,1[ϕ] =
∫
(ϕε3ϕε4 −ϕε3+ε4(ϕε3 +ϕε4 +1))dε3 dε4;

∂tϕε1(t) = Coll[ϕ]+n0(t)C̃oll2,1[ϕ], where, (36)

C̃oll2,1[ϕ] = 1√
ε1

∫
(ϕε3ϕε4 −ϕε1(ϕε3 +ϕε4 +1))δ(ε1 − ε3 − ε4)dε3 dε4

+ 2√
ε1

∫
(ϕε4(ϕε1 +ϕε2 +1)−ϕε1ϕε2)δ(ε1 + ε2 − ε4)dε3 dε4.

Here we have used the relation
∫∞

0 Sε1,ε2;ε3,ε4

√
εkg(εk)δ(εk)dεk = g(0) for

k=1,2,3 and 4 and Coll[ϕ] is defined in (8). These coupled equations con-
serve mass and energy and an H–theorem holds.k For very short times,
that is |t− t∗|� tB (see below for the definition of tB ), it is possible to cal-
culate a self-similar solution of the form:

ϕε(t)= τ̃ (t)−ν′
�

(
ε

τ̃ (t)

)
(37)

then introducing (37) into the set of coupled equations (35, 36), and keep-
ing the most singular term in all the collision integrals of (35) and (36),
and finally, imposing separation of temporal and re-scaled variables, one
has:

1
n0(t)

dn0(t)

dt
τ̃ (t)2ν

′−2 = K1 =Coll2[�], (38)

dτ̃ (t)

dt
τ̃ (t)2ν

′−3 = K2, (39)

n0(t)τ̃ (t)
ν′−3/2 = K3, (40)

−K2(ν
′�(ω)+ω�′) = Coll3[�]+K3C̃oll2[�]. (41)

Here Coll2[�] and C̃oll2[�] are the quadratic part of Coll2,1[�] and
C̃oll2,1[�], and Coll3[�] is defined in (22).

Integrating (39),

τ̃ (t)= (2(ν′ −1)K2(t− t∗))
1

2(ν′−1) . (42)

Note that after the blow-up, t > t∗, therefore there is a change of sign in
the left-hand-side of (41) compared to (22). After (40) n0(t)=K3τ̃ (t)

3/2−ν′
,

and the compatibility with (38) imposes K1 =
(

3
2 −ν′

)
K2.

For times just after t∗, one expects that the function ϕε will be very
close to the function before the collapse “far” from zero energy, since it

kThe equilibrium solution is the Bose distribution with zero chemical potential: ϕε = 1
eε/T −1

.
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changes infinitely fast near the origin only. Therefore, by continuity this
imposes that � and φ behave in the same way for large ω, and this implies
that the coefficient ν′ is the same as before, thus ν′ ≡ ν. Therefore, in Eq.
(41) together with the normalization condition (38) ν is not the eigenvalue
but the ratio: K3√

K2
. This simple reasoning relates the growth of the “con-

densate” fraction (see Sec. 6 for a discussion of this concept) after col-
lapse to the nonlinear eigenvalue before the collapse. However it remains
to find the detailed structure of the non-linear eigen-problem pertinent for
the post-collapse regime.

5. CONDENSATION OF CLASSICAL NONLINEAR WAVES

The long-time dynamic of random dispersive waves through a system
possess a natural asymptotic closure when there is weak nonlinear inter-
actions.12,18–20 It follows that the long time dynamics is ruled by a kinetic
equation, similar to the usual Boltzmann equation for dilute gases, for the
distribution of spectral densities that takes account of the mode interac-
tion through a non-vanishing collisional integral because of an “internal
resonance.” Moreover, the actual kinetic preserves energy and momentum
and an H-theorem provides an equilibrium characterized by a Rayleigh–
Jeans distribution. The mathematics behind the resonant condition is for-
mally identical to the conservation of energy and momentum in a classical
or a quantum gas. Therefore, an isolated system evolves from a random ini-
tial condition to a situation of statistical equilibrium as a gas of particles
does.

An example of classical wave equation is the defocusing non-linear
Schrödinger or Gross–Pitaevskii equation:

i∂tψ = −�ψ + |ψ |2ψ, (43)

where � stands for the Laplace operator in dimension D and ψ is a
complex classical field.

As it is well-kown,12,26,30 the kinetic equation (17) describes the long-
time evolution of the spectral distribution. A natural question therefore
arises: because the pure cubic kinetic equation displays a finite-time singu-
larity as a precursor of a condensation, can we have a wave condensation
in the Gross–Pitaevskii equation?

According to Refs. 23–27 the Gross–Pitaevskii equation exhibits a
kind of condensation process, a feature that has been accurately confirmed
by numerical simulations of the Gross–Pitaevskii equation (43) in 3D.

In Ref. 26 we have derived a thermodynamic description of this con-
densation mechanism. The classical three dimensional Gross–Pitaevskii
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Fig. 12. (Color online) Plot of the condensate fraction as a function of time for different
number of modes. One sees that as the resolution is increased the mean condensate fraction
decreases.

equation exhibits a genuine condensation process whose thermodynamic
properties are analogous to that of of the Bose–Einstein condensation,
despite the fact that condensation of bosons is inherently a quantum effect.
Our analysis is based on a kinetic equation (17), in which we introduced
an energy cut-off to circumvent the ultraviolet catastrophe inherent to the
classical nature of a wave equation (Rayleigh–Jeans paradox).11,23 More-
over, our theory reveals that in the 2D case the Gross–Pitaevskii equa-
tion does not exhibit a condensation process in the thermodynamic limit,
because of an infrared divergence of the equilibrium number of particles,
in complete analogy with an ideal and uniform two dimension quantum
Bose gas. In Fig. 12, one sees that the condensation depends on the num-
ber of modes used in the simulations indicating that the thermodynamic
limit cannot be achieved in the limit of infinite accurate resolution.

Another important point is that the ultraviolet wave number cut-off
(kc) introduces a critical energy Ec, thus if the initial energy is above this
critical energy no condensation is observed. More precisely, if the initial
kinetic energy is E and N the normalization of the wave function, then if
E<Ec ∼k2

cN wave condensation arises. An important consequence is that
one gets wave condensation ever for a real partial differential equation,
that is if kc →∞. Therefore, one sees that the ultraviolet cut-off plays an
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important role. In classical wave system this cut-off is provided by a dis-
sipative mechanism, however, as it is well known since more than a cen-
tury, a pure conservative wave system requires quantum-physics to avoid
the ultraviolet catastrophe.

The study of the dynamical formation of the condensate in the frame
of the Gross–Pitaevskii equation is close to the scenario presented here. If
E<Ec, we expect condensation to zero wavenumber, that happens because
of the spontaneous occurrence of a singularity in the solutions of (17) for
k =0. The wave spectrum nk, defined via the second order moment of the
Fourier transform of the complex wave function

〈
ψkψ

∗
k′
〉
= nkδ(3)(k − k′),

rules the cubic Boltzmann equation (17).l Therefore a self-similar solution
of the form (19), that describes particle accumulation to zero wave-number
k =0, arises.13,15,16

Signature of this singularity of the kind (19) with ν=1.234 in Gross–
Pitaevskii equation is not yet accomplished satisfactorily. The major obsta-
cle is that essentially one needs a great number of modes to obtain a
good resolution. This is feasible in the frame of Eq. (17) because, it is
an equation for a one-dimensional field therefore one may have easily 109

points, but we cannot expect a simulation of the Gross–Pitaevskii equation
with 1027 modes anytime soon. Nevertheless, this scenario corresponds to
the Boltzmann equation which derivation omits short time scales, thus
the finite-time singularity is naturally regularized in direct simulations of
Gross–Pitaevskii equation.

The initial condition for numerics considers a random wave super-
position, naturally this initial field possesses a great number of zeroes or
nodes of the complex wave function with a spatial distribution that prob-
ably depends on the initial spectrum. Those zeroes are, in some sense,
“linear vortices”m of the field and its existence do not break down the
assumptions of the weak turbulence theory. However, as the condensate
fraction increases many of the zeroes annihilates, but some of them persist
and become a “non-linear vortex”, at this late stage the kinetic descrip-
tion breaks down. A vortex dominated state has been observed in both
3D24 and 2D27 and (S.V. Nazarenko, private Communication). As time
goes, these vortices annihilate each other leaving a free defect zone with
a more or less uniform condensate (see Fig. 13).

The growth of an uniform solution or a wave condensate requires to
take into account separately the zero wave-number mode and the others in

l Here we assume isotropy in the wave number space: nk =n|k|.
mVortex lines, in three dimensions, and points, in two dimensions, are topological defects of

the complex field and they are nonlinear structures in the sense that the linear dispersion
(kinetic energy) is of the same order of the nonlinear term (potential energy).
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Fig. 13. Evolution of the wave condensate fraction n0/N in time t of a 1283 spectral simu-
lation with periodic boundary condition. The final stage leads a 90% of wave condensation.
The 3D-graphics inserted in the picture represent the iso-|ψ |2 surfaces for a value of 0.3 for
subsequent times (from left to right) t = 40, 120, 200, 400, and 800 time units. At the ini-
tial stage on sees that the system is dominated by linear vortices or nodes, however for time
larger than 200 a vortex sate dominate the evolution.

the kinetic equation (17), that leads formally to the set of coupled kinetic
equations (35, 36).n The equilibrium wave spectrum is therefore ϕk=T/k2

and a linear relation exists between the condensate fraction and the kinetic
energy: N −n0 ∼E/k2

c .
However, the linear dependance between n0 and E gives only a poor

approximation of the numerical results, mainly because a quite subtle
point: the presence of a non-vanishing zero mode (or condensate frac-
tion) cannot be treated as a small perturbation as the weak turbulence
theory assumes. Indeed, there is a singular modification of the wave lin-
ear dispersion relation due the Bogoliubov tranformation, the relation dis-
persion changes from k2 without condensate to |k| in the presence of a
condensate in the long wave limit. In Ref. 26 this effect has been calcu-
lated following the Bogoliubov’s theory of a weakly interacting Bose gas,
that we extend to the classical wave problem considered here. It is shown,
that condensation cannot arises in two space dimensions because of an
infrared log divergence of the number of particles, and that the non-linear

nFor nonlinear waves considered here, only the quadratic term of the collision integrals are
present, that is Coll2 and C̃oll2 instead of Coll2,1 and C̃oll2,1.
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interaction makes the transition to condensation of first-order in 3D: the
condensate fraction jumps suddenly for a energy (or temperature) above
the critical one.o Although this sub-critical behavior is a small unobserv-
able effect, the numerical measurements of the dependence of the con-
densate fraction is in quantitative agreement with the simulations without
adjustable parameter.26

6. ON THE RELATION BETWEEN THE FINITE–TIME
SINGULARITIES AND THE BOSE–EINSTEIN CONDENSATION

The relationship between finite time singularities of solutions of the
kinetic equations and the occurrence of long range, if not infinite, order
in Bose–Einstein condensates is a complex issue that we shall try to dis-
cuss in the light of this study of the kinetic models. To explain the matter,
we shall make a number of remarks:

6.1. Growth of Phase Coherence

It is almost obvious that no infinite range order can build-up in finite
time after the occurence of a singularity in the energy distribution of the
quantum particles. This relies on the observation that, in any realistic the-
ory, information should propagate at finite speed and after collapse the
phase of the condensate is random in space. In the process of growth of
a Bose–Einstein condensate the relevant information is the phase infor-
mation and one expects that the correlation length of the phase increases
indefinitely after collapse. When the fluctuations of the phase become long
ranged, their dynamics become described by the hydrodynamic limit of the
perfect fluid equations. As discussed in Ref. 21, simple scaling arguments
show that, in this hydrodynamic limit, the phase becomes uniform by a
diffusive like process, whith an ever increasing correlation length with a

power law behaviour
(

�t
m

)1/2
. Similar scaling was previously considered by

Kagan and Svistunov22 on the basis of vortex dynamics (which follows the
same scaling law than the Bernoulli equation) in a regime of “superfluid
turbulence.” We shall not deal anymore with this question of the late time
evolution, but focus now on the intermediate times after the solution of
the kinetic equations blew-up.

oA first-order transition for a weakly interacting Bose gas was first speculated by Huang
et al.28 however it has been long believed that a discontinuous transition was an arti-
fact of the approximation. A careful treatment of the Bogoliubov theory gives that the
discontinuity remains.29
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6.2. Growth of Condensate Density

After blow-up, from the mathematical point of view, it is fairly
straight-forward to rewrite the Boltzmann–Nordheim equations by includ-
ing a singular piece n0(t)√

ε
δ(ε) of the energy distribution coupled to the

continuous part of the momentum distribution (the set of coupled equa-
tions (35, 36)). The question is to understand the physical meaning of
this singular piece. Because of the argument just presented about the
lack of infinite range order after a finite time, this singular piece can-
not be the amplitude of the condensate in the thermodynamical sense,
that is the square root of the number of particles in the ground state.
Roughly speaking, this condensed part must be replaced in the dynam-
ical problem by the average (in space) density of the solution of the
Gross–Pitaevskii equation (43), although this one has no uniform phase
in space. Because there is no constant flux term in equation (35, 36) for
n0(t),30 the equations for the amplitude of the singularity (35) is of the
type dn0

dt
=Coll2,1[ϕ]n0.

Therefore one might have the impression that, if the amplitude n0 is
zero at the blow-up time, it remains so later on, because without “seed”,
that is with n0 =0 at any given finite time the solution n0(t) of this equa-
tion will remain forever equal to zero. This is not so, because, as one sees
in equation (35) Coll2,1[ϕ] is singular at t= t∗. Actually, just after the sin-
gularity Coll2,1[ϕ]=K1τ̃ (t)

−2ν+2 ≡ σ
t−t∗ , with σ = 3/2−ν

2(ν−1) a positive constant,
the general solution of Eq. (35) id therefore:

n0(t)∼ (t− t∗)σ . (44)

Notice that the exponent σ follows also from the condition of merging of
the self-similar solution before (25) and after the blow-up time.

6.3. Relation Between the Boltzmann–Nordheim and the Gross–Pitaevskii
Equation

The connection between the description of the Bose gas by the
kinetic theory and the one by the Gross–Pitaevskii equations relies on
a number of remarks. It has been emphasized several times in the lit-
erature12–14,24–26,30 that, by viewing the Gross–Pitaevskii equation as an
equation for non-linear waves, the kinetic wave equations for this classi-
cal field is exactly the same as the cubic part of the Boltzmann–Nord-
heim kinetic equation. This is not surprising because the cubic terms are
dominant in the limit of the large occupation numbers, precisely the limit
where the quantum fluctuations become small and where a classical field
becomes a fair description of the quantum field. But this does not per-



Self-similar Singularities in the Kinetic

mit to say that the kinetic picture and the dynamics of the Gross–Pitaev-
skii equations are identical. The reason of this is quite obvious by look-
ing at the coupled equation we have written to describe the post-blow-up
dynamics: then the coupling term (that is the Coll2,1[ϕ]n0 term in Eq. (35))
plays a dominant role. Without this coupling, there would be no growth of
the condensed fraction (seen here as the amplitude of the singular piece
of the energy distribution, the quantity n0(t) just introduced), because as
shown by the elementary calculation just sketched, this coupling (through
the singular Coll2,1[ϕ]) is essential to describe the growth of the conden-
sate after the collapse. Considering the problem of the fluctuations in the
pure Gross–Pitaevskii equation makes surely an interesting problem,24–26

but one different from the growth of the condensate.
This coarsening problem cannot be mapped into a problem of evo-

lution of the Gross–Pitaevskii equation only, for the following reason: to
represent an initial value problem with the same spectrum of fluctuations
as the one given by the self-similar solution of the Boltzmann–Nordheim
equation, one needs to take as intial spectrum the pure power spec-
trum (nε ∼ ε−ν) found at exactly the collapse time. But this is impossi-
ble, because this spectrum has infinite mass: the integral giving this mass
(i.e., the mass density in the spatially homogeneous systems we consider)
is diverging with a power law in the large energy limit. This mass is
proportional to

∫ ε
0 nε

√
εdε and diverges like ε3/2−ν for ε “large” if one

inserts the power law behaviour of the self-similar solution at large ε.
This divergence is not a problem for the Boltzmann–Nordheim kinetic
equation but it makes impossible to implement an initial condition for
the Gross–Pitaevskii equation with the same spectrum, since the non-lin-
ear term in the Gross–Pitaevskii equation would become infinite (due to
the local interaction) for an infinite mass density. Therefore the only way
to get significant information on the post-collapse regime is to study the
coupled system of Eq. (35, 36). Nevertheless this leaves unanswered the
question of the physical meaning of n0, that cannot be the square modulus
of an uniform solution of the Gross–Pitaevskii equation. Let us define a
quantity a bit similar to the one introduced in the case of the Kompaneets
equation, namely the total number of particles having an energy less than
�ε. This quantity depends both on the time interval since the instant of
blow-up and on �ε itself:

N(�ε, t)=
∫ �ε

0

√
ε nε(t)dε (45)

At the instant of the blow-up, this function is N(�ε, t∗)=K (�ε)3/2−ν .
Furthermore shortly before this blow-up time the energies in the singular
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domain scale as a function of the time t like ε ∼ |t − t∗|
1

2(ν−1) . Therefore
the contribution of the part of the energy distribution becoming singular
scales like:

N(�ε, t)= (�ε)3/2−ν �

(
sgn(t− t∗) �ε

|t− t∗|
1

2(ν−1)

)
. (46)

In this expression, sgn(t) is for the function sign of t , in order to repre-
sent a priori different values of N(�ε, t) before ((t− t∗) negative) and after
((t − t∗) positive) collapse. The function �(ω) follows directly from the
self-similar Eq. (41) and (38) when its argument is positive and from (22)
whenever its argument is negative. Therefore the function N(�ε, t) and its
self-similar form in Eq. (46) is completely determined by the solution of
the full Boltzmann–Nordheim equation, including in their form (35, 36)
with the coupling to n0 for t > t∗ positive. In the latter case, the integral
that defines N(�ε, t) includes as well the contribution of n0.

The function N(�ε, t), if defined by the integral of the solution of
the pure self-similar problem, cannot represent the physical reality both at
“large” energies and at too small energies. On the high end of the energy
spectrum the pure self-similar solution does not represent the solution of
the full Boltzmann–Nordheim equation because it omits the effect of the
two-body collision term. This restricts the range of possible values of �ε
to a domain where the Bosonic field is quasi-classical, i.e., to values of
the energy such that the dimensionless occupation number nε is still large,
say larger than a predetermined large number like a positive power of 10.
This puts an upper bound for �ε: it should be such that n�ε�1.p On the
low end of the energy spectrum, the energy of the particles is not anymore
the energy of a free particle, because it includes a dominant interaction
energy with the other particles. This defines a lower bound for �ε that is
such that the interaction energy per particle, of order �

2aρ
m

is still negli-
gible compared to the kinetic energy, here ρ is the number density. This
defines the range of possible values of �ε, which is non-empty because the
upper bound will be of order of the kinetic energy of the particles: �

2ρ2/3

m
,

although the lower bound is of order of the interaction energy, far smaller
than the kinetic energy in a dilute gas, because aρ1/3 �1.

What happens at energies of the order or larger than the upper
bound for �ε is clear enough: this is the range where one has to replace
the self-similar solution by the solution of the full kinetic equation. The
low-energy range is more complicated. As was noticed in Ref. 30, the

pThe time scale tB introduced before is the inverse of the non-singular rate of the evolution
of the energy dustribution n�ε .
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coupled kinetic equations (35, 36) must be replaced there (in the range
of low energies or, equivalently of long wave fluctuations) by a coupled
system of kinetic equation and Gross–Pitaevskii like equation, including a
crucial exchange term between the condensate and the normal gas. This
system truly describes the low-energy part of the spectrum, because it
involves the exchange of mass between the condensate and the normal
part as well as the self-interaction of this “condensed” part. By this we
mean the non-linearity in the modified Gross–Pitaevskii equation. This
completes the picture of the system: the long wave part of the spectrum
is described by the coupled Gross–Pitaevskii and Boltzmann–Nordheim
equations.31 The only thing remaining to discuss is how to find the ini-
tial condition for the Gross–Pitaevskii part of the coupled equations? This
choice follows from the fact that the low-energy end of the spectrum is at
an energy �ε with large occupation numbers. Therefore, in this range one
may take as initial value for the classical field a field where each individ-
ual mode has a random phase and an amplitude fixed by the condition
that the spectrum in the momentum space is the same as the momentum
distribution of the particles (up to obvious rescaling factors). Before the
blow-up time the evolution given by the kinetic equation and by the solu-
tion of the coupled Gross–Pitaevskii and Boltzmann–Nordheim equation
are the same because, in the long wave part of the spectrum, the cubic
part of the Boltzmann–Nordheim kinetic operator and of the wave equa-
tion for Gross–Pitaevskii are the same. After the blow-up time, the self-
similar solution for N(t,�ε) continues to describe correctly this function
in the not too low-energy range (precisely in the range where the inter-
action part of the energy is still dominated by the kinetic part), although
the long-range part of the correlation, not given by this function, is actu-
ally given by the solution of the coupled Gross–Pitaevskii and Boltzmann–
Nordheim equations. This picture includes, among other things, the late
coarsening of the phase correlations and the growth of the mass of the
condensate by exchange with the normal gas. It is worth noticing that
the exponent for the growth of this mass is completely given by the law
already found. This is because this mass is not changed by what happens
in the Gross–Pitaevskii part of the fluctuation spectrum: from the point of
view of the rest of the spectrum, this long wave part is all included into
the “singular” n0 part of the energy distribution, and the cubic interac-
tion in the Gross–Pitaevskii equation does not change the total mass in
the condensate under formation.

Finally, the introduction of the well-defined function N(�ε, t) makes
appear another difficulty. Let us recall that this function is a way of rep-
resenting how many particles are taken into account in the “condensed”
part. But, because of its very definition as the number of particles in the
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energy window between 0 and �ε, a priori there is a always, before and
after collapse, a non-zero n0, if one assimilates one to the other the two
quantities (n0(t) and N(�ε, t)). To circumvent this difficulty, one may con-
sider the coupled Eq. (36) as valid before and after the collapse time.
Therefore the solution of the equation for n0(t) is defined now over the
full time interval, with a kink in its time dependence (instead of being
exactly zero before collapse and growing with a power law after) at the
collapse time. The self-similar solution is now one out of a continuum of
solutions depending on the width �ε. In the limit where this width tends
to zero at the scale of the thermal energy, all the solutions of the coupled
set (36) tend to the self-similar solution, equal to zero before blow-up and
growing algebraically after collapse.

7. COMMENTS AND CONCLUSIONS

We have shown that the kinetic theory for the time evolution of
the energy distribution can describe fairly well the process of condensa-
tion, both in the case of the Kompaneets equation and for the Bose–
Einstein condensation. The condensation relies on the occurence of finite
time singularities of solution of these equations. We focused mostly on
the way to cross the singularity time, both in the Kompaneets and in the
Bose–Einstein case. The latter case does not imply that a phase-coherent
condensate forms in a finite time but only that, after collapse, a classical
field coupled to the kinetic equation becomes the way to describe the evo-
lution of the system, including the coarsening of the phase correlations
that leads ultimately to infinite range order.

This series of results shows the difficulty to reconcile in this domain
guesses on what could happen ‘physically’ and the precise properties of
the solutions of kinetic equations. Nevertheless, at the end a reasonably
complete and accurate picture of the condensation process do follow from
the analysis of all the physics and maths involved.

Finally, the authors acknowledge Gustavo Düring who have worked-
out a efficient routine for computations of collision integrals as the one
of Cν and Dν (see Fig. 10). SR thanks Anillo de Investigación Act. 15
(Chile).
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