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The well-known “ant” defined by C. Langton on a grid with black and white squares is forced by periodical
binary sequences {rm}, as follows: i) The ant turns 90° to the left (right) if it enters a white (black) square and
if {rm} � 0 (Langton’s case); and ii) the directions are reversed if {rm} � 1; in both cases the color of the square
is inverted as the ant proceeds. Changing the sequences {rm}, we obtain a plethora of different, periodical tracks.
Thousands of runs, some of them differing only by one bit, never rendered the same pattern. Also, an ant moving
from a white to a black domain may experience reflection, refraction or sliding on the black-white-border.
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1. INTRODUCTION

A cellular automaton model that has caught consider-

able attention is Langton’s ant (see [1–7]). Its behavior

is defined on a two-dimensional square grid. The ant

heads in one of four possible directions. If it enters a white

square, it turns 90° to the left and paints this square black.

If it enters a black square, it turns 90° to the right and paints

this square white. Disordered patterns appear until 9977

iterations. Then, unexpectedly, the ant moves periodically

in one of the four possible diagonal directions. It has been

rigorously shown [7] that the temporal period � on this

periodical pattern is � � 104 steps.

It is interesting that Langton’s ant can be considered as

a very simple description of a physical particle in a scatter-

ing environment. In fact, in so-called Lorentz lattice gases

appearing in statistical mechanics, scatterers can be as-

sumed to be distributed on a lattice; a scatterer is changed

after a particle interacts with it ([8,10]; see also [6]). Lang-

ton’s ant would correspond—in a highly simplified mod-

el—to a particle that is scattered 90° to the right or 90° to the

left, these directions being reversed (due to modification of

the scatterer) after each scattering event. Related descrip-

tions can be used for charged particles within inhomoge-

neous magnetic fields, e.g., in a turbulent magnetized

plasma [8].

Previous studies [2,4,5] have been devoted to a particular

generalization of Langton’s algorithm. In this generaliza-

tion, n states k � 0, 1, 2,…, n � 1 are considered, instead of
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just two states. After the ant leaves a cell in state k, this state
changes to k � 1(mod n). A rule-string (length n) of 0’s and
1’s is given. If rk is the kth bit of that string, then the ant
turns to the right if rk � 1 and to the left if rk � 0. It could
be shown that the ant’s track is always unbounded, pro-
vided the rule-string contains at least one 1 and one 0. An
interesting result of the generalization to n states with n �

3 is the appearance of a large variety of complex patterns
with bilateral symmetry.

In this contribution we present a different type of gen-
eralization. It consists in maintaining the number of states
n � 2, but introducing infinitely long periodical sequences
{rm} of 0’s and 1’s, which are used for forcing the ant as
follows; the mth element of that sequence is considered at
the mth iteration (m � 0, 1, 2,…); if rm � 0, then the ant
behaves as in Langton’s case; if rm � 1, then the ant will turn
to the left if it enters a black square and to the right if it
enters a white square. As in Langton’s algorithm, the square
will always change its color after the ant turns by 90°.

The sequence {rm} is obtained here with the iteration

xm�1 � �xm � p�mod 1, m � �. (1)

The xm and the parameter p are rational numbers in the
interval [0, 1], p � 1 having the same effect as p � 0. We set
rm � 0 if 0 � xm � 0.5 and rm � 1 otherwise. x0 is set to 0.2.
Langton’s ant corresponds to p � 0. Note that p � [0.5, 1]
produces the same result as p� � 1 � p, p� � [0, 0.5] with x�0
� 1 � x0. In fact, the sequences generated with p are mirror
images of those generated with p� because the 0’s and 1’s in
the forcing sequences are interchanged. We considered p �

[0, 0.5].
We have chosen the iteration given above because it

easily renders complicated long periodicities. In addition, as
we will show below, p allows to determine the smallest
possible period T by writing p � N/T, where N, T � � have
no common divisors. To show this, we consider first that the
iteration (1) can be written as follows:

xm�1 � �x0 � mp�mod 1. (2)

T � � is (by definition) the smallest length of a period iff T
is the minimum integer satisfying

x �n�1��T � x �n�1�, n � �. (3)

Using Eq. (2), we now rewrite the right side of Eq. (3) by
setting m � n, and the left side by setting m � n � T . We
obtain

�x0 � p�n � T��mod 1 � �x0 � np�mod 1. (4)

Eq. (4) is valid iff pT is a natural number, which we call N.
Thus, p � N/T and, owing to the minimality condition for T,
N and T lack a common divisor.

Note that iteration (1) can lead to additional complexity
periods due to aliasing. As an example, consider p � 0.26 �

0.25 . If one performs just a few iterations, one obtains
repetitive sequences of the period of p � 0.25, namely of
blocks 0011. These sequences, however, will occasionally be
affected by aliasing, which will cause a 1 or a 0 to be
skipped. Nevertheless, the aliasing itself is periodical (it
modulates periodically, so to say, the sequences of 0011-
blocks), its period being 50, as can be seen by writing p �

0.26 � 13/50, i.e., p � N/T with T � 50. The frieze rendered
by this aliasing is thus more complex than for that of the
simple case p � 0.25.

We will always let the ant start in a completely white
array of cells, except in cases (exemplified in this report in
Figure 3) in which we examine the effect on the ant’s track
as it moves from a white into a black array.

2. ANT-MADE “FRIEZES”
Figure 1 illustrates part of the overwhelming variety of
frieze-like patterns drawn by the ant after an initial disor-
dered transient. The patterns are rotated differently, so that
they are all displayed horizontally. Note that the width of
the ant’s tracks differ so much that each of them had to be
displayed on our figures using drastically different scales.
For example the width (in numbers of cells after rounding
down to the next integer) of the patterns displayed on
Figure 1 are 3080 (a), 1935 (b), 2232 (c), 1378 (d), 1403 (e), 97
(f), 129 (g), 925 (h), and 2122 (i). Altogether, we observed
widths ranging between 2 (p � 1/4) and 3964 (p � 0.349262
cells. A systematic relationship between the widths and the
parameter p (other than a higher probability for complex
and wide friezes for larger denominators T of p) could not
be found.

We investigated the effect of very small perturbations of
the forcing. As smallest possible perturbation we changed
the first (or the last) binary digit in each period of {rm}.
Figure 2 shows the result of such changes on the ant’s tracks
of Figure 1 [first digit changed in Figure 2(a– c); last digit in
Figure 2(d–i)]. Some perturbed tracks (Figure 2) are remi-
niscent of the unperturbed ones (Figure 1), whereas others
are not at all. Altogether, we performed 2000 runs with
different forcings and we never obtained the same pattern.
We considered 500 values of p equidistant in the interval [0,
0.5]. In addition, we generated 500 random values of p in
that interval. Finally, we perturbed the 1000 values of p by
inverting one binary digit. For comparisons of the patterns,
we relied on our visual judgement, refraining from auto-
mated inspection. For the visual comparisons, we defined
patterns as “different” if they had the same elements, but
distributed in different ways [as Figures 1(e) and 2(e)], of if
they contained different elements (as all patterns in Figure



FIGURE 1

Frieze-like tracks generated by periodical forcing of Langton’s ant. p � 0.15799 (a), p � 0.34293 (b), p � 0.09013 (c), p � 0.34911 (d), p � 0.12932
(e), p � 0.276 (f), p � 0.207 (g), p � 0.3488 (h), and p � 0.05101 (i).



FIGURE 2

Frieze-like tracks generated by periodical forcing of Langton’s ant. The forcing periods differ for each case a) through i) in Figure 1 only by one bit.



1). In many cases the pattern changed completely upon
minimum perturbations [compare e.g., Figures 1(h) and
2(h)]. In addition, we observed that elements of the patterns
obtained without aliasing are restructured, often in a very
complex way, forming the patterns obtained with aliasing
due to small perturbations of p.

Another aspect we investigated was the behavior at
p3 0. At very small p, the forcing consists of long se-
quences of 0’s, alternating with long sequences of 1’s. In
each of these sequences, the ant behaves as the well-
known, unperturbed ant described by Langton, thus mov-
ing in one of four diagonal directions. Each time the 0’s
switch to 1’s or vice versa, the ant reenters a transient
phase to consequently turn again in one of the four
diagonal directions. The length of the transient before
turning, as well as the angle of turning depends on the
phase of Langton’s pattern at which the binary switch
occurs. Therefore, the path finally looks like that of a car
driver who has gotten lost turning around erratically the
blocks of an unknown city.

Our method of producing periodical forcing sequences,
as described by Eq. (1), may seem arbitrary; therefore, we
tested other periodical sequences {rm} as well, such as j 0’s
(j � �) followed by a single 1, then by j 0’s and so on. Using
such sequences, the patterns again are different from each
other and have an aesthetical impact similar to those shown
in Figure 1.

Further runs were performed by letting the ant move
from a grid containing only white cells into a grid consisting
only of black cells. A transformation of the shape of the
frieze under such conditions is illustrated in Figure 3. De-
pending on the forcing sequence and on the distance d
between the starting point and the black-white border, we
found reflection [Figure 3(a,b)], border sliding [Figure 3(c)],
or refraction [Figure 3(d–f)]. The latter may be such that a
parallel displacement between the ingoing and the outgoing
path [Figure 3(d,e)] occurs.

The angle and the parallel shift of a pattern, as well as the
number of disordered steps before reflection or refraction
occurs, are not only sensitive to p but also to the distance d

FIGURE 3

“Optical” properties of the ant as it collides with a black domain. Reflection for p � 0.229 (a) and p � 0.427 (b). Border sliding for p � 0.036 (c). Refraction
for p � 0.243 (d), p � 0.281 (e,f). (e) and (f) differ in the distance of the starting point to the black-white border.



(compare e.g., Figure 3e with Figure 3f). We randomly
picked 100 p-intervals of length 10�4 within [0, 0.5]. In each
of these 100 intervals we looked at the patterns for 10
equidistant values of p. Doing so, we never detected an
interval of p within which the “optical behavior” was qual-
itatively independent of p. We also investigated the depen-
dence of the “optical behavior” on the distance d. For this
we chose randomly 50 values of p within [0, 0.5] (with the
constraint that the pattern periods were below 103 steps)
and set—for each p—all possible values of d for one period
of the pattern. The high sensitivity we had observed for
changes of p was not observed for changes in d. In fact,
there exist intervals of d in which the same behavior was
observed. The longest d-interval of this sort had a length of
16 cells. The least frequent optical effect is border-sliding [as
shown in Figure 3(c)], but even this was found in d-inter-
vals, the longest having a length of 3 cells. Within larger
d-intervals (the largest had a length of 29 cells), the differ-
ence in behavior consisted solely in parallel shifts of the
pattern after refraction. Nevertheless, at the edges of all
d-intervals with equal or parallel-shifted behavior, we ob-
served drastic quantitative changes, such as that shown in
Figure 3(e,f), or qualitative changes, such as changes from
reflection to border sliding, or border-sliding to refraction,
etc.

3. DISCUSSION
Instead of the variety of symmetrical patterns obtained in a
previous generalization of Langton’s ant [3–5], we obtain
here an amazing plethora of frieze-like patterns.

It is noteworthy that the smallest possible change in the
forcing (one bit in the binary sequence) leads to a com-
pletely different pattern. This result reminds us of dynami-
cal systems with “riddled basins” [11,12], which render dif-
ferent attractors upon small changes of a parameter.
Regarding the changes of patterns upon changes of the
distance d between the starting point and a white-black
border, we observed a behavior reminding us of “fractal
basins,” i.e., basins consisting of intervals having finite
lengths. However, the number of possible d (smaller than
the period length of the pattern) is too small to determine a
fractal dimension.

There is another interesting outcome of this work: the
periodical forcing, in some cases, considerably reduces the
number NT of transient steps occurring before a periodical
track emerges. One example is NT � 35 [Figure 3(f)] or NT �

705 [Figure 3(c)], compared to the 9977 disordered transient
steps of Langton’s ant. In some cases we found the aston-
ishing result NT � 0 [e.g., Figure 1(f)], meaning the ant does
not hesitate one single step before marching on its period-

ical path. In other cases, NT is highly increased, compared
with Langton’s ant; one example is NT � 7528047 [Figure
1(c)]. The one-digit perturbed ant required, in general, even
larger transients, e.g., NT � 107 [Figure 2(b)]. Another quan-
tity that assumes drastically different values, depending on
the forcing, is the width of the path, which we found to vary
between 2 and 3964 cells. (Note: we also found ants deleting
their own track for t 3	, e.g., for p � 13/16, thus implying
a path width equal to zero).

For future work we propose to interpret a periodic se-
quence of 0’s and 1’s to mean: leave the color unchanged
when 0 but change the color when 1.

We close with the remark that we are dealing here with a
novel prototype of complex pattern formation resulting
from extremely simple rules. Most striking is the extreme
sensitivity of the results upon perturbations of the input.
For example, one out of T � 105 bits was changed in Figure
1(a– d), rendering Figure 2(a– d). Furthermore, the variety of
patterns clearly exceeds that resulting from other automata
with simple algorithms, such as Wolfram’s automata [13] or
the game of life.
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