
Gaze Direction Determination of Opponents and
Teammates in Robot Soccer∗

Patricio Loncomilla1 and Javier Ruiz-del-Solar1,2

1 Department of Electrical Engineering, Universidad de Chile
2 Center for Web Research, Department of Computer Science, Universidad de Chile

{ploncomi, jruizd}@ing.uchile.cl

Abstract. Gaze direction determination of opponents and teammates is a very
important ability for any soccer player, human or robot. However, this ability is
still not developed in any of the RoboCup soccer leagues. We aim at reverting
this situation by proposing a gaze direction determination system for robot
soccer; the system is designed primarily for the four-legged league, but it could
be extended to other leagues. This system is based on a robot-head pose
detection system, consisting on two main processing stages: (i) computation of
scale-invariant local descriptors of the observed scene, and (ii) matching of
these descriptors against descriptors of robot-head prototypes already stored in
a model database. After the robot-head pose is detected, the robot gaze direction
is determined using a head model of the observed robot, and the current 3D
position of the observing robot camera. Experimental results of the proposed
approach are presented.

1 Introduction

Among many other capabilities, good soccer players should have the ability for
anticipating the actions of opponents, and sometimes of teammates, by just
observing the other players attitude and pose. As in other similar situations, the
human most employed mechanism for solving this task is gaze direction
determination, or the determination of the place where the opponent or teammate
player under analysis is looking. For instance, by using this mechanism an attacker
player can know if an opponent is observing him, and then planning his next actions
for avoiding that the opponent attack him or obstruct his trajectory. In another
typical situation a soccer player can know where the ball is, by looking at the same
position where an opponent is looking (in case the opponent knows the ball
position). In a third situation a soccer player can send the ball, i.e. perform a pass,
to a position where a teammate is looking at. Furthermore, when kicking the ball,
first-class soccer players can mislead opponents by looking at a different place than
the place where they are sending the ball. Some examples of these typical situations
are shown in figure 1.

∗ This research was funded by Millenium Nucleus Center for Web Research, Grant P04-067-F, Chile.

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

On hand of the described situations, it can be affirmed that gaze direction
determination of opponents and teammates is a very important ability for any soccer
player, robot or human. However, this ability is still not developed in any of the
RoboCup soccer leagues. We aim at reverting this situation by proposing a gaze
direction determination system for robot soccer. This system is designed primarily for
the four-legged league, but it could be extended to other leagues. Moreover, the same
gaze determination methodology can be used for enhancing cooperative and competitive
skills in situations where the robots interacting abilities are important.

In the here-proposed approach, gaze direction determination is based on a
robot-head pose detection system. This detection system employs two main
processing stages. In the first stage, scale-invariant local descriptors of the observed
scene are computed. Then, in the second stage these descriptors are matched against
descriptors of robot-head prototypes already stored in a model database. After the
robot-head pose is recognized, the robot gaze direction is determined using a head
model of the observed robot, and the current 3D position of the observing robot
camera. In the here-employed robots (Sony AIBO) the relation between head and
camera pose is fixed, therefore additional camera pose determination is not
required.

The local descriptors computation and matching are based on [1], but many
important parts of the method have been improved for fitting it to the robot-head
detection problem and for achieving high detection accuracy.

(a)

(b)

(c)

(d)

Fig. 1. Some examples of real soccer situations where the gaze direction determination plays an
important role. (a) and (b) An attacker player knows if an opponent is observing him and at
which distance. (c) A defender knows where the ball is, by looking at the same place where the
attacker is looking. (d) Soccer players can mislead opponents by looking at a different place
than the place where they are sending the ball.

P. Loncomilla and J. Ruiz-del-Solar

2 Related Work

Human gaze direction (i.e. line of gaze) determination has been the subject of a great
number of studies (for example [3][4][8][9]), with applications in very different fields
such as medical research for oculography determination, car drivers behavior
characterization, human-robot and human-computer interaction, including computer
interfaces for handicapped people. However, to our knowledge there are no studies on
determining the gaze direction in robots. We believe this is a problem that needs to be
solved for enhancing and enriching cooperative and competitive tasks in which the
robots interacting capabilities are important (i.e. robot soccer). Already developed
methodologies employed for human gaze direction determination are not applicable
for robots. They are based on anthropometric models of the human head and eyes, or
they employ face or iris detection algorithms, or even special lighting (infrared
lights). Therefore, new methodologies need to be employed for the robot case. Some
alternatives could be the construction of explicit 3D robot-head models, the
development of robot-face detection algorithms or the use of scale-invariant local
descriptors for performing the detection. Taking into account the impressive
development of object recognition algorithms based on scale-invariant descriptors in
the last years ([1][6][7]), and the fact that head and face variability in robots is much
smaller than in humans, we believe that for the moment, they are the best
methodology for solving this problem. Most successful proposed systems employ
either the Harris detector [5] or SIFT (Scale Invariant Feature Transform) features [1]
as building blocks. In this work we employ SIFT features because of their higher
robustness and stability. However, due to the physical characteristics of some robots
models as the AIBO ERS7 (rounded head shape and head surface producing a high
amount of highlights), it is very difficult to obtain reliable SIFTs on them. For this
reason, we improve the traditional SIFTs computation and matching algorithms.

3 Proposed Robot Gaze Direction Determination System

3.1 Scale-Invariant Local Descriptors Computation

Detection of scale-space extrema. A difference-of-Gaussian (DoG) function is
employed for identifying potential interest points that are invariant to scale and
orientation. These keypoints are searched over all scales and image locations using a
scale-space transformation. It can be proved that by using the DoG over the scale-
space, image locations that are invariant to scales can be found, and that these features
are more stable than other computed using the gradient, Hessian or Harris corner
function [1]. The scale-space of an image is defined as a function, L(x,y,σ) , which
corresponds to the convolution of the image with a Gaussian of scale σ. The DoG
function between two nearby scales separated by a constant multiplicative factor k can
be computed as:

),,(),,(),,(σσσ yxLkyxLyxD −=

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

The local extrema (maxima and minima) of L(x,y,σ) are detected by comparing each
sample with its 26 neighbors in the scale-space (8 in the same scale, 9 in the scale
above and 9 in the scale below).

Accurate keypoint localization. First, local extrema to sub-pixel / sub-scale accuracy
are found by fitting a 3D quadratic to the scale-space local sample point. The
quadratic function is computed using a second order Taylor expansion having the
origin at the sample point [2]:

x
x

xx
x

0x
2

2

2

1
)()(

∂
∂

∂
∂ DD

DD T
T

++= (1)

where x is the offset from the sample point. Then, by taking the derivate with respect
to x and setting it to zero, the location of the extrema of this function is given by:

ˆ x = −H−1∇D(0) (2)

In [1][2] the Hessian and gradient are approximated by using differences of
neighbor samples points. The problem with this coarse approximation is that just 3
samples are available in each dimension for computing the Hessian and gradient using
pixel differences, which produces a non-accurate result. We improve this computation
by using a real 3D quadratic approximation of the scale-space, instead of discrete
pixel differences. Our 3D quadratic approximation function is given by:

10987654
2

3
2

2
2

1),,(
~

aayaxayaxaxyaayaxayxD +++++++++= σσσσσ

Using the 27 samples contained in the 3x3x3 cube under analysis, the unknowns
(ai) can be found. Using vector notation, this linear system will be given by:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

27

2

1

10

3

2

1

272727272727272727
2

27
2

27
2

27

222222222
2

2
2

2
2

2

111111111
2

1
2

1
2

1

...
...

1

...

1

1

D

D

D

a

a

a

a

yxyxyxyx

yxyxyxyx

yxyxyxyx

σσσσ

σσσσ
σσσσ

where Di corresponds to the sample point value (intensity) i. We can write this linear
system as Ba = d. The least-squares solution for the parameters a is given by:

a = BTB()−1
BTd

It should be stressed that the matrix BTB()−1
BT needs to be computed once for

the whole image, and that it can be eventually pre-computed. Now, the accurate
location of the extrema can be computed using (2), with the following Hessian and
gradient expression:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

365

624

541

2

2

2

aaa

aaa

aaa

H ;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∇

9

8

7

)0(
~

a

a

a

D (3)

P. Loncomilla and J. Ruiz-del-Solar

Second, local extrema with a contrast lower (noise) than a given threshold Thcontr,
are discarded (˜ D (ˆ x) < Thcontr

). Third, extrema corresponding to edges are discarded

using curvature analysis. A peak that corresponds to an edge will have a large
principal curvature across the edge but a small one in the perpendicular direction. The
curvature can be computed from the 2x2 submatrix Hxy that considers only the x and y
components of the Hessian. Taking into account that we are interested on the ratio
between the eigenvalues, we will discard extrema in which the ratio of principal
curves is above a threshold r, or equivalently local extrema that fulfill the following
condition (see [5] for a deeper explanation):

Tr(Hxy)2

Det(Hxy)
> (r +1)2

r

In [1] Hxy is computed be taking differences of neighbor sample points. As already
mentioned, this approximation produces a non-accurate result. We improved this
situation by computing Hxy from (3).

Orientation assignment. By assigning a coherent orientation to each keypoint, the
keypoint descriptor can be represented relative to this orientation and hence achieve
invariance against rotations. The scale of the keypoint is employed for selecting the
smoothed image L(x,y) with the closest scale, and then the gradient magnitude and
orientation are computed as:

m(x,y) = (L(x +1,y) − L(x −1, y))2 + (L(x,y +1) − L(x,y −1))2

))),1(),1(/())1,()1,(((tan),(1 yxLyxLyxLyxLyx −−+−−+= −θ

As in [1], an orientation histogram is computed from the gradient orientations at
sample points around the keypoint (b1 bins are employed). A circular Gaussian
window whose size depends of the scale of the keypoints is employed for weighting
the samples. Samples are also weighted by its gradient magnitude. Then, peaks in the
orientation histogram are detected: the highest peak and peaks with amplitudes within
80% of the highest peak. Orientations corresponding to each detected peak are
employed for creating a keypoint with this orientation. Hence, multiple keypoints
with the same location and scale but different orientation can be created (empirically,
about 85% of keypoints have just one orientation).

Keypoint descriptor computation. For each obtained keypoint, a descriptor or
feature vector that considers the gradient values around the keypoint is computed. The
obtained descriptors are invariant against some levels of change in 3D viewpoint and
illumination. The keypoints and their associated descriptors are knows as SIFT (Scale
Invariant Feature Transform) features or just SIFTs.

First, in the keypoint scale the gradient magnitude and orientation are computed
around the keypoint position (usually a neighborhood of 8x8 or 16x16 pixels is
considered). Then, a Gaussian window weights the gradient magnitudes, and the
coordinates of the descriptor and the gradient orientations are rotated relative to the
keypoint orientation. Second, the obtained gradient values are accumulated in
orientation histograms summarizing the contents of 4x4 subregions (b2 bins are
employed). Thus, a descriptor vector is built, where each vector component is given

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

by an orientation histogram. Depending on the neighborhood size, 2x2 or 4x4 vectors
are obtained. Third, illumination effects are reduced by normalizing the descriptor’s
vector to unit length. Abrupt brightness changes are controlled by limiting the
intensity value of each component of the normalized vector. Finally, descriptors
vectors are re-normalized to unit length.

3.2 Matching of Local Descriptors and Robot-Head Prototypes Descriptors

Basically, the robot-head pose is determined by matching the image descriptors with
descriptors corresponding to robot-head prototype images already stored in a
database. The employed prototypes correspond to different views of a robot head, in
our case the head of an AIBO ERS7 robot. Due to we are interested in recognized the
robot identity (number), prototypes for each of the four players are stored in the
database. In figure 2 are displayed the 16 prototype heads corresponding to one of the
robots. The pictures were taken every 22.5°. The whole matching process here-
proposed considers nine processing stages. In the first stage, the image keypoint
descriptors are individually matched against prototype descriptors. In the second stage
this matching information is employed for obtaining a coarse prediction of the object
(robot-head) pose. In the third stage possible affine transformations between a
prototype and the located object are determined. In the later six stages these affine
transformations are verified, and some of them discarded or merged. Finally, if the
object is present in the image just one affine transformation should remain. This
transformation determines the object pose. It is worth to mention than in the original
work of Lowe [1], only the first four stages here-described were considered. We
included five additional verification stages that improve the detection of robot heads.
This is very important because due to the physical characteristics of the AIBO ERS7
heads (rounded head shape, head surface producing a high amount of highlights, etc.),
it is very difficult to obtain reliable SIFTs on them.

Individual Keypoint Descriptors Matching. The best candidate match for each
image keypoint is found by computing its Euclidian distance with all keypoints stored
in the database. It should be remembered that each prototype includes several
keypoint descriptors. Considering that not all keypoints are always detected (changes
in illumination, pose, noise, etc.) and that some keypoints arise from the image
background and from other objects, false matches should be eliminated. A first
alternative is to impose a minimal value to a match to be considered correct. This
approach has proved to be not robust enough. A second alternative consists on
comparing the distance to the closest neighbor to that of the second-closest neighbor.
If this ratio is greater than a given threshold, it means than this image keypoint
descriptor is not discriminative enough, and therefore discarded. In [1] the closest
neighbor and second-closest neighbor should come from a different object model
(prototype). In the current case this is not a good idea, since we have multiple views
of the same object (the robot head). Therefore, we impose the conditions than the
second-closest neighbor should come from the same prototype than the closest
neighbor. The image under analysis and the prototype images generate a lot of
keypoints, hence having an efficient algorithm for computing the keypoint descriptors
distance is a key issue. This nearest neighbor indexing is implemented using the Best-
Bin-First algorithm [10], which employs a k-d tree data structure.

P. Loncomilla and J. Ruiz-del-Solar

Fig. 2. AIBO ERS7 robot-head prototypes with their SIFTs. Pictures taken every 22.5°.

Object Pose Prediction. In the pose space a Hough transform is employed for
obtaining a coarse prediction of the object (robot-head) pose, by using each matched
keypoint for voting for all object pose that are consistent with the keypoint. A
candidate object pose is obtained if at least 3 entries are found in a Hough bin.
Usually, several possible object pose are found. The prediction is coarse because the
similarity function implied by the four parameters (2D location, orientation and scale)
is only an approximation of the 6 degree-of-freedom of a 3D object. Moreover, the
similarity function cannot account for non-rigid deformations.

Finding Affine Transformations. In this stage already obtained object pose are
subject to geometric verification. A least-squares procedure is employed for finding
an affine transformation that correctly account for each obtained pose. An affine
transformation of a prototype keypoint (x,y) to an image keypoint (u,v) is given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

y

x

t

t

y

x

mm

mm

v

u

43

21

where the mi represent the rotation, scale and stretch parameters, and tx and ty the
translation parameters. The parameters can be found if three or more matched
keypoints are available. Using vector notation, this linear system will be given by:

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

...

...

...

...

1000

0100

4

3

2

1

v

u

t

t

m

m

m

m

yx

yx

y

x

We can write this linear system as Cp = u . Finally, the least-squares solution for
the parameters p is given by:

p = CTC()−1
CTu.

Affine Transformations Verification using a Probabilistic Model. The obtained
model hypothesis, i.e. affine transformations, is subject to verification using a
probabilistic model (see detailed description in [11]).

Affine Transformations Verification based on Geometrical Distortion. A certain
affine transformation shouldn’t deform very much an object when mapping it. Given
that we have just a hypothesis of the object pose, it is not easy to determine the object
distortion. However, we do have the mapping function, i.e. the affine transformation.
Therefore, we can verify if the mapping function produce distortion or not using a
known, regular and simple object, such as a square. The affine transformation of a
square should produce a rotated parallelogram. If the affine transformation does not
produce a large distortion, the conditions that the transformed object should fulfill are
(see notation in fig. 3):

max
d(AB) /d(A'B')
d(BC) /d(B'C')

,
d(BC) /d(B'C')
d(AB) /d(A'B')

⎧
⎨
⎩

⎫
⎬
⎭

< thprop
 ; α = sin−1 det(A'B' B'C')

d(A'B') × d(B'C')
> thα

''BA is a vector from A’ to B’, ()''''det CBBA computes the parallelogram area.

Affine Transformations Verification based on Spatial Correlation. Affine
transformations producing low lineal correlation, rs , between the spatial coordinates
of the matched SIFTs in the image and in the prototype are discarded:

rs = min max(rxx,rxy),max(ryx,ryy)()< thrs

rxx and ryy correspond to the correlation in the x and y directions of the N matched
SIFTs, while rxy=ryx corresponds to the cross correlation between both directions. rxx
and rxy are calculated as (ryy and ryx are computed in a similar way):

()()

() ()∑∑

∑

==

=

−−

−−
=

N

i
i

N

i
i

N

i
ii

xx

xxxx

xxxx
r

1

2

1

2

1

''

''
;

()()

() ()∑∑

∑

==

=

−−

−−
=

N

i
i

N

i
i

N

i
ii

xy

yyxx

yyxx
r

1

2

1

2

1

''

''

P. Loncomilla and J. Ruiz-del-Solar

Fig. 3. Affine mapping of a square

Affine Transformations Verification based on Graphical Correlation. Affine
transformations producing low graphical correlation, rg , between the robot-head

prototype image and the candidate robot-head subimage can be discarded:

() ()()

() ()()
rgU

u

U

u

V

v
TRTR

V

v

U

u

V

v
TRTR

g th

IvuyvuxIIvuI

IvuyvuxIIvuI
r <

−−

−−
=

∑ ∑∑∑

∑∑

= = ==

= =

0 0 0

2

0

2

0 0

'),(),,('),(

'),(),,('),(

The affine transformation is given by {x=xTR(u,v), y=yTR(u,v)}. I(u,v) and I’(x,y)
correspond to the head prototype image and the candidate robot-head subimage,

respectively. I and I' are the corresponding pixel mean values.

Affine Transformations Verification based on the Object Rotation. In some real-
world situations, real objects can have restrictions in the rotation (respect to the body
plane) they can suffer. For example the probability that a real soccer robot is rotated
in 180° (inverted) is very low. For a certain affine transformation, the rotation of a
detected object (candidate robot-head) with respect to a certain prototype can be
determined using the SIFTs keypoint orientation information. Thus, the object
rotation, rot, is computed as the mean value of the differences between the orientation
of each matched SIFTs keypoint in the prototype and the corresponding matched
SIFTs keypoint in the image. Transformations producing large rot values can be
discarded (rot > throt

).

Affine Transformations Merging based on Geometrical Overlapping. Sometimes
more than one correct affine transformation corresponding to the same object can be
obtained. There are many reasons for that, small changes in the object view respect to
the prototypes views, transformations obtained when matching parts of the object as
well as the whole object, etc. When these multiple, overlapping transformations are
detected, they should be merged. As in the case when we verify the geometrical
distortion produce by a transformation, we perform a test consisting in the mapping of a
square by the two candidate affine transformations to be joined. The criterion for joining
them is the overlap, over, of the two obtained parallelograms (see notation in fig. 3):

over =1− dist(A'1 A'2) + dist(B'1 B'2) + dist(C'1 C'2) + dist(D'1 D'2)
perimeter(A'1 B'1 C'1 D'1) + perimeter(A'2 B'2 C'2 D'2)

> thover

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

(a) (b)

(c) (d)

5
î

5
ĵ

5
k̂

P

P

0
î

0
ĵ

0
k̂

3
î

3
ĵ

3
k̂

4
î

4
ĵ

4
k̂

5
î=

5
ĵ

5
k̂

3
î

3
ĵ

3
k̂

4
î

4
ĵ

4
k̂

μ

Fig. 4. Defined reference systems (RFs) (see explanation in main text). (a) RFs ”0” and “3”. (b)
RFs “3” and “4”, rotation angles μ and ν . (c) RFs “4” and “5”, and affine rotation angle φ .

(d) Observed robot in RF “5”, line of gaze in green.

It should be also verified if the difference between the rotations produced for each
transform is not very large. Therefore, two transforms will be joined if:

rot1 − rot2 < thdiff _ rot
.

3.3 Gaze Determination

The line of gaze of the observed robot, in global coordinates, can be computed using
the following information: (i) observing robot pose in global coordinates, (ii)
prototype view angle, and (iii) distance and rotation angle of the observed robot. The
observing robot pose can be estimated using the self-localization system (any mobile
robot control software has a similar system). The prototype view angle is fixed and
known, it was defined when the model database was built. Finally, the distance and
rotation angle of the observed robot can be determined from the affine transformation.

For performing the computations we define the following coordinate systems:

}ˆˆˆ{ 000 kji , the global reference system (RF), }ˆˆˆ{ 333 kji , a RF fixed to the observing

robot’s camera (between system “0” and “3” there are 3 coordinate transformations),
and }ˆˆˆ{ 555 kji , a RF located at the observed robot’s head (between system “3” and “5”

there are 2 coordinate transformations). The considered angles and distances are
defined in table1.

In the RF 5, two points will define the line of gaze: the camera’s position of the
observed robot, and the intersection of the gaze straight line (of parameter λ) with the
floor. This straight line will be given in system “5” coordinates by:

x5(λ) = −λcosδP cosεP ; y5(λ) = −λ cosδP sinεP ; z5(λ) = λ sinδP

P. Loncomilla and J. Ruiz-del-Solar

Table 1. Angles and distances definitions

 Definition Source

α Rotation angle of robot’s body with respect to axis
0̂i with rotation axis

0k̂ Self-localization

β Elevation angle of robot’s body with respect to plane { 0̂i 0ĵ } Accelerometer

γ Tilt 1 angle (body–neck angle) Robot joints
δ Tilt 2 angle (neck–head angle) Robot joints
ε Head’s pan angle (neck–head angle) Robot joints

Pδ Prototype head tilt angle in the matched image Prototype angle

Pε Prototype head pan angle in the matched image Prototype angle

l1 Neck’s longitude (distance between the two rotation centers of the neck) Robot geometry

l2
 Head’s longitude (distance between neck-head rotation center and the camera) Robot geometry

P 3D position of the observing robot body–neck rotation center measured from
the global reference system

Self-localization

C 3D position of the observing robot’s camera measured from the global
reference system. This point corresponds to the origin of reference system 3.

Self-localization

R 3D position of the observed robot head measured from the observing robot
camera. Measured in reference system 3.

To be computed

μ Horizontal angle of the straight line that joints the two robot-heads, measured
from the “3” reference system (see figure 4 (b)).

To be computed

ν Vertical angle of the straight line that joints the two robot-heads, measured
from the “3” reference system (see figure 4 (b)).

To be computed

φ Affine transformation associated rotation. Computed using the mean of the
SIFT angle differences in all the keypoints matches used to compute the
transformation (named previously rot).

Robot head-pose
determination
system

These equations can be translated to global coordinates (x0, y0, z0) using coordinate
transformations. The intersection with the body will correspond, in global coordinates,
to: 0)(0 =λz . Then, going from RF “5” to RF “0” is given by:

x0 y0 z0 1()T = M10M21M32M43M54 x5 y5 z5 1()T

with:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

1000

cos0sin

sinsincoscossin

sincossincoscos

10
z

y

x

P

P

P

M
ββ

βααβα
βααβα

;

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−−

=

1000

cossin0cos

0010

sincos0sin

1

1

21 γγγ

γγγ

l

l

M

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

=

1000

sincoscossinsincoscos

sincossinsincossincos

sincos0sin

2

2

2

32 εδεδεεδ
εδεδεεδ

δδδ

l

l

l

M

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−
−−

=

1000

cos0sin

sinsincoscossin

sincossincoscos

3

3

3

43 Rz

Ry

Rx

M
νν

νμμνμ
νμμνμ

,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

1000

0cossin0

0sincos0

0001

54 φφ
φφ

M

 Gaze Direction Determination of Opponents and Teammates in Robot Soccer

A robot-head in the image is characterized by an affine transformation that maps
the prototype image onto a certain portion of this image. The real distance between
the two robot heads is calculated as follows: the prototype head’s image has four
vertex: A, B, C, D and was taken with a distance ρ (when the picture was originally

taken). The affine transformation maps this image into a rhomboid with vertex A’, B’,
C’ and D’. As the visual area decreases in a quadratic way with the distance, if the
camera has no distortion, the Rx3 coordinate of the observed robot’s head in the

}ˆˆˆ{ 333 kji axis system can be calculated as:

Rx3 = ρ prototype image area

mapped area
= ρ d(AB) × d(BC)

det(A'B' B'C')

Where ρ is the distance between the camera and the prototype head (at the

acquisition time). If the horizontal angle of view of the camera is Wu and the vertical
one is Wv, the camera resolution is Mu (horizontal) x Mv (vertical), and the head
image’s center is in the image position (u,v), then Ry3

and Rz3
 can be calculated as:

Mv

vMv
Wv

Mu

uMu
Wu

−= −= 2/
,

2/ νμ ; ()μ1
33

−= tgRxRy , ()ν1
33

−= tgRxRz .

4 Experimental Methodology and Results

The critical part of the here-proposed gaze determination system is the detection of
the robot-heads. Therefore in this article results of this sub system are reported. In a
future work we are going to report experimental results of the whole system.

The robot-head detection system was implemented in the AIBO ERS-7. The
subsampled scale-space is built from the original AIBO images (208x160 pixels).
Using these small images speeds up the calculations, but the use of a small initial
Gaussian (σ=0.7) for building the scale-space makes the computation of interest
points very noisy. This is the reason why the here-proposed parabolic interpolation
and additional verification stages must be used. The SIFT points and descriptors
calculation takes between 1.05 seconds and 1.25 seconds, depending on the number of
objects under observation. The matching voting and transformation calculation takes
around 30 milliseconds for each prototype head analyzed.

Robot-head detection experiments using real-world images were performed. In all of
these experiments the 16 prototypes of robot player 1 were employed (see figure 2).
These prototypes (around 100x100 pixels) are stored in the flash memory as BMP
files. A database consisting on 39 test images taken on a four-legged soccer field was
built. In these images robot “1” appears 25 times, and other robots appear 9 times. 10
images contained no robot. Currently this database is been expanded to be made
public, together with the robot prototypes database. In table 2 are summarized the
obtained results. If we consider full detections, in which both, the robot-head pose as
well as the robot identity is detected, a detection rate of 68% is obtained. When we
considered partial detections, i.e. only the robot identity is determined, a detection
rate of 12% is obtained. The combined detection rate is 80%. At the same the number
of false positives is very low, just 6 in 39 images. These figures are very good,

P. Loncomilla and J. Ruiz-del-Solar

because when processing video sequences, the opponent or teammates robots are seen
in several consecutive frames. Therefore, a detection rate of 80% in single images
should be high enough for detecting the robot-head in few frames.

Although more intensive experiments should be performed for characterizing our
system, we believe that these preliminary experiments show the high potential of the
proposed methodology, as a way of achieving player recognition and gaze estimation.
The SIFT descriptors are not based in color information; therefore they are
complementary to existing vision systems employed in the RoboCup leagues. A
mixed SIFT and color-based vision system could be employed in the four-legged
league if the SIFT computation time could shortened.

Table 2. Robot-head detection of robot #1 (only robot #1 prototype were employed)

Full detections (head + identifier number) 17/25 68%
Partial detections (only the identifier number) 3/25 12%
Full + partial detections 20/25 80%
Number of false detections in 39 images 6

References

1. D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, Int. Journal of
Computer Vision, 60 (2): 91-110, Nov. 2004.

2. M. Brown and D. G. Lowe, Invariant Features from Interest Point Groups, British Machine
Vision Conference - BMVC 2002, 656 – 665, Cardiff, Wales, Sept. 2002.

3. V. Bakic, G. Stockman, Real-time Tracking of Face Features and Gaze Direction
Determination, 4th IEEE Workshop on Applications of Computer Vision – WACV’98, 256
– 257, Princeton, USA, Oct. 19 - 21, 1998.

4. A. Perez, M.L. Cordoba, A. Garcia, R. Mendez, M.L. Munoz, J.L. Pedraza, F. Sanchez, A
Precise Eye-Gaze Detection and Tracking System, 11th Int. Conf. in Central Europe on
Computer Graphics, Visualization and Computer Vision - WSCG’2003, Plzen - Bory,
Czech Republic 3-7 February 2003.

5. C. Harris and M. Stephens, A combined corner and edge detector, 4th Alvey Vision Conf.,
147-151, Manchester, UK, 1988.

6. F. Schaffalitzky and A. Zisserman, Automated location matching in movies, Computer
Vision and Image Understanding Vol. 92, Issue 2-3, 236 – 264, Nov./Dec. 2003.

7. K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, Int.
Journal of Computer Vision, 60 (1): 63 - 96, Oct. 2004.

8. Q. Ji and X. Yang, Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driver
Vigilance, Real-Time Imaging, 8, 357-377 (2002).

9. T. Ohno, N. Mukawa and A. Yoshikawa, FreeGaze: A Gaze Tracking System for
Everyday Gaze Interaction, Symposium on Eye Tracking Research and Applications, 125-
132, 2002.

10. J. Beis and D.G. Lowe, Shape Indexing Using Approximate Nearest-Neighbor Search in
High-Dimensional Spaces, IEEE Conf. Comp. Vision Patt. Recog, 1000-1006, 1997.

11. D.G. Lowe, Local Features View Clustering for 3D Object Recognition, Proc. of the IEEE
Conf. on Comp. Vision and Patt. Recog., 682 – 688, Hawai, Dic. 2001.

	Introduction
	Related Work
	Proposed Robot Gaze Direction Determination System
	Scale-Invariant Local Descriptors Computation
	Matching of Local Descriptors and Robot-Head Prototypes Descriptors
	Gaze Determination

	Experimental Methodology and Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

