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Abstract. A full-text index is a data structure built over a text string
T[1,n]. The most basic functionality provided is (a) counting how many
times a pattern string P[1,m] appears in T and (b) locating all those
occ positions. There exist several indexes that solve (a) in O(m) time
and (b) in O(occ) time. In this paper we propose two new queries, (c)
counting how many times P[1, m] appears in T'[l,r] and (d) locating all
those occy,» positions. These can be solved using (a) and (b) but this
requires O(occ) time. We present two solutions to (¢) and (d) in this
paper. The first is an index that requires O(nlogn) bits of space and
answers (c¢) in O(m + logn) time and (d) in O(logn) time per occur-
rence (that is, O(occy,» logn) time overall). A variant of the first solution
answers (c) in O(m + loglogn) time and (d) in constant time per occur-
rence, but requires O(nlog' ™ n) bits of space for any constant ¢ > 0.
The second solution requires O(nmlogo) bits of space, solving (¢) in
O(m[logo/loglogn]) time and (d) in O(m[logo/loglogn]) time per
occurrence, where o is the alphabet size. This second structure takes
less space when the text is compressible.

Our solutions can be seen as a generalization of rank and select dictionar-
ies, which allow computing how many times a given character c appears
in a prefix T'[1, 4] and also locate the i-th occurrence of ¢ in T'. Our solu-
tion to (c) extends character rank queries to substring rank queries, and
our solution to (d) extends character select to substring select queries.

As a byproduct, we show how rank queries can be used to implement
fractional cascading in little space, so as to obtain an alternative imple-
mentation of a well-known two-dimensional range search data structure
by Chazelle. We also show how Grossi et al.’s wavelet trees are suitable
for two-dimensional range searching, and their connection with Chazelle’s
data structure.
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1 Introduction and Related Work

The indexed string matching problem is that of, given a long text T'[1,n] over
an alphabet X' of size o, build a data structure called full-text index on it, to
solve two types of queries: (a) Given a short pattern P[1,m] over X, count the
occurrences of P in T'; (b) locate those occ positions in T'. There are several classi-
cal full-text indexes requiring O(n logn) bits of space which can answer counting
queries in O(m) time (like suffix trees [2]) or O(m-+logn) time (like suffix arrays
[14]). Both locate each occurrence in constant time once the counting is done.
Similar complexities are obtained with modern compressed data structures [5,
10, 7], requiring space nHy(T') + o(nlog o) bits, where Hy(T') < logo is the k-th
order empirical entropy of 7.3

In this paper we introduce a new problem, position restricted substring search-
ing, which consists of two new queries: (¢) Given P[l,m]| and two integers
1 <1 <r < mn, count all the occurrences of P in T[l,7], and (d) locate those
occy,» occurrences. These queries are fundamental in many text search situations
where one wants to search only a part of the text collection, e.g. restricting the
search to a subset of dynamically chosen documents in a document database,
restricting the search to only parts of a long DNA sequence, and so on. Curi-
ously, there seem to be no solutions to this problem apart from locating all the
occurrences and then filter those in the range [I, r]. This costs at least O(m+occ)
for (c¢) and (d) together.

We present several alternative structures to solve this problem. The best
complexities are summarized in Table 1.

Section Bits of space Counting time Locating time
4 O(nlog' < n) O(m + loglog n) O(1)
4  |nlogn(l+o0(1)) + O(nHy(T)log” n) O(m + logn) O(logn)
4 nlogn(l+ o(1)) + nHg(T) O(m(lolg?lgo‘;nl +logn)| O(logn)
5 nY iy Hi(T) O(m[gEz])  |0mIgEsT)

Table 1. Simplified complexities achieved for queries (¢) and (d). Locating time is
given per occurrence.

Interestingly, our solutions are also useful to solve a generalization of another
well-studied problem. Given a sequence S over an alphabet X' of size o and a
character ¢ € X, query rank.(S,4) returns the number of occurrences of ¢ in
S[1,1], while select.(S, j) returns the position of the j-th occurrence of ¢ in S.
Both queries can be answered in constant time using data structures that require
nHy(S)+o(n) bits of space if the alphabet of the sequence is ¢ = O(polylog(n)),
or in O(log o/ loglogn) time in general [9, 8]. They can also be solved in O(log o)
time using wavelet trees [10,11]. For the case of binary sequences, apart from

% In this paper log stands for log,.



the simple n + o(n) bits data structures [12,4, 16], there are others that answer
rank and select in constant time using nHo(S) + o(n) bits [18].

A natural generalization of the above problem is substring rank and select. For
astring s, ranks(S, 1) is the number of occurrences of s in S[1, 4], and selects(S, 7)
is the starting position of the j-th occurrence of s in S. We can use the indexes
for position-restricted substring searching to answer ranks in the same time of
a counting query (type (c)), and selects in the same time of a counting query
plus the time to locate one occurrence (type (d)).

As a byproduct, we present a space-efficient implementation of a well-known
two-dimensional range search data structure by Chazelle [3]. We show in partic-
ular how the fractional cascading information (which is simulated rather than
stored in Chazelle’s data structure) can be represented by constant-time rank
queries on bit arrays. We also show that Grossi et al.’s wavelet trees [10,11]
are suitable for two-dimensional range searching, pointing out in particular their
connection with Chazelle’s data structure.

2 Two-Dimensional Range Searching

In this section we describe a range search data structure to query by rectangular
areas. The structure is a succinct variant of one from Chazelle [3,13] where we
have completely removed binary searching and fractional cascading and have
replaced them by constant-time rank queries over bit arrays. Given a set of
points in [1,n] X [1,n], the data structure permits determining the number of
points that lie in a range [¢,4'] X [4,7'] in time O(logn), as well as retrieving
each of those points in O(logn) time. The structure can be implemented using
nlogn(l+ o(1)) bits.

Structure. We describe a slightly simpler version of the original structure [3],
which is sufficient for our problem. The simplification is that our set of points
come from pairing two permutations of [1,n|. Therefore, no two different points
share their same first or second coordinates, that is, for every pair of points
(i,7) # (¢',4') it holds i # ' and j # j'. Moreover, there is a point with first
coordinate ¢ for any 1 < ¢ < n and a point with second coordinate j for any
1<j<n.

The structure is built as follows. First, sort the points by their j coordinate.
Then, form a perfect binary tree where each node handles an interval of the first
coordinate 4, and thus knows only the points whose first coordinate falls in the
interval. The root handles the interval [1, n], and the children of a node handling
interval [i,4'] are associated to [i, | (i +14")/2]] and [| (i +¢)/2] 4+ 1,7']. The leaves
handle intervals for the form [i,4]. All those intervals will be called tree intervals.

Each node v contains a bitmap B, so that B,[r] = 0 iff the r-th point handled
by node v (in the order given by the initial sorting by j coordinate) belongs to
the left child. Each of those bitmaps B, is preprocessed for constant-time rank
queries [12, 4, 16]). The bitmaps with rank functionality give a space-efficient way
to implement fractional cascading, and also avoid any need of binary searching.



Querying. We first show how to track a particular point (4, j) as we go down the
tree. In the root, the position given by the sorting of coordinates is precisely 7,
because there is exactly one point with second coordinate j for any j € [1,n].
Then, if Byoot[j] = 0, this means that point (4, j) is in the left subtree, otherwise
it is in the right subtree. In the first case, the new position of (i,7) in the left
subtree is j <« ranko(Byoot,j), which is the number of points preceding (i, )
in Byoot which chose the left subtree. Similarly, the new position on the right
subtree it is j < ranki(Broot, J)-

Range searching for [i,4] x [f, '] is carried out as follows. Find in the tree
the O(logn) maximal tree intervals that cover [i,¢']. The answer is then the set
of points in those intervals whose second coordinate is in [4, j’]. Those points
form an interval in the B array of each of the nodes that form the cover of
[i,7']. However, we need to track those j and j' coordinates as we descend by
the tree. Every time we descend to the left child of a node v, we update [j, j'] —
[ranko(By,j — 1) 4+ 1,ranko(B,,j’)], and similarly with rank; for a right child.
When we arrive at a node whose interval is contained in [¢,'], the number of
qualifying points is just j' — j4 1. Thus the whole procedure takes O(logn) time.
Figure 1 shows the pseudocode.

Algorithm RangeCount(v, [1,4], [4, '], [ti, ti'])

(1) if 7 > j' then return 0;

(2) if [ti,ti'] N [i,7'] = 0 then return 0;

(3) if [ti,ti'] C [1,i'] then return j' — j + 1;

(4) tm«— |(ti +ti")/2];

(5) [jt,gi] « [ranko(Buv,j — 1) + 1, ranko(By, j')];

(6) [je.d!) — [rank:(Burj — 1)+ 1, rank: (B, 1))

(7) return RangeCount(left(v),[i, '], [ji, 5], [t3, tm]) +

RangeCount(right(v), [4,4'], [jr, 7], [tm + 1, ti']);

Fig. 1. Algorithm for counting the number of points in [7,7'] X [4, j'] on a tree structure
rooted by v with nodes left(v) and right(v). The last argument is the tree interval
handled by node v. The first invocation is RangeCount(root, [i,4'], [f, 7'], [1, n]).

For retrieving the points, we start from each of the tree nodes that cover
[i,4']. Each point in the node whose second coordinate is in [j,j'] is tracked
down in the tree until the leaves, so as to find its first coordinate i. This can
be done in O(logn) time per retrieved element. (For our application, we do not
describe how to associate the proper j value to each i coordinate found, but
it can be done by traversing the tree upwards from each leaf using select.) We
traverse the whole subtree of each node included in [, 4], as long as it has some
point in [, j/]. The leaves found in this process are reported. Figure 2 gives the
pseudocode.



Algorithm RangeLocate(v, [J, 5], [t3, ti])

(1) if ti = ti’ then { output ti; return; }

(2) if 7 > j' then return;

(3) tm — |(ti + i) /2):

(4) [ogl] — [ranko(Berj— 1) + 1, ranko(Bu, )]
(5) [jrrdt) — [ranks(Bu,j — 1)+ 1, ranky (Bo.4 )}
(6) RangeLocate(left(v), [, 4;], [ti, tm]);

(7) RangeLocate(right(v), [jr, jr], [tm + 1,t']);

Fig. 2. Algorithm to invoke instead of returning j* — j + 1 in line (3) of RangeCount,
so as to locate occurrences instead of just counting them.

Space. We do not need any pointer for this tree. We only need 1 + [logn]
bit streams, one per tree level. All the bit streams at level h of the tree are
concatenated into a single one, of length exactly n. A single rank structure is
computed for each whole level, totalizing nlogn(l + O(loglogn/logn)) bits.
Maintaining the initial position p of the sequence corresponding to node v at
level h is easy. There is only one sequence at the root, so p = 1 at level h = 1.
Now, assume that the sequence for v starts at position p (in level h), and we
move to a child (in level i + 1). Then the left child starts at the same position
p, while the right child starts at p + ranko(By, |By|). The length of the current
sequence |B,| is also easy to maintain. The root sequence is of length n. Then
the left child of v is of length ranky(B,,|By|) and the right child is of length
ranki(B,,|By]|). Finally, if we know that v starts at position p and we have the
whole-level sequence B" instead of B, then ranky(B,,j) = ranky,(B",p —1 +
j) — ranky(B",p — 1). Figure 3 shows again the counting algorithm, this time
over the real data structure.

Wavelet Trees. Wavelet trees [10,11] are data structures for text indexing in-
troduced by Grossi et al. The wavelet tree is a perfectly balanced tree of height
[log o]. Each tree node corresponds to a subinterval of [1, o] and represents the
text subsequence of characters in that subinterval. At each node, the current
alphabet range is partitioned into two halves, and the corresponding alphabet
subintervals are assigned to the left and right child of the node. The only data
stored at a node is a bitmap where, for each character of the text it represents,
it is indicated whether that character went left or right.

Each bitmap is processed for rank and select queries. If one uses basic tech-
niques for those queries [12,4, 16] the wavelet tree takes n[logo|+O(nloglogn/
log,. n) bits of space for a text T'[1, n], that is, the same text size. With more ad-
vanced techniques [18], the size of the wavelet tree achieves nHy(T")+O(nloglogn/
log, n) bits of space, where Hy(T') is the zero-order entropy of 7. In both cases,
the wavelet tree solves in O(log o) time the following queries: (a) T[i], that is,
finding the i-th character of T; (b) rank.(T,i), that is, finding the number of



Algorithm RangeCount(B, [i,4'], [j, 7], h, D, ¢, [ti, ti])

(1) if j > j' then return 0;

if [ti,¢'] N [¢,7'] = 0 then return 0;

if [ti,ti'] C [i,4'] then return j' — j + 1;

tm «— [(ti +ti')/2];

i, 1] < [ranko(B",p,p — 1+ j = 1) + 1,ranke(B", p,p — 1+ j')];

[r,gr] = [rank:(B",p,p =1+ 5 — 1) + 1, rank (B", p,p — 1+ j")];

[t1,£,] — [ranko(B",p,p — 1 + £), rank,(B",p,p — 1 + £)]

p' — p+ranko(B", ()

return RangeCount(B, [i,4'], [ji, 4], b + 1, p, b1, [ti, tm]) +
RangeCount(B, [i,4'], [jr, jr], b + 1,0, £, [tm + 1,ti']);

U W N

NN N N N N S
NoJNoJEN iNe))
PN AN SN N

Fig. 3. Algorithm for counting the number of points in [i,4'] X [4, j'] on the real, level-
wise, structure. The first invocation is RangeCount (B, [i,7'], [, 5], 1, 1, n, [1,n]). We use
ranky,(B", a,b) as shorthand for rank,(B",b) — rank,(B",a — 1).

occurrences of ¢ in T[1,4]; and (c) select (T, j), that is, finding the position in
T of the j-th occurrence of c.

We note now that wavelet trees have yet other applications not considered
before. Assume we have a set of points (4, j) € [1,n] x [1,n] which is the product
of two permutations of [1,n] as explained in the beginning of this section. Call
i(j) the unique 7 value such that (i, j) is a point in the set. Then consider the
text T[1,n] = i(1)i(2)i(3) . ..i(n). Then, the wavelet tree of T is exactly the data
structure we have described in this section. This text has alphabet of size n and
its zero-order entropy is also log n, thus this wavelet tree takes nlogn(1+ o(1))
bits as expected. Although the original wavelet-tree queries are not especially
interesting in this range search scenario, we have shown in this section that the
wavelet tree structure can indeed be used to solve two-dimensional range search
queries in O(logn) time, and report each occurrence in O(logn) time as well.

3 A Simple O(m + logn) Time Solution

Our first solution is composed of two data structures. The first is the familiar
suffix array A[1,n] of T, enriched with longest common prefix (Icp) information
[14]. This structure needs 2n[logn] bits and permits determining the interval
Alsp, ep] of suffixes that start with P[1,m] in O(m+logn) time [14]. The second
is the range search data structure R described in Section 2, indexing the points
(i, A[i]). Both structures together require 3nlogn(1l + o(1)) bits, or 3n + o(n)
words.

To find the number of occurrences of P[1,m] in T[l,r], we first find the
interval A[sp, ep] of the occurrences of P in T, and then count the number of
points in the range [I, 7 —m+1] X [sp, ep] using R. This takes overall O(m—+logn)
time. Additionally, each first coordinate (that is, text position I < ¢ <r—m-+1)



of an occurrence can be retrieved in O(log n) time, that is, the occ; - occurrences
can be located in O(occ; - logn) time.

A plus of the index is that, unlike plain suffix arrays, this structure locates
the occurrences in text position order, not in suffix array order. In order to find
them in suffix array order, we should rather index points (Ai],i) and search
for the interval [sp, ep] x [I,7 — m + 1]. Then R would retrieve the suffix array
positions ¢ (in increasing order in A) such that A[{] is an occurrence.

Larger and faster. It is possible to improve the locating time to O(1) by using
slightly more space. Instead of the structure of Section 2, that of Alstrup et al.
[1] can be used to index the points (i,.A[i]). This structure retrieves the occy
occurrences of a range query in O(loglogn + occ; ) time. In exchange, it needs
O(n log'*e n) bits of space, for any constant 0 < e < 1. Thus, by using slightly
more space, we achieve O(m + logn) counting time and O(1) locating time per
occurrence.

Given the complexity O(loglogn) for the range-search part of the counting
query, it makes sense to replace the suffix array by a suffix tree, so that we still
have O(nlog't€n) bits of space and can solve the counting query in O(m +
loglogn) time, and the locating query in constant time per occurrence.

Smaller and slower. Alternatively, it is possible to replace the suffix array A
and its lcp information by any of the wealth of existing compressed data struc-
tures [17]. For example, by using the LZ-index of Ferragina and Manzini [6] we
obtain nlogn(l 4+ o(1)) + O(nHg(T)log” n) bits of space (for any v > 0 and
any k = O(log,logn)) and the same time complexities. On the other hand,
we can use the alphabet-friendly FM-index of Ferragina et al. [7, 8] to obtain
nlogn(l + o(1)) + nHy(T) bits of space (for any ¢ = o(n/loglogn) and any
k < alog, n for any constant 0 < o < 1). In this case the counting time raises
to O(m[logo/loglogn] +logn). This is still O(m +logn) if ¢ = O(polylog(n)).

4 An O(mlogo) Time Solution

We present now a solution that, given a construction parameter t, requires
ntlogo(1+4o0(1)) bits of space and achieves O(m[log o/ loglogn]|) time for count-
ing the occurrences of any pattern of length m < ¢. Likewise, each such oc-
currence can be located in O(m[logo/loglogn]) time. For example, choosing
t = log, n gives a structure using nlogn(l + o(1)) bits of space able to search
for patterns of length m < log, n.

Actually, we show that this structure can be smaller for compressible texts,
taking n ZZ_:% Hy(T) instead of nt log o, where Hy(T') is the k-th order empirical
entropy of T [15,10]. This is a lower bound to the number of bits per character
achievable by any compressor that considers contexts of length k& to model T'.

Structure. Our structure indexes the positions of all the ¢-grams (substrings of
length ¢) of T. It can be tought of as an extension of the wavelet tree [10,11] to
t-grams.



The structure is a perfectly balanced binary tree, which indexes the binary
representation of all the ¢-grams of T', and searches for the binary representation
of P. The binary representation b(s) of a string s over an alphabet o is obtained
by expanding each character of s to the [logo] bits necessary to code it. We
index n ¢-grams of T, namely b(T'[1,¢]), b(T[2,t+ 1)), ..., b(T[n,n+t—1]). The
text T is padded with ¢ — 1 dummy characters at the end.

The binary tree has £ = t[log o] levels. Each tree node v is associated a binary
string s(v) according to the path from the root to v. That is, s(root) = ¢ and, if
vy and v, are the left and right children of v, respectively, then s(v;) = s(v)0 and
s(vr) = s(v)1. To each node v we also associate a subsequence of text positions
Sy ={i, s(v) is a prefix of b(T'[i,i +t — 1])}.

Note that each i € S, will belong exactly to one of its two children, v; or
vp. At each internal node v we store a bitmap B, of length n, = |S,|, such that
B,[i] =0 iff i € S,,. Neither s(v) nor S, are explicitly stored, only B, is.

Querying. Given a text position ¢ at the root node, we can track its corresponding
position in B, for any node v such that i € S,. At the root, we start with
iroot = 1. When we descend to the left child v; of a node v in the path, we
set i, = ranko(By,i), and if we descend to the right child v, we set i, =
ranky (By, ). Then we arrive with the proper i, value at any node v.

In order to search for P in the interval [I, r], we start at the root with l,o0r = [
and 700t = 7 —m+ 1, and find the tree node v such that s(v) = b(P) (following
the bits of b(P) to choose the path from the root). At the same time we obtain
the proper values [, and 7,,. Then the answer to the counting query is r, — 1, + 1.
The process requires O(mlog o) time.

To locate each such occurrence [, < ¢, < r,, we must do the inverse tracking
upwards. If v is the left child of its parent v,, then the corresponding position in
vp 18 4y, = selecto(By,,1y). If v is a right child, then i,, = selecti(B,,,i,). The
final position in T is thus i,,¢. This takes O(mlog o) time for each occurrence.

Space. The bulk of the space requirement corresponds to the overall size of bit
arrays B,. Vectors B, could be represented using the technique of Clark and
Munro [4, 16], which permits answering rank and select queries in constant time
over the bit arrays B, using n,(1 4+ o(1)) bits. All the n, values at any depth
add up n, and since the tree height is ¢, we have nt[log o](1+ o(1)) bits overall.
The same technique used before to concatenate all the bitmaps at each level is
used here to ensure that o(1) is sublinear in n.

We show now that, by using more sophisticated techniques [18], the space
requirement may be reduced on compressible texts T'. In that work they represent
bit array B, using n,Ho(B,) + o(n,) bits, and answer rank and select queries
in constant time. As we already know that the o(n,) parts add up o(nmlogo)
bits (more precisely, O(nmlogologlogn/logn) bits), we focus on the entropy-
related part. Let us assume for simplicity that o is a power of 2.

Let us analyze all the n,Hy(B,) terms together. For a binary string s, let us
define ny, = |{i, s is a prefix of b(T'[i,i +t — 1])}|. Thus, if we consider vector
Byoot, its representation takes nHo(Broot) = —nolog 72 — ny log =+



Consider now the vectors B for the two children of the root. The entropy
part of their representations add up —ngglog % — no1 log:i—ﬂol — n1g log% -
ni1 log ’:1—111 We notice that ng = ngg + no1 and n1 = n19 + n11. By adding up
the size of representations of the root and its two children, we get —ngg log #2 —
no1 log =2 — nyg log 12 — nq; log #1t bits. This can be extended inductively to
log o levels, so that the sum of all the representations from the root to level
logo —1is

N
- Z Mg log? = nHy(T)

s€{0,1}leg o
where 0log0 = 0.
Similarly, starting from each node v such that s(v) € {0,1}1°8° we have that
nHy(By) = —ns(p)log 2“(”))0 — g1 log =22 and all the B vectors in the next

Ns(v)
log o levels of its subtree add up

- Z Ns(v)s ].Og

s€{0,1}log o

Ns(v)s '

Ms(v)

Summing this for all the nodes representing all the possible s(v) € {0,1}°87,
we have

- E N 10g Dos’ nH,(T).
ng
s,8’€{0,1}loe

This can be continued inductively until level tlog o, to show that the overall
space is

t—1
nZHk(T) + O(ntlogologlogn/logn)
k=0

bits. For incompressible texts this is ntlogo(1+0(1)), but for compressible texts
it may be significantly less.

Higher arity trees. A generalization of the rank/select data structures [18] permit
handling sequences with alphabets of size up to O(polylog(n)) with constant time
rank. and select. [9, 8]. Instead of handling one bit of b(T'[¢,i -+t —1]) at a time,
we could handle a bits at a time. This way, our binary tree would be 2%-ary
instead of binary. Instead of a sequence of bits B, at each node, we would store
a sequence B, of integers in [0,a — 1]. As long as 2% = O(polylog(n)) (that is,
a = O(loglogn)), we can index those sequences B, with the generalized data
structure so as to answer in constant time the rank/select queries we need to
navigate the tree.

The search algorithm is adapted in the obvious way. When going down to
the d-th child of node v, 0 < d < a, we update i, to i,, = rankq(B,,i,) and,
similarly, when going up to v from child d, i, = selectq(B,, i,,). Note that a must
divide log o to ensure that any pattern search will arrive exactly at a tree node.
The overall time is O(mlog(c)/a) = O(m[logo/loglogn]), either for counting
or for locating an occurrence. This is O(m) whenever o = O(polylog(n)).



We note that it is necessary, again, to concatenate all sequences at each tree
level, so that the limit ¢ = O(loglogn) remains constant as we descend in the
tree. For space occupancy related to entropy, the analysis is very similar; we just
consider a bits at once.

Compared to the solution of the previous section requiring O(nlogn) bits of
space and O(m + logn) counting time, we can use t = O(log, n) to achieve the
same space complexity, so that any query of length up to ¢ can be answered.
The structure of this section is faster than that of the previous section in this
range of m values. Compared to the faster structure requiring O(n log'™e n) bits
and O(m) counting time, our structure could answer in the same space counting
queries on patterns of length up to O(log, nlog®n). The time for counting is
better than the previous structure for m = O(loglogn).

5 Substring Rank and Select

The techniques developed for the problem of counting and locating the occur-
rences of a pattern P in T[l,r] can be used to solve the substring rank and sub-
string select problem. As far as we know, this problem has not been addressed
before. It extends the rank. and select. queries, ¢ € X, to strings over Y. That
is, given s € X*, rank,(T,4) is the number of occurrences of s in T'[1,4], while
selects(T, 7) is the initial position of the j-th occurrence of s in 7.

Note that ranks(T, 1) is just the number of occurrences of s in T'[1,i], and
therefore it corresponds directly to a particular case of our counting queries.
On the other hand, selects(T), j) is solved by using the locating mechanism. We
detail this query now.

With the structure of Section 3 we must start with a counting query for s in
the interval [1,n]. Therefore, we end up at the unique interval [sp, ep] at the tree
root. Then, to solve selects(T,j) we must track down in the tree the position
sp + j — 1 at the tree root. Therefore, we need overall O(|s| 4+ logn) time for
selects(T, 7) (just as for ranks(T,1)), yet £ calls to selects cost O(|s| + £logn).
It is not clear whether the more complicated O(nlog'™“n) bits structure can
extract random occurrences in constant time.

Let us now consider the structure of Section 4. Once we search for s in the
tree starting with range [I,7] = [1,n], we end up at some node v (such that
s(v) = b(s)) with [l,, ry]. To solve selects(T, j) we take entry I, + 7 — 1 at node v
and walk the tree upwards until finding the position in the root node, and that
position is the answer. This takes overall time O(|s|[log o/ loglogn]) (just as for
ranks), and requires O(n|s|log o) bits of space (or less if T' is compressible).

6 A Small Experiment

We have implemented the simplest mechanism described in Section 3, and com-
pared it against a brute-force solution, that is, use the plain suffix array to
discover the occ occurrences and then pass over those determining which are in
the right text range.



As the suffix array search is identical in both cases, we have focused on the
time to complete the process once the suffix array range is known. For counting,
the brute-force method has complexity O(occ), whereas our method in Section 3
requires O(logn) time. For locating the occurrences, the brute-force method is
still O(occ) time, while our method requires O(occ;,» logn).

We tested over different English texts, ranging from 1 to 100 megabytes.
We randomly generated subintervals of the suffix array of a fixed length and
compared the time to pass over it counting/reporting the text positions within
some range, against using the generated suffix array interval as a key for the two-
dimensional search of our method. Note that the fact that the suffix array ranges
generated do not come from an actual search is irrelevant for the performance
of the process, and it permits us tight control over occ.

According to the experiments, our counting method becomes faster than
brute force approximately for occ > 1,000. This did not depend significatively
on the text size nor on the text interval [I, 7] chosen. The two-dimensional search
part takes, in our method, time similar to the suffix array search.

For locating queries, on the other hand, our method was superior for % <
0.004. This is obtained when occ exceeds 1,000 by a sufficient margin (say, 10
times). The reason is that our method has a constant overhead that is indepen-
dent of occy ., so that even for occ;, = 0 the brute force method is faster for
occ < 1,000.

The ranges of values obtained show that our method is reasonably practical,
and it wins when the query is sufficiently selective, as expected.

7 Conclusions

We have addressed several important generalizations of well-studied problems in
string matching and succinct data structures. First, we generalized the indexed
string matching problem to position-restricted searching, where the search can
be done inside any text substring. We have obtained space and time complexities
close to those obtained for the basic problem. Second, we generalized rank and
select queries on sequences to substring rank and select, where the occurrences of
any substring s can be tracked instead of only characters. Our time complexities
are slightly over the ideal O(]s|).

It is an interesting open question whether we can close those small gaps,
that is (1) whether we can answer position-restricted counting queries in O(m)
time and locating each result in O(1) time with structures taking O(nlogn) bits
of space, or even better, compressed data structures requiring O(nHy) bits of
space; and (2) whether we can answer rank and select queries for substring s in
O(|s|) time.

In addition, we have shown some interesting connections between well-known
two-dimensional range search data structures by Chazelle and recent data struc-
tures for compressed text indexing (the wavelet trees by Grossi et al.). We also
showed how rank queries permit implement Chazelle’s structure without using
any fractional cascading information nor binary searches.
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