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Abstract. This paper proposes an improvement over the traditional SIFT-based 
object recognition methodology proposed by Lowe [3]. This improvement 
corresponds to a fast probabilistic model for hypothesis rejection (affine 
solution verification stage), which allows a large reduction in the number of 
false positives. The new probabilistic model is evaluated in an object 
recognition task using a database of 100 pairs of images.  

1   Introduction 

Object recognition approaches based on local invariant features have become 
increasingly popular and have experienced an impressive development in the last years 
([1][3][5][8][11]). Typically, local invariant features are extracted from a test image, 
then characterized by invariant descriptors and finally matched against a reference 
database. Most employed local detectors are the Harris detector [2] and the Lowe’s 
sDoG+Hessian detector [3], being the Lowe’s detector multiscale and the Harris 
detector single scale. Best performing affine invariant detectors are the Harris-Affine 
and the Hessian-Affine [10], but they are too slow to be applied in general-purpose 
object recognition applications. The most popular and best performing invariant 
descriptors [9] are the SIFT (Scale Invariant Feature Transform) features [3].  

When building real-world object recognition applications as for example robot 
self-localization systems based on invariant visual landmarks [12] or robot head pose 
detection systems [6], the algorithm recognition capabilities and processing speed are 
both important. Lowe’s system [3] using the sDoG+Hessian detector, SIFT 
descriptors and a probabilistic hypothesis rejection stage has acceptable recognition 
capabilities and works in near real-time (1-3 images per second). However, Lowe’s 
system main drawback is the large number of false positive detections. This is a 
serious problem when using it in vision tasks that need to process video sequences of 
images.  

For that reason, the aim of this paper is to improve the traditional SIFT-based 
object recognition method from Lowe, by proposing a fast probabilistic model for 
hypothesis rejection (affine solution verification stage), which allows a large 
reduction in the number of false positives. The new probabilistic model is evaluated 
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in an object recognition task using a database of 100 pairs of images (UCH100 
database). 

This article is structured as follows. In section 2 we describe the proposed fast 
probabilistic model for hypothesis rejection. Experimental results of applying this 
probabilistic model in the recognition of objects present in real work images 
(UCH100 database) are presented in section 3. Finally, in section 4 some preliminary 
conclusions of this work are given. 

2   Fast Probabilistic Model for Hypothesis Rejection 

As already mentioned Lowe’s system use the sDoG+Hessian detector, SIFT 
descriptors and a probabilistic hypothesis rejection stage. The system is very 
complex, having several sub-stages (local extrema detection, accurate keypoint 
localization, orientation assignment, etc.). A detailed description can be found in [3]. 

One of the main weaknesses of Lowe’s algorithm is the use of just a simple 
probabilistic hypothesis rejection stage, which cannot successful reduce the number 
of false positives. Lowe’s method for calculating a probabilistic model for hypothesis 
rejection [4] requires that the explicit affine transformation must be known in 
advance, and that all matches that fall onto the projected region must be counted. 
Given that the probabilistic model is applied after the matching stage, all bins with 
more than 4 votes must be full-processed. This computation can slow down the 
process if the number of bins and matches is large. 

In this section an additional fast probability rejection test is proposed. It consists on 
assigning a probability value to all bins with more than 4 votes, without knowing an 
explicit transformation. This probability values are calculated directly in the 
quantized Hough bins space. This allows the rejection of bins with very low 
probability without the requirement of additional processing. 

A general similarity transformation from 2RR  to 2RR  has the following 
expression: 
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A,t  depend on the Δx,Δy,Δθ ,Δn( ) differences of the object pose between the two 

compared images, Δn being the differences in the scale dimension. 
A similarity transformation that quantizes the pose difference 
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From (1) and (2) we obtain fractional values for ),,,( zkji : 
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iFRAC = 2
n1 −n2

2 x2 − x1 cos(θ1 −θ 2) + y1 sin(θ1 −θ2)
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2
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(1 /4)LY × 2
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kFRAC = θ1 −θ2

30º

zFRAC = n1 − n2

2

                    (3) 

Each match (x1, y1,θ1,n1) ↔ (x2, y2,θ2,n2)  has 16 nearest values ),,,( zkji  for which 

it must vote. It can be observed that (i, j)  quantizes translation, k  quantizes rotation 
and z  quantizes scale difference in the similarity transformation. 

The probability that a random incorrect match votes for a given bin B = (i, j,k,z) 
in the bin-space is pB = p(i, j,k,z) = p(z) p(k) p(i, j | k,z) . When a correct mapping 
mB  for the bin B  does not exist, all the votes in bin B  are of random origin. Each 
random match votes for the 16 different nearest bins. We can estimate the probability 
that k  or more random incorrect matches of a total of n  vote for a bin B  (cumulative 
binomial distribution): 

P # B ≥ k |¬mB( )=
N
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with # B  the number of votes in the bin B  and N = 16 × n  the total number of 
random votes generated by the n  matches that exists in all the bin-space. This 
approximation is acceptable when k  is much smaller than n , as each random match 
produces 16 random (distinct) votes. 

The probability of a bin B  representing a true mapping mB  of an object can be 
approximated as [4]: 

P(mB |# B ≥ k) = P(mB )

P(mB ) + P(# B ≥ k |¬mB )
                      (5) 

An exact value of pB = p(z)p(k) p(i, j | k,z) is essential for obtaining an exact 
computation of (4) and (5). Lowe approximates p(z) = 0.5. But, if it is assumed that 
the density of interest points along the sub-sampled scale space is constant, an 
analytical value for p(z) exists and can be computed. Lowe also approximates 
p(i, j | k,z)  as a fixed value. But, p(i, j | k,z)  can be estimated as a ratio between the 

space covered by the matches compatibles with the bin (i,j,k,z) and the space covered 
by all the possible matches that can be generated between the pair of images. Finally, 
the probability p(k)  can be calculated as w/360°, where w is the angular width of a 
bin. 
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2.1    Analytical Computation of p(z)  

Suppose we have a pair of images I  and I ' . {D0,D1,...} and {D'0 ,D'1 ,...}  will be 
their respective sub-sampled scale space representations, and two images per octave 
will be used. The area of a scale space image can be expressed as: 

area(Dk ) = area(D0)

4 floor(k / 2)
,  area(D'k ) = area(D'0 )

4 floor(k / 2)
 

If the density of interest points is constant in each of the scale spaces, and the 
point-matches are of random origin, the probability that a random match will be 
associated to a (m,n)  scale space level can be written as: 

P(match : m → n) = area(Dm )area(D'n )

area(Di)area(D' j )
j= 0

∞

∑
i= 0

∞

∑
 

If we simplify the last expression, a simple analytical probability expression can be 
obtained: 

P(match : m → n) = 9
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It will be defined a Z  function that depends on m,n : 
Z (m,n) = FLOOR(m / 2) − FLOOR(n / 2). Now, the following set can be evaluated:
  

B(z) = {(m,n) | Z (m,n) = z}  

=
{ 2k,2k + 2z( ), 2k +1,2k + 2z( ), 2k,2k +1+ 2z( ), 2k +1,2k +1+ 2z( )∀k > 0},z > 0

{ 2k − 2z,2k( ), 2k +1− 2z,2k( ), 2k − 2z,2k +1( ), 2k +1− 2z,2k +1( )∀k > 0},z < 0

⎧ 
⎨ 
⎩ 

 

 
Using this set, probabilities in the (m,n)  space can be mapped to the z  space. 

p(z | z ≥ 0) = P(match : 2k,2k + 2z)
k= 0

∞
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p(z | z < 0) = P(match : 2k − 2z,2k)
k= 0

∞
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k= 0

∞

∑ +

             + P(match : 2k − 2z,2k +1)
k= 0

∞

∑ + P(match : 2k +1− 2z,2k +1)
k= 0

∞

∑
     (7) 

Finally, (6) and (7) can be simplified to: 

p(z) = 3
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It can be easily demonstrated than p(z)
z=−∞

∞

∑ = 1. The new p(z) expression can be 

used to get a modified probability test to reject incorrect bins. 

2.2   Analytical Computation of p(i, j | k,z)  

The p(i, j | k,z)  calculation considers the space of all positions (x1,y1)  in the test 
image and all the (x2,y 2)  positions in the reference image. Random matches between 
the images generate random (x1,y1, x2 ,y 2) points in a 4D space. If the reference image 
size is LX × LY  and the test image size is M X × MY , the 4D random points belong to 
the following space: 

c = (x1, y1, x2, y2) ∈ S = [0,M X ]× [0,MY ]× [0,LX ]× [0,LY ] 

The S space has a 4D volume that can be expressed as LX LY M X MY . A bin B 
covers a subset of S that will be named Q(B). If the 4D volume contained by Q(B) is 
known, the probability p(i, j | k,z)  can be estimated as: 

p(i, j | k,z) = Q(i, j,k,z)

LX LY M X MY

 

The last equation can be approximated and written in terms of the (i, j)  space 
instead of the (x1, y1, x2,y2) space. We will analyze 3 cases: 

 
Case 1: If we assume that Δθ = 0°  in (3), the equations for iFRAC  and jFRAC  are 

reduced to: 

iFRAC = 2z x2 − x1

(1/4)LX × 2z

jFRAC = 2z y2 − y1

(1 /4)LY × 2z

 

The minimum and maximum admissible values for iFRAC  and jFRAC  while 
(x1,y1, x2 ,y 2) belongs to S are the following.  

iFRAC ∈ M X

(1/4)2z LX

,
2z LX

(1/4)2z LX

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , jFRAC ∈ − MY
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We define the following variables. 

RXX = M X

2z LX

,RYY = MY

2z LY

 

Then, expression (8), which expresses the domain for (i, j) , can be rewritten as: 

(iFRAC , jFRAC ) ∈ [−4RXX ,4]× [−4RYY ,4] 

All the (i, j)  bins have size 1 in the (iFRAC , jFRAC )  space. Them the probability that 
a random (x1, y1, x2,y2) match produces a random (iFRAC , jFRAC )  which vote for a 
particular (i, j)  bin can be expressed as: 
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p(i, j | k,z) ≈ 1

4(RXX +1) ⋅ 4(RYY +1)
 

 
Case 2: If we assume that Δθ = 90°  in (3), a calculation similar to case 1 gives 

the following results: 

RYX = MY

2z LX

,RXY = M X

2z LY

 

p(i, j | k,z) ≈ 1

4(RXY +1) ⋅ 4(RYX +1)
 

 
Case 3: If we do not assume a particular Δθ  it is difficult to get an analytical 

solution. But an approximation can be obtained by mixing the two results. As RXX  
and RYX  stands for two different orthogonal cases, they can be mixed as 
RX

2 = RXX
2 + RYX

2 . In a similar way, RY
2 = RXY

2 + RYY
2  can be assumed. This leads to the 

following equations: 

RX (θ1 −θ2) =
M X

2 cos2 (θ1 −θ 2) + MY
2 sin2 (θ1 −θ2)

2z LX

RY (θ1 −θ2) =
MY

2 cos2 (θ1 −θ2) + M X
2 sin2 (θ1 −θ2)

2z LY

 

p(i, j | k,z) ≈ 1

4(RX +1) ⋅ 4(RY +1)
 

3   Experimental Results 

In this section is presented an experimental evaluation of the proposed improvement 
over Lowe’s work. The performance of the introduced verification and merging 
hypothesis stages are tested in the UCH100 object recognition database (available in 
[13]). This database is composed by 100 pairs of real-world images 

{(I2k−1, I2k ),k = 1,...,100} , being I2k−1 a reference image and kI2  the corresponding 

test image. Each reference image shows a different, single object. The same object 
appears in the corresponding test image, viewed under different conditions (position, 
view angle, partial occlusion, in-plane and out-of the-plane rotation). In the test 
images can also appear objects not included in the reference images. In figure 2 are 
shown some examples of reference-test images pairs. 

Object recognition experiments were performed in all image’s pairs 
{(I j ,I k ),k, j = 1,...,100} . The experiments consist on finding the mapping that relates 

each pair of images. A pair of images has a common object only in 100 of the 10,000 
cases to be analyzed. In these pairs of images (100) the recognition methods generate 
a variable number of transformations (0 to 10, or even more in some cases), although 
ideally just one transformation should be obtained. For the proposed experiment, a 
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pair of images is solved when the transformation with the best priority, i.e. the highest 
probability value, is a good-mapping transformation, and almost all the associated 
point-matches are correct. The other obtained transformations are not analyzed. The 
algorithms are compared in terms of: 

− DR (Detection Rate): DR is computed as the rate of correct best-priority 
transformations. Just one per image can be correct in the 100 pairs having a 
common object. 

− FPR (False Positive Rate): FPR is computed as the rate of incorrect best-
priority transformations. Just one incorrect transformation per image is 
added when incorrect objects are matched. 

− DR/FPR Ratio: Ratio between correct and incorrect best-priority 
transformations. 

− Mean PT: Mean Processing time for the matching and verification stages. 
 

The algorithms under comparison are: 

− Lowe: Lowe’s recognition system without any improvement. 
− FastProb: Lowe’s recognition system using the fast probabilistic model for 

hypothesis rejection. 
− Lowe+OVS: Lowe plus other verification and merging stages proposed in 

[7]. 
− FastProb+OVS: FastProb plus other verification and merging stages (see 

[7]). 

Table 1. Comparative evaluation of the different algorithms. DR=Detection Rate. FPR=False 
Positive Rate. Mean PT: Mean Processing time for the matching and verification stages. 

Algorithms DR (%) FPR (%) DR/FPR Ratio Mean PT [ms] 

Lowe 41% 85.5% 0.48 21.56 

FastProb 39% 78.3% 0.50 14.38 

Lowe+OVS 44% 4.87 9.03 26.56 

FastProb+OVS 49% 3.74 13.10 19.38 

The comparative evaluation of these algorithms is displayed in table 1. As it can be 
observed, the new FastProb rejection test reduces the FPR from 85.5% to 78.3%, 
while keeping the DR in about 40%. More important, the time required for 
performing the matching and verification processes is reduced from 21.56ms to 
14.38ms (about 33% reduction). However, the FPR is still too high and other 
verification stages are required (see detailed explanation in [7]). When using these 
additional stages together with FastProb (FastProb+OVS) the DR is increased to 49%, 
while the FPR is strongly decreased to just 3.74, achieving a DR/FPR ratio of 13.10. 
When using the Lowe’s algorithm together with the additional verification stages 
(Lowe+OVS), DR increases to 44%, FPR decreases to 4.87, and the resulting 
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Fig. 1. Some examples of object recognition results that can be obtained with the new proba-
bilistic model for hypothesis rejection  

DR/FPR ratio is 9.03. Thus, FastProb+OVS achieves a DR/FPR ratio 45% higher 
than Lowe+OVS. That means that the proposed fast probability model for hypothesis 
rejection is essential for obtaining high recognition rates. Figure 1 shows some 
examples of the excellent object recognition results that can be obtained when using 
this new model. 
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Fig. 2. Selected images from the UCH100 database (see [13]). Left: reference images. Right: 
corresponding test images. 
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4   Conclusions 

In this work was proposed an improvement over the traditional SIFT-based object 
recognition methodology proposed by Lowe. This improvement corresponds to a fast 
probabilistic model for hypothesis rejection (affine solution verification stage), which 
allows a large reduction in the number of false positives. The new probabilistic model 
was evaluated in an object recognition task using a real-world database of 100 pairs of 
images. Objects in these images are very hard to recognize. The obtained results show 
that with the probabilistic model for hypothesis rejection is obtained a reduction in the 
number of false positives of about 9%, and the time required for the matching and 
verification processes is reduced in about 33%. This reduction is very important for 
several real-world applications. 
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