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Abstract

The Landau–Lifschitz–Gilbert (LLG) equation is used widely in device design to describe spin motions in magnetic nanoscale

structures. The damping term in this equation plays an essential role in the description of the magnetization dynamics. The form of this

term is simple and appealing, but it is derived through use of elementary phenomenological considerations. An important question is

whether or not it provides a proper description of the damping of the magnetization in real materials. Recently, it was predicted that a

mechanism called two magnon damping should contribute importantly to linewidths and consequently spin damping in ultrathin

ferromagnetic films. This process yields ferromagnetic resonance (FMR) linewidths whose frequency dependence is incompatible with the

linear variation expected from the Landau–Lifschitz equation. This prediction has now been confirmed experimentally. Furthermore,

subsequent experimental and theoretical studies have demonstrated that the damping rate depends strongly on wave vector as well. It is

thus clear that for many samples, the LLG equation fails to account for the systematics of the damping of the magnetization in ultrathin

ferromagnets, at the linear response level. The paper will review the recent literature on this topic relevant to this issue. One must then

inquire into the nature of a proper phenomenology to describe these materials. At the linear response level, the theory of the two magnon

mechanism is sufficiently complete that one can describe the response of these systems without resort to LLG phenomenology. However,

currently there is very great interest in the large amplitude response of the magnetization in magnetic nanostructures. In the view of the

authors, it is difficult to envision a generally applicable extension of linear response theory into the large amplitude regime.

Keywords: Ferromagnetic; Films; Damping; Landau–Lifschitz–Gilbert; Two magnon
1. Introduction

Spin dynamics in magnetic nanostructures is a topic of
great current interest. When the spin system is excited, of
course, the spins precess in response to various torques
exerted on them. These arise from externally applied
magnetic fields, anisotropy fields of internal origin,
dynamic dipole fields generated by the motions of the
spins themselves, and finally torques generated by ex-
change interactions between the spins, if spatial gradients
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of the dynamics magnetization are present. Quite generally
speaking, the origin and magnitude of such torques have
been very well understood for decades, and our knowledge
of these interactions in bulk magnetic materials provides us
with knowledge sufficient to address their nature on the
nanometer length scale.
It is critical to understand the nature of the damping of

spin motions in such structures. There are practical reasons
for this, in addition to interest from the perspective of
fundamental physics. In the current era, major advances
have resulted from devices which incorporate nanoscale
magnetic components. The impact of GMR read heads on
the technology of computer hard discs stands out as the
most dramatic illustration of the usefulness of these new
materials, and other applications are envisioned for the
near future. All such devices depend for their operation on
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physical effects associated with the reversal of the
magnetization, or on the response of the device to changes
in orientation of the magnetization. The speed by which
information may be read, written or extracted is controlled
by the damping of spin motions within the device. The
interest centers on nanoscale magnetic materials fabricated
from the 3d transition metal ferromagnets or their alloys,
since their Curie temperatures are well above room
temperature, thus insuring that cooling is not required to
exploit the magnetic degrees of freedom. More recently,
ultrathin ferromagnets are employed in very high-fre-
quency microwave devices whose performance character-
istics are influenced importantly by spin damping [1].

Thus, a central question is the nature of spin damping in
nanoscale samples of the metallic 3d ferromagnets. Can we
simply extrapolate down to the nanoscale what we know
about this from bulk materials, or do we encounter new
mechanisms operative on small length scales not present in
bulk matter? It is now clear that there are indeed new and
fascinating mechanisms which operate at small length
scales, and which are not evident in studies of bulk
materials. These fall into two classes: (i) extrinsic mechan-
isms and (ii) intrinsic mechanisms which are present by
virtue of the fact that a large fraction of the magnetic
moments are in or near surfaces and interfaces. In this
paper, we discuss the implications of our past work [2] on
an extrinsic mechanism referred to as two magnon
damping. At this time, we have an impressive body of
data in hand which show that two magnon damping enters
importantly in diverse samples fabricated from ultrathin
ferromagnets. As we shall point out here, one consequence
of the presence of this mechanism is that a well known and
often used phenomenology breaks down qualitatively in
samples where this mechanism is operative. In the view of
the present authors, this has serious consequences, since the
phenomenology to be described next is widely used in the
magnetics community as the basis for device design.

2. Some background

Long wavelength spin motions in diverse ferromagnetic
structures are described by a commonly used phenomen-
ological equation referred to as the Landau–Lifschitz–Gil-
bert (LLG) equation. It describes the system in
macroscopic language, in terms of the magnetization per
unit volume ~Mð~r; tÞ. The LLG equation takes the form

d ~Mð~r; tÞ

dt
¼ g ~Heff � ~Mð~r; tÞ
h i

q

þ
G

gM2
S

~Mð~r; tÞ �
q ~Mð~r; tÞ

qt

" #
. ð1Þ

The first term on the right-hand side of Eq. (1) is the
torque term, and the various effective fields mentioned in
Section 1 are incorporated into the operator ~Heff and, as
mentioned earlier, these are well understood. The second
term is a damping term introduced in a phenomenological
manner many decades ago. Clearly, the magnetization
must be time dependent for damping to occur. Hence the
proportionality to q ~M=qt. In ferromagnets, it is assumed
that the length of the magnetization is conserved locally as
it relaxes to its equilibrium position. This is insured by the
structure of the damping term. We note that even within
the framework of the original phenomenology, it has been
pointed out recently [3] that the form of the second term in
Eq. (1) is overly restrictive. Its form assumes the equation
of motion is form invariant under arbitrary rotations of the
coordinate system, whereas in any ferromagnet the
equation only need be form invariant under rotations
about the z-axis, along which the magnetization points (in
the presence of anisotropy, the symmetry is lower yet).
Thus, symmetry allows a generalized form of the damping
term on the right-hand side of Eq. (1). While one must keep
this matter in mind, this is not the issue of primary concern
in this paper.
If we accept the commonly used LLG equation, then one

strong prediction follows, when it is applied to a
ferromagnetic film magnetized in plane, or perpendicular
to the plane. This is that the ferromagnetic resonance
(FMR) linewidth must scale linearly with the FMR
frequency. We refer the reader to Ref. [3] for a review of
applications of the LLG equation and an expanded
discussion of this point, along with related matters.
Early FMR data on ultrathin films taken for three

frequencies in the 10–36GHz range were indeed interpreted
[4] in terms of a picture where a linear variation with
frequency was imposed on a ‘‘zero field linewidth’’, a
constant independent of frequency assumed to have its
origin in sample inhomogeneities. It is the case that the
value of G extracted from such fits to FMR data on
ultrathin films is consistently larger than appropriate to
macroscopic crystals of the same material, and this
quantity was also found to depend on growth conditions.
In the early days of FMR studies of ferrites, it was also

found that linewidths were systematically larger than
expected from the theory of intrinsic processes. The
linewidth was also sensitive as well to aspects of sample
preparation [5]. In a classic paper [6], a mechanism called
two-magnon damping was introduced, and shown to
account nicely for the data. It can be said that the
understanding of the origin of this extrinsic contribution to
the linewidth allowed it to be eliminated through appro-
priate sample preparation, and this made the first ferrite
devices possible. The physical picture is that in the
spherical samples used in the experiments, the FMR mode
(a spin wave or magnon of infinite wavelength) was
degenerate in frequency with a band of short wavelength
spin waves (wavelengths short compared to the sphere
radius). Hence surface defects could scatter energy from
the uniform mode to the short wavelength degenerate
manifold of magnons, thus providing an extrinsic mechan-
ism for damping the FMR mode.
A few years ago, we argued that that the two-magnon

mechanism can be operative in the ultrathin film environment
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[2], since by virtue of the contribution of dipolar
interactions to the spin wave dispersion relation at long
wavelengths. In quasi-two-dimensional ferromagnets one
realizes short wavelength spin wave modes degenerate with
the main FMR mode. We developed the theory of this
source of damping, which shortly thereafter was extended
by Rezende and his collaborators [7]. We now have in hand
several experiments which nicely confirm the predictions of
theory for such systems. We direct the reader to Ref. [3] for
a discussion.

A consequence is that in small magnetic structures where
the two-magnon mechanism is operative, the LLG
equation provides a qualitatively incorrect account of the
damping of the spin motions. We discuss why this is so and
its consequences in the next section.

We note that a second damping mechanism not present
in bulk materials also is operative in ultrathin ferromagnets.
This is referred to as the spin-pumping mechanism [8].
When the spins precess coherently in an ultrathin metallic
ferromagnetic adsorbed on a metallic substrate, spin
current is transmitted across the interface into the substrate,
where the angular momentum it carries off from the film is
dissipated. This is an intrinsic damping mechanism, it
should be noted, operative in the ultrathin film environment
and absent from bulk materials. The spin pumping
mechanism leads to a contribution in the FMR linewidth
which scales linearly with frequency, and thus within
macroscopic phenomenology is compatible with the LLG
equation, though it raises the value of the effective damping
constant G above that appropriate to bulk matter. For the
first experimental study of this phenomena see Ref. [8]. This
paper contains references to earlier theoretical work which
predicted the phenomenon. For more recent theoretical
work see Refs. [9–11]. A different but equivalent viewpoint
is found in Refs. [12–14]. A new approach, and quantitative
account of data is given in Ref. [15].

In Section 3, we focus on those aspects of two-magnon
damping incompatible with the LLG equation, and discuss
the consequences.

3. Two-magnon damping and consequences for the LLG

equation

As remarked above, a key prediction of the LLG
equation is that, for the commonly employed FMR
geometry (magnetization in plane, for example), the
FMR linewidth should scale linearly with the FMR
frequency oFMR. For in-plane magnetized films, the two-
magnon mechanism provides a very different behavior.
Under the conditions outlined in Ref. [2], commonly
encountered in experiments, this theory provides an
expression which may be written as follows:

DH ð2Þ ¼ G sin�1
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Here, G is the square of a matrix element whose detailed
form depends on the nature of the defects responsible for
activating the two-magnon mechanism. Then
o0 ¼ gð4pMS þHSÞ, with HS the strength of the surface
anisotropy field, taken positive when the normal to the
surface is a hard axis.
If oFMR5o0, then Eq. (2) predicts that the linewidth

should vary linearly with frequency, very much as
the prediction of the LLG equation. However,
under typical conditions, oFMR�o0, and in this regime
Eq. (2) yields strong deviations from linear behavior.
A plot of Eq. (2) shows that the linewidth should
increase much more slowly with frequency than expected
from the linear law, for experimentally accessible FMR
frequencies.
How, then, does one reconcile the comments just made

with the analyses such as those described in Ref. [4]? It was
argued in Ref. [2] that data taken only for the three
frequencies commonly used in FMR studies, 10, 24
and 36GHz are in fact compatible with Eq. (2), which
when plotted over a narrow frequency range can be fitted
approximately by a straight line with finite intercept at
zero frequency. The frequency range covered is not
sufficiently large so that one can detect the negative
curvature expected from Eq. (2). In a remarkable
series of experiments, Baberschke and his colleagues
measured linewidths of Fe/V superlattices from 1 to
80GHz. Their data are fitted beautifully by the
form in Eq. (2), supplemented by a linear term associated
with classical Gilbert damping. Their data provides
no evidence for the ‘‘zero-field linewidth’’ discussed in
Ref. [4]. It is intriguing that these data also shows a
dramatic fourfold in plane anisotropy associated with
the two-magnon contribution to the linewidth:
when the magnetization is aligned along a [11] direction,
the two-magnon contribution is very small. In Ref. [2], it
was argued that (i) the dominant contribution to the
prefactor G in Eq. (2) has its origin in the perturbation of
surface anisotropy by defects, and (ii) it was argued that
the defects consist of rectangular structures of random
aspect ratio with sides parallel to the [10] directions.
Remarkably, the coefficient G then vanishes identically
when the magnetization is aligned along a [11] direction
[16]. In subsequent experiments on films in which the two-
magnon mechanism is active, the Heinrich group has
verified that the defects in the film have symmetry
compatible with this picure through their STM studies of
the samples [17].
It is established that the two-magnon mechanism is

active in diverse ultrathin films, very much as proposed in
Ref. [2]. A consequence is that the linear frequency
dependence predicted from the LLG phenomenology is
qualitatively incorrect for real materials. This has impor-
tant consequences for device design: extrapolation of
linewidths inferred from FMR data to higher frequencies
will provide a misleading estimate of damping rates at
higher frequencies. This can have serious consequences for
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the design of devices which will operate at high frequencies
or short time scales.

In very lovely experimental studies accompanied by
new theory, the Rezende group has set forth a second
critical observation. These authors compared FMR
linewidths with spin wave linewidths measured on
precisely the same sample by means of Brillouin light
scattering (BLS). Remarkably, the BLS linewidths
are larger than those measured by roughly a factor
of five. These authors argue that the two-magnon
mechanism is dominant in their samples, and they set
forth calculations which demonstrate that the damping
increases strongly with wave vector. In FMR, one excites a
mode whose wave vector is very close to zero, whereas in
BLS one excites modes with wave vectors in the range of
those of the visible photons used in the experiment,
�105 cm�1. These authors obtain a most impressive
quantitative account of their data as follows. From the
FMR linewidth, and an expression such as that in Eq. (2),
they obtain a value for the prefactor G. Then through use
of their theory, given this value of G they are able to obtain
an excellent and fully quantitative account of the large
linewidths seen in BLS, with no further adjustable
parameters. We remark that examination of the expres-
sions found in Ref. [2] shows that the wave vector scale on
which substantial variations can be expected is
kC � 4pMSd=D, with d the film thichness, and D the
exchange stiffness, expressed in G/cm2. For the 3d
transition metal ferromagnets, one estimates that
kC�2� 105 cm�1, which indeed lies in the range probed
by BLS.

Thus, two matters are now very clear from the
experimental data on ultrathin film structures, when the
two-magnon mechanism is operative: (i) there are very
large deviations from the linear frequency dependence of
the FMR linewidth predicted by the LLG equations, and
(ii) the linewidth exhibits a strong dependence of the wave
vector of the spin wave, even for wavelengths long
compared to the underlying lattice constant (the scale of
the wave vector dependence r is set by kC), whereas the
LLG equation predicts the linewidth to be independent of
wave vector.

It is thus the case that the LLG phenomenology fails
badly to account for the spin damping observed in
ultrathin ferromagnets. If it fails in these systems, we can
expect failures for diverse forms of nanoscale magnetic
matter.

Can we then write down a phenomenological equation of
motion to replace the LLG equation of motion in such
structures? This appears to be a major challenge, in the
view of these writers. Ultrathin films are the most
straightforward example of a magnetic nanostructure, so
in what follows we consider only films.

First suppose we consider the small amplitude, linear
response of the spin system, and we wish to write an
equation of motion for its magnetization in real space.
Then even for this simple case, the fact that the linewidth is
not simply linear in frequency means the damping term
would have the form of an integral over the past history of
the magnetization motions in the system, i.e. the damping
term will be nonlocal in the time domain rather than simply
proportional to q ~M=qt. Similarly, the strong wave vector
dependence discussed in Ref. [7] would require a damping
term nonlocal in space as well. Thus, the very simple
LLG equation would have to be replaced by a rather
sophisticated integrodifferential equation. However,
in the linear response regime, Ref. [2] introduces and
develops a formalism in frequency/wave vector space which
allows one to obtain a complete description of the film
response. One requires a microscopic picture of the specific
mechanism which activates the two-magnon scattering,
and from there one can carry through a complete
description of the response of the system in terms of
frequency and wave vector-dependent susceptibilities sup-
plemented by, to use the language of many-body theory, a
spin wave self-energy matrix. Such an analysis may not be
simple in all situations. However, we may say that the
problem of describing the linear response of an ultrathin
film is solved in principle, through the formalism erected in
Ref. [2].
In the current era, there is very great interest indeed in

obtaining a complete description of the magnetization
dynamics in magnetic nanostructures, under conditions
where the deviations from equilibrium are very large in
amplitude. The rapidly growing literature on torques
induced by spin polarized transport currents injected into
films and other structures are an illustration of a
circumstance where such a phenomenology is needed. In
virtually all studies, the LLG equation forms the basis of
the analysis of the spin motions. We have seen that in real
materials, it proves quite inadequate even for a discussion
of the linear response, to the extent that damping in the
spin system is of concern. The question of how to extend
the LLG phenomenology into regime of large amplitude
spin motions under conditions where two-magnon scatter-
ing is operative is, at the time of this writing, a most
difficult question to address meaningfully. One might
suppose the Blombergen equation of magnetic resonance,
which distinguishes between longitudinal and transverse
relaxation processes might serve as a starting point.
However, the strong wave vector dependence of the
damping rate observed in Ref. [7] is omitted from such
an approach, as is the frequency dependence associated
with the two-magnon mechanism.
Thus, in view of the remarks of the previous paragraph,

we presently lack a phenomenology which provides us with
a realistic description of spin motions in ultrathin film
ferromagnets and by extension diverse magnetic nanos-
tructures, most particularly when we enter the regime of
large amplitude motions of the magnetization. We perceive
this as a serious difficulty which will limit our ability to
correctly predict device performance, most particularly
when we are concerned with high frequencies and short
length scales.



ARTICLE IN PRESS
D.L. Mills, R. Arias 
Acknowledgement

This research was supported by US DOD Grant no.
W911NF-04-1-0247.

References

[1] B. Kuanr, Z. Celinsky, R.E. Camley, Appl. Phys. Lett. 3969 (2003)

3969.

[2] R. Arias, D.L. Mills, Phys. Rev. B 60 (1999) 7395;

R. Arias, D.L. Mills, J. Appl. Phys. 87 (2001) 5455.

[3] D.L. Mills, S.M. Rezende, in: B. Hillebrands, K. Ounadjela (Eds.),

Spin Dynamics in Confined Magnetic Structures II, Springer,

Heidelberg, 2003, p. 27.

[4] B. Heinrich, Ultrathin Magnetic Structures II, Springer, Heidelberg,

1994 195.

[5] R.C. LeCraw, E.G. Spencer, C.S. Porter, Phys. Rev. 122 (1958) 1311.

[6] M. Sparks, R. Loudon, C. Kittel, Phys. Rev. 122 (1961) 791.
[7] S.M. Rezende, A. Azevedo, M.A. Lucena, F.M. Aquiar, Phys. Rev. B

63 (2001) 214418.

[8] R. Urban, G. Woltersdorf, B. Heinrich, Phys. Rev. Lett. 87 (2002)

217204.

[9] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. Lett. 88

(2002) 117601.

[10] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. B 66 (2002)

224403.

[11] M. Zwierzycki, Y. Tserkovnyak, P.J. Kelly, A. Brataas, G.E.W.

Bauer, Phys. Rev. B 71 (2005) 064420.

[12] E. Simanek, B. Heinrich, Phys. Rev. B 67 (2003) 144418.

[13] E. Simanek, Phys. Rev. B 68 (2003) 224403.

[14] D.L. Mills, Phys. Rev. B 68 (2003) 014419.

[15] A.T. Costa, R.B. Muniz, D.L. Mills, Phys. Rev. B 73 (2006)

054426.

[16] J. Lindner, K. Lenz, E. Kosubek, K. Baberschke, D. Spodding,

R. Meckenstock, J. Pelzl, Z. Frait, D.L. Mills, Phys. Rev. B 68 (2003)

60102.

[17] G. Woltersdorf, B. Heinrich, Phys. Rev. B 69 (2004) 184417.


	The damping of spin motions in ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology applicable?
	Introduction
	Some background
	Two-magnon damping and consequences for the LLG equation
	Acknowledgement
	References


