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Abstract. Gaze direction determination of opponents and teammates is a very 
important ability for any soccer player, human or robot. However, this ability is 
still not developed in any of the RoboCup soccer leagues. We aim at reverting 
this situation by proposing a gaze direction determination system for robot 
soccer; the system is designed primarily for the four-legged league, but it could 
be extended to other leagues. This system is based on a robot-head pose 
detection system, consisting on two main processing stages: (i) computation of 
scale-invariant local descriptors of the observed scene, and (ii) matching of 
these descriptors against descriptors of robot-head prototypes already stored in 
a model database. After the robot-head pose is detected, the robot gaze direction 
is determined using a head model of the observed robot, and the current 3D 
position of the observing robot camera. Experimental results of the proposed 
approach are presented. 

1   Introduction 

Among many other capabilities, good soccer players should have the ability for 
anticipating the actions of opponents, and sometimes of teammates, by just 
observing the other players attitude and pose. As in other similar situations, the 
human most employed mechanism for solving this task is gaze direction 
determination, or the determination of the place where the opponent or teammate 
player under analysis is looking. For instance, by using this mechanism an attacker 
player can know if an opponent is observing him, and then planning his next actions 
for avoiding that the opponent attack him or obstruct his trajectory. In another 
typical situation a soccer player can know where the ball is, by looking at the same 
position where an opponent is looking (in case the opponent knows the ball 
position). In a third situation a soccer player can send the ball, i.e. perform a pass, 
to a position where a teammate is looking at. Furthermore, when kicking the ball, 
first-class soccer players can mislead opponents by looking at a different place than 
the place where they are sending the ball. Some examples of these typical situations 
are shown in figure 1.  
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On hand of the described situations, it can be affirmed that gaze direction 
determination of opponents and teammates is a very important ability for any soccer 
player, robot or human. However, this ability is still not developed in any of the 
RoboCup soccer leagues. We aim at reverting this situation by proposing a gaze 
direction determination system for robot soccer. This system is designed primarily for 
the four-legged league, but it could be extended to other leagues. Moreover, the same 
gaze determination methodology can be used for enhancing cooperative and competitive 
skills in situations where the robots interacting abilities are important. 

In the here-proposed approach, gaze direction determination is based on a 
robot-head pose detection system. This detection system employs two main 
processing stages. In the first stage, scale-invariant local descriptors of the observed 
scene are computed. Then, in the second stage these descriptors are matched against 
descriptors of robot-head prototypes already stored in a model database. After the 
robot-head pose is recognized, the robot gaze direction is determined using a head 
model of the observed robot, and the current 3D position of the observing robot 
camera. In the here-employed robots (Sony AIBO) the relation between head and 
camera pose is fixed, therefore additional camera pose determination is not 
required. 

The local descriptors computation and matching are based on [1], but many 
important parts of the method have been improved for fitting it to the robot-head 
detection problem and for achieving high detection accuracy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Some examples of real soccer situations where the gaze direction determination plays an 
important role. (a) and (b) An attacker player knows if an opponent is observing him and at 
which distance. (c) A defender knows where the ball is, by looking at the same place where the 
attacker is looking. (d) Soccer players can mislead opponents by looking at a different place 
than the place where they are sending the ball. 
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2   Related Work 

Human gaze direction (i.e. line of gaze) determination has been the subject of a great 
number of studies (for example [3][4][8][9]), with applications in very different fields 
such as medical research for oculography determination, car drivers behavior 
characterization, human-robot and human-computer interaction, including computer 
interfaces for handicapped people. However, to our knowledge there are no studies on 
determining the gaze direction in robots. We believe this is a problem that needs to be 
solved for enhancing and enriching cooperative and competitive tasks in which the 
robots interacting capabilities are important (i.e. robot soccer). Already developed 
methodologies employed for human gaze direction determination are not applicable 
for robots. They are based on anthropometric models of the human head and eyes, or 
they employ face or iris detection algorithms, or even special lighting (infrared 
lights). Therefore, new methodologies need to be employed for the robot case. Some 
alternatives could be the construction of explicit 3D robot-head models, the 
development of robot-face detection algorithms or the use of scale-invariant local 
descriptors for performing the detection. Taking into account the impressive 
development of object recognition algorithms based on scale-invariant descriptors in 
the last years ([1][6][7]), and the fact that head and face variability in robots is much 
smaller than in humans, we believe that for the moment, they are the best 
methodology for solving this problem. Most successful proposed systems employ 
either the Harris detector [5] or SIFT (Scale Invariant Feature Transform) features [1] 
as building blocks. In this work we employ SIFT features because of their higher 
robustness and stability. However, due to the physical characteristics of some robots 
models as the AIBO ERS7 (rounded head shape and head surface producing a high 
amount of highlights), it is very difficult to obtain reliable SIFTs on them. For this 
reason, we improve the traditional SIFTs computation and matching algorithms.  

3   Proposed Robot Gaze Direction Determination System 

3.1   Scale-Invariant Local Descriptors Computation 

Detection of scale-space extrema. A difference-of-Gaussian (DoG) function is 
employed for identifying potential interest points that are invariant to scale and 
orientation. These keypoints are searched over all scales and image locations using a 
scale-space transformation. It can be proved that by using the DoG over the scale-
space, image locations that are invariant to scales can be found, and that these features 
are more stable than other computed using the gradient, Hessian or Harris corner 
function [1]. The scale-space of an image is defined as a function, L(x,y,σ) , which 
corresponds to the convolution of the image with a Gaussian of scale σ. The DoG 
function between two nearby scales separated by a constant multiplicative factor k can 
be computed as: 

),,(),,(),,( σσσ yxLkyxLyxD −=  
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The local extrema (maxima and minima) of L(x,y,σ)  are detected by comparing each 
sample with its 26 neighbors in the scale-space (8 in the same scale, 9 in the scale 
above and 9 in the scale below). 

Accurate keypoint localization. First, local extrema to sub-pixel / sub-scale accuracy 
are found by fitting a 3D quadratic to the scale-space local sample point. The 
quadratic function is computed using a second order Taylor expansion having the 
origin at the sample point [2]: 
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where x is the offset from the sample point. Then, by taking the derivate with respect 
to x and setting it to zero, the location of the extrema of this function is given by: 

ˆ x = −H−1∇D(0)                           (2) 

In [1][2] the Hessian and gradient are approximated by using differences of 
neighbor samples points. The problem with this coarse approximation is that just 3 
samples are available in each dimension for computing the Hessian and gradient using 
pixel differences, which produces a non-accurate result. We improve this computation 
by using a real 3D quadratic approximation of the scale-space, instead of discrete 
pixel differences. Our 3D quadratic approximation function is given by: 
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Using the 27 samples contained in the 3x3x3 cube under analysis, the unknowns 
(ai) can be found. Using vector notation, this linear system will be given by: 
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where Di corresponds to the sample point value (intensity) i. We can write this linear 
system as Ba = d. The least-squares solution for the parameters a is given by: 

a = BTB( )−1
BTd  

It should be stressed that the matrix BTB( )−1
BT  needs to be computed once for 

the whole image, and that it can be eventually pre-computed. Now, the accurate 
location of the extrema can be computed using (2), with the following Hessian and 
gradient expression: 
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Second, local extrema with a contrast lower (noise) than a given threshold Thcontr, 
are discarded ( ˜ D (ˆ x ) < Thcontr

). Third, extrema corresponding to edges are discarded 

using curvature analysis. A peak that corresponds to an edge will have a large 
principal curvature across the edge but a small one in the perpendicular direction. The 
curvature can be computed from the 2x2 submatrix Hxy that considers only the x and y 
components of the Hessian. Taking into account that we are interested on the ratio 
between the eigenvalues, we will discard extrema in which the ratio of principal 
curves is above a threshold r, or equivalently local extrema that fulfill the following 
condition (see [5] for a deeper explanation): 

Tr(Hxy )2

Det(Hxy )
> (r +1)2

r
 

In [1] Hxy is computed be taking differences of neighbor sample points. As already 
mentioned, this approximation produces a non-accurate result. We improved this 
situation by computing Hxy from (3). 

Orientation assignment. By assigning a coherent orientation to each keypoint, the 
keypoint descriptor can be represented relative to this orientation and hence achieve 
invariance against rotations. The scale of the keypoint is employed for selecting the 
smoothed image L(x,y) with the closest scale, and then the gradient magnitude and 
orientation are computed as: 

m(x,y) = (L(x +1,y) − L(x −1, y))2 + (L(x,y +1) − L(x,y −1))2  

))),1(),1(/())1,()1,(((tan),( 1 yxLyxLyxLyxLyx −−+−−+= −θ  

As in [1], an orientation histogram is computed from the gradient orientations at 
sample points around the keypoint (b1 bins are employed). A circular Gaussian 
window whose size depends of the scale of the keypoints is employed for weighting 
the samples. Samples are also weighted by its gradient magnitude. Then, peaks in the 
orientation histogram are detected: the highest peak and peaks with amplitudes within 
80% of the highest peak. Orientations corresponding to each detected peak are 
employed for creating a keypoint with this orientation. Hence, multiple keypoints 
with the same location and scale but different orientation can be created (empirically, 
about 85% of keypoints have just one orientation). 

Keypoint descriptor computation. For each obtained keypoint, a descriptor or 
feature vector that considers the gradient values around the keypoint is computed. The 
obtained descriptors are invariant against some levels of change in 3D viewpoint and 
illumination. The keypoints and their associated descriptors are knows as SIFT (Scale 
Invariant Feature Transform) features or just SIFTs. 

First, in the keypoint scale the gradient magnitude and orientation are computed 
around the keypoint position (usually a neighborhood of 8x8 or 16x16 pixels is 
considered). Then, a Gaussian window weights the gradient magnitudes, and the 
coordinates of the descriptor and the gradient orientations are rotated relative to the 
keypoint orientation. Second, the obtained gradient values are accumulated in 
orientation histograms summarizing the contents of 4x4 subregions (b2 bins are 
employed). Thus, a descriptor vector is built, where each vector component is given 
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by an orientation histogram. Depending on the neighborhood size, 2x2 or 4x4 vectors 
are obtained. Third, illumination effects are reduced by normalizing the descriptor’s 
vector to unit length. Abrupt brightness changes are controlled by limiting the 
intensity value of each component of the normalized vector. Finally, descriptors 
vectors are re-normalized to unit length. 

3.2   Matching of Local Descriptors and Robot-Head Prototypes Descriptors 

Basically, the robot-head pose is determined by matching the image descriptors with 
descriptors corresponding to robot-head prototype images already stored in a 
database. The employed prototypes correspond to different views of a robot head, in 
our case the head of an AIBO ERS7 robot. Due to we are interested in recognized the 
robot identity (number), prototypes for each of the four players are stored in the 
database. In figure 2 are displayed the 16 prototype heads corresponding to one of the 
robots. The pictures were taken every 22.5°. The whole matching process here-
proposed considers nine processing stages. In the first stage, the image keypoint 
descriptors are individually matched against prototype descriptors. In the second stage 
this matching information is employed for obtaining a coarse prediction of the object 
(robot-head) pose. In the third stage possible affine transformations between a 
prototype and the located object are determined. In the later six stages these affine 
transformations are verified, and some of them discarded or merged. Finally, if the 
object is present in the image just one affine transformation should remain. This 
transformation determines the object pose. It is worth to mention than in the original 
work of Lowe [1], only the first four stages here-described were considered. We 
included five additional verification stages that improve the detection of robot heads. 
This is very important because due to the physical characteristics of the AIBO ERS7 
heads (rounded head shape, head surface producing a high amount of highlights, etc.), 
it is very difficult to obtain reliable SIFTs on them.  

Individual Keypoint Descriptors Matching. The best candidate match for each 
image keypoint is found by computing its Euclidian distance with all keypoints stored 
in the database. It should be remembered that each prototype includes several 
keypoint descriptors. Considering that not all keypoints are always detected (changes 
in illumination, pose, noise, etc.) and that some keypoints arise from the image 
background and from other objects, false matches should be eliminated. A first 
alternative is to impose a minimal value to a match to be considered correct. This 
approach has proved to be not robust enough. A second alternative consists on 
comparing the distance to the closest neighbor to that of the second-closest neighbor. 
If this ratio is greater than a given threshold, it means than this image keypoint 
descriptor is not discriminative enough, and therefore discarded. In [1] the closest 
neighbor and second-closest neighbor should come from a different object model 
(prototype). In the current case this is not a good idea, since we have multiple views 
of the same object (the robot head). Therefore, we impose the conditions than the 
second-closest neighbor should come from the same prototype than the closest 
neighbor. The image under analysis and the prototype images generate a lot of 
keypoints, hence having an efficient algorithm for computing the keypoint descriptors 
distance is a key issue. This nearest neighbor indexing is implemented using the Best-
Bin-First algorithm [10], which employs a k-d tree data structure. 



P. Loncomilla and J. Ruiz-del-Solar 

 

    
 

   
 

 
  

  

    

Fig. 2. AIBO ERS7 robot-head prototypes with their SIFTs. Pictures taken every 22.5°. 

Object Pose Prediction. In the pose space a Hough transform is employed for 
obtaining a coarse prediction of the object (robot-head) pose, by using each matched 
keypoint for voting for all object pose that are consistent with the keypoint. A 
candidate object pose is obtained if at least 3 entries are found in a Hough bin. 
Usually, several possible object pose are found. The prediction is coarse because the 
similarity function implied by the four parameters (2D location, orientation and scale) 
is only an approximation of the 6 degree-of-freedom of a 3D object. Moreover, the 
similarity function cannot account for non-rigid deformations. 
 

Finding Affine Transformations. In this stage already obtained object pose are 
subject to geometric verification. A least-squares procedure is employed for finding 
an affine transformation that correctly account for each obtained pose. An affine 
transformation of a prototype keypoint (x,y) to an image keypoint (u,v) is given by: 
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where the mi represent the rotation, scale and stretch parameters, and tx and ty the 
translation parameters. The parameters can be found if three or more matched 
keypoints are available. Using vector notation, this linear system will be given by: 
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We can write this linear system as Cp = u . Finally, the least-squares solution for 
the parameters p is given by: 

p = CTC( )−1
CTu. 

 

Affine Transformations Verification using a Probabilistic Model. The obtained 
model hypothesis, i.e. affine transformations, is subject to verification using a 
probabilistic model (see detailed description in [11]). 

 

Affine Transformations Verification based on Geometrical Distortion. A certain 
affine transformation shouldn’t deform very much an object when mapping it. Given 
that we have just a hypothesis of the object pose, it is not easy to determine the object 
distortion. However, we do have the mapping function, i.e. the affine transformation. 
Therefore, we can verify if the mapping function produce distortion or not using a 
known, regular and simple object, such as a square. The affine transformation of a 
square should produce a rotated parallelogram. If the affine transformation does not 
produce a large distortion, the conditions that the transformed object should fulfill are 
(see notation in fig. 3): 

max
d(AB) /d(A'B')
d(BC) /d(B'C')
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> thα

 

''BA  is a vector from A’ to B’, ( )''''det CBBA  computes the parallelogram area. 

Affine Transformations Verification based on Spatial Correlation. Affine 
transformations producing low lineal correlation, rs , between the spatial coordinates 
of the matched SIFTs in the image and in the prototype are discarded: 

rs = min max(rxx,rxy),max(ryx,ryy)( )< thrs 

rxx and ryy correspond to the correlation in the x and y directions of the N matched 
SIFTs, while rxy=ryx corresponds to the cross correlation between both directions. rxx 
and rxy are calculated as (ryy and ryx are computed in a similar way): 
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Fig. 3. Affine mapping of a square 
 

Affine Transformations Verification based on Graphical Correlation. Affine 
transformations producing low graphical correlation, rg , between the robot-head 

prototype image and the candidate robot-head subimage can be discarded: 
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The affine transformation is given by {x=xTR(u,v), y=yTR(u,v)}. I(u,v) and I’(x,y) 
correspond to the head prototype image and the candidate robot-head subimage, 

respectively. I  and I' are the corresponding pixel mean values.  
 

Affine Transformations Verification based on the Object Rotation. In some real-
world situations, real objects can have restrictions in the rotation (respect to the body 
plane) they can suffer. For example the probability that a real soccer robot is rotated 
in 180° (inverted) is very low. For a certain affine transformation, the rotation of a 
detected object (candidate robot-head) with respect to a certain prototype can be 
determined using the SIFTs keypoint orientation information. Thus, the object 
rotation, rot, is computed as the mean value of the differences between the orientation 
of each matched SIFTs keypoint in the prototype and the corresponding matched 
SIFTs keypoint in the image. Transformations producing large rot values can be 
discarded ( rot > throt

). 
 

Affine Transformations Merging based on Geometrical Overlapping. Sometimes 
more than one correct affine transformation corresponding to the same object can be 
obtained. There are many reasons for that, small changes in the object view respect to 
the prototypes views, transformations obtained when matching parts of the object as 
well as the whole object, etc. When these multiple, overlapping transformations are 
detected, they should be merged. As in the case when we verify the geometrical 
distortion produce by a transformation, we perform a test consisting in the mapping of a 
square by the two candidate affine transformations to be joined. The criterion for joining 
them is the overlap, over, of the two obtained parallelograms (see notation in fig. 3): 

over =1− dist(A'1 A'2 ) + dist(B'1 B'2 ) + dist(C'1 C'2 ) + dist(D'1 D'2 )
perimeter(A'1 B'1 C'1 D'1 ) + perimeter(A'2 B'2 C'2 D'2 )

> thover
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Fig. 4. Defined reference systems (RFs) (see explanation in main text). (a) RFs ”0” and “3”. (b) 
RFs “3” and “4”, rotation angles μ  and ν . (c) RFs “4” and “5”, and affine rotation angle φ . 

(d) Observed robot in RF “5”, line of gaze in green. 

It should be also verified if the difference between the rotations produced for each 
transform is not very large. Therefore, two transforms will be joined if: 

rot1 − rot2 < thdiff _ rot
. 

3.3   Gaze Determination 

The line of gaze of the observed robot, in global coordinates, can be computed using 
the following information: (i) observing robot pose in global coordinates, (ii) 
prototype view angle, and (iii) distance and rotation angle of the observed robot. The 
observing robot pose can be estimated using the self-localization system (any mobile 
robot control software has a similar system). The prototype view angle is fixed and 
known, it was defined when the model database was built. Finally, the distance and 
rotation angle of the observed robot can be determined from the affine transformation. 

For performing the computations we define the following coordinate systems: 

}ˆˆˆ{ 000 kji   , the global reference system (RF), }ˆˆˆ{ 333 kji   , a RF fixed to the observing 

robot’s camera (between system “0” and “3” there are 3 coordinate transformations), 
and }ˆˆˆ{ 555 kji   , a RF located at the observed robot’s head (between system “3” and “5” 

there are 2 coordinate transformations). The considered angles and distances are 
defined in table1. 

In the RF 5, two points will define the line of gaze: the camera’s position of the 
observed robot, and the intersection of the gaze straight line (of parameter λ) with the 
floor. This straight line will be given in system “5” coordinates by: 

x5(λ) = −λcosδP cosεP ; y5(λ) = −λ cosδP sinεP ; z5(λ) = λ sinδP
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Table 1. Angles and distances definitions 

 Definition Source 

α  Rotation angle of robot’s body with respect to axis 
0̂i  with rotation axis 

0k̂  Self-localization  

β  Elevation angle of robot’s body with respect to plane { 0̂i  0ĵ } Accelerometer  

γ  Tilt 1 angle (body–neck angle) Robot joints 
δ  Tilt 2 angle (neck–head angle) Robot joints 
ε Head’s pan angle (neck–head angle) Robot joints 

Pδ  Prototype head tilt angle in the matched image Prototype angle 

Pε  Prototype head pan angle in the matched image Prototype angle 

l1 Neck’s longitude (distance between the two rotation centers of the neck) Robot geometry 

l2
 Head’s longitude (distance between neck-head rotation center and the camera) Robot geometry 

P  3D position of the observing robot body–neck rotation center measured from 
the global reference system 

Self-localization 

C 3D position of the observing robot’s camera measured from the global 
reference system. This point corresponds to the origin of reference system 3. 

Self-localization  

R 3D position of the observed robot head measured from the observing robot 
camera. Measured in reference system 3. 

To be computed 

μ  Horizontal angle of the straight line that joints the two robot-heads, measured 
from the “3” reference system (see figure 4 (b)). 

To be computed 

ν  Vertical angle of the straight line that joints the two robot-heads, measured 
from the “3” reference system (see figure 4 (b)). 

To be computed 

φ  Affine transformation associated rotation. Computed using the mean of the 
SIFT angle differences in all the keypoints matches used to compute the 
transformation (named previously rot). 

Robot head-pose 
determination 
system 

These equations can be translated to global coordinates (x0, y0, z0) using coordinate 
transformations. The intersection with the body will correspond, in global coordinates, 
to: 0)(0 =λz . Then, going from RF “5” to RF “0” is given by:  

x0 y0 z0 1( )T = M10M21M32M43M54 x5 y5 z5 1( )T  

with: 
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A robot-head in the image is characterized by an affine transformation that maps 
the prototype image onto a certain portion of this image. The real distance between 
the two robot heads is calculated as follows: the prototype head’s image has four 
vertex: A, B, C, D and was taken with a distance ρ  (when the picture was originally 

taken). The affine transformation maps this image into a rhomboid with vertex A’, B’, 
C’ and D’. As the visual area decreases in a quadratic way with the distance, if the 
camera has no distortion, the Rx3 coordinate of the observed robot’s head in the 

}ˆˆˆ{ 333 kji    axis system can be calculated as: 

Rx3 = ρ prototype image area

mapped area
= ρ d(AB) × d(BC)

det(A'B' B'C')
 

Where ρ  is the distance between the camera and the prototype head (at the 

acquisition time). If the horizontal angle of view of the camera is Wu and the vertical 
one is Wv, the camera resolution is Mu (horizontal) x Mv (vertical), and the head 
image’s center is in the image position (u,v), then Ry3

and Rz3
 can be calculated as: 

Mv

vMv
Wv

Mu

uMu
Wu

−= −= 2/
,

2/ νμ ; ( )μ1
33

−= tgRxRy  , ( )ν1
33

−= tgRxRz . 

4   Experimental Methodology and Results 

The critical part of the here-proposed gaze determination system is the detection of 
the robot-heads. Therefore in this article results of this sub system are reported. In a 
future work we are going to report experimental results of the whole system.  

The robot-head detection system was implemented in the AIBO ERS-7. The 
subsampled scale-space is built from the original AIBO images (208x160 pixels). 
Using these small images speeds up the calculations, but the use of a small initial 
Gaussian (σ=0.7) for building the scale-space makes the computation of interest 
points very noisy. This is the reason why the here-proposed parabolic interpolation 
and additional verification stages must be used. The SIFT points and descriptors 
calculation takes between 1.05 seconds and 1.25 seconds, depending on the number of 
objects under observation. The matching voting and transformation calculation takes 
around 30 milliseconds for each prototype head analyzed.  

Robot-head detection experiments using real-world images were performed. In all of 
these experiments the 16 prototypes of robot player 1 were employed (see figure 2). 
These prototypes (around 100x100 pixels) are stored in the flash memory as BMP 
files. A database consisting on 39 test images taken on a four-legged soccer field was 
built. In these images robot “1” appears 25 times, and other robots appear 9 times. 10 
images contained no robot. Currently this database is been expanded to be made 
public, together with the robot prototypes database. In table 2 are summarized the 
obtained results. If we consider full detections, in which both, the robot-head pose as 
well as the robot identity is detected, a detection rate of 68% is obtained. When we 
considered partial detections, i.e. only the robot identity is determined, a detection 
rate of 12% is obtained. The combined detection rate is 80%. At the same the number 
of false positives is very low, just 6 in 39 images. These figures are very good, 
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because when processing video sequences, the opponent or teammates robots are seen 
in several consecutive frames. Therefore, a detection rate of 80% in single images 
should be high enough for detecting the robot-head in few frames. 

Although more intensive experiments should be performed for characterizing our 
system, we believe that these preliminary experiments show the high potential of the 
proposed methodology, as a way of achieving player recognition and gaze estimation. 
The SIFT descriptors are not based in color information; therefore they are 
complementary to existing vision systems employed in the RoboCup leagues. A 
mixed SIFT and color-based vision system could be employed in the four-legged 
league if the SIFT computation time could shortened. 

Table 2. Robot-head detection of robot #1 (only robot #1 prototype were employed) 

Full detections (head + identifier number) 17/25 68% 
Partial detections (only the identifier number) 3/25 12% 
Full + partial detections 20/25 80% 
Number of false detections in 39 images 6 
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