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Abstract

The paper develops an efficient macro-evolutionary multiobjective genetic algorithm (MMGA) for optimizing the rule curves of a
multi-purpose reservoir system in Taiwan. Macro-evolution is a new kind of high-level species evolution that can avoid premature con-
vergence that may arise during the selection process of conventional GAs. MMGA enriches the capabilities of GA to handle multiob-
jective problems by diversifying the solution set. Simulation results using a benchmark test problem indicate that the proposed MMGA
yields better-spread solutions and converges closer to the true Pareto frontier than the nondominated sorting genetic algorithm-II
(NSGA-II). When applied to a real case study, MMGA is able to generate uniformly spread solutions for a two-objective problem
involving water supply and hydropower generation. Results of this work indicate that the proposed MMGA is highly competitive
and provides a viable alternative to solve multiobjective optimization problems for water resources planning and management.
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1. Introduction

The operation of a reservoir system involves a complex
decision-making process, integrating many variables and
objectives as well as considerable risk and uncertainty [1].
Although detailed release policies for each reservoir in a
system can be prescribed with help from simulation models
and optimization tools, a more desirable approach for real-
time operation is to have operational rules that minimize
the effect of impending supply shortages. Fixed rules gov-
erning the operation of a reservoir system commonly are
presented in the form of graphs or tables [2]. For multi-
ple-purpose reservoirs, operating policies and the associ-
ated rule curves commonly define the desired storage
volumes and reservoir releases at any time of the year as
a function of existing storage volumes, the time of year,
water demands, hydropower demands, and expected
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inflows [3]. In Taiwan, most reservoirs are operated by rule
curves, and management objectives usually include maxi-
mizing water supply and hydropower generation. This
paper addresses the problem of minimizing water shortages
while maximizing hydropower generation through a multi-
objective optimization problem.

Optimizing water management strategies is complex, as
some impact relations are nonlinear and interdependent [4].
A basic problem of multiobjective optimization is that the
various objectives may be conflicting and incommensura-
ble, or may affect different groups of people or interests.
The resolution of this problem is often difficult, particularly
when system managers cannot easily perceive the trade-
offs among the several purposes, given the existing condi-
tions relevant to system operation [5]. In multiobjective
optimization there is no single optimal solution. Instead,
the interaction of multiple objectives yields a set of efficient
or non-dominated solutions, known as Pareto-optimal
solutions, which give a decision maker more flexibility in
the selection of a suitable alternative. Traditionally, multi-
objective optimization problems have been solved using the
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weighting method or the e-constraint method [6]. In the
weighting method, a single objective function is obtained
from the weighted sum of the original multiple objectives.
The Pareto-optimal set is obtained by varying the weight
associated with each objective and solving the problem
sequentially. In the constrained method, all but one of
the objectives is incorporated into the constraint set. The
objectives included in the constraint set are varied paramet-
rically from the lower bound to the upper bound in order
to trace out the Pareto frontier [7]. Multiobjective GAs
can alleviate some of the shortcomings attributable to the
mathematical programming methods described above. In
particular, GAs are able to generate large portions along
the Pareto frontier in one iteration, which may render them
more efficient than the e-constraint method. Additionally,
GAs can identify convex and non-convex points on the
Pareto frontier [8]. The weighting method, on the other
hand, has been reported to present problems identifying
non-convex sections of the non-dominated frontier. Using
diversity-preserving mechanisms, GA can find widely dif-
ferent Pareto-optimal solutions [9]. Multiobjective evolu-
tionary algorithms (MOEAs) have been applied to
diverse problems in the field of water resource management
in the past two decades. Reed et al. [10] present a design
algorithm for the nondominated sorting genetic algo-
rithm-II (NSGA-II) parameters when solving a long-term
groundwater quality-monitoring problem. In [10] the
objectives are minimizing the cost of sampling as well as
the error in estimating contaminant plume characteristics.
Kapelan et al. [11] and Cheung et al. [12] provide examples
of MOEAs applied to water distribution system design and
rehabilitation. Objectives in these cases relate to sustaining
minimum pressure head requirements at various nodes in
the network, while maintaining rehabilitation costs at a
minimum. The work presented by Kapelan et al. [11] is
noteworthy because it introduces a stochastic component
to NSGA-II, and implements it in studying uncertainty
related to demand forecasts as well as to various physical
characteristics of the pipes used in network rehabilitation.
In the area of watershed management, Yandamuri et al.
[13] and Dorn and Ranjithan [14], among others, couple
MOGAs with water quality simulation models in order
to find trade-offs between required contamination levels
in river networks, treatment costs and land use alternatives.
The preferred algorithm in most of the aforementioned
studies is NSGA-II. According to Dorn and Ranjithan
[14], NSGA-II outperforms the Pareto-Archived Evolution
Strategy (PAES) and the Strength Pareto Evolutionary
Algorithm (SPEA) in terms of computational efficiency
and achieving a better spread along the final Pareto fron-
tier. Nevertheless, NSGA-II failed to approximate a ‘‘true’’
Pareto frontier obtained with a single-objective GA and the
e-constraint method [14]. Finally, Kim et al. [15] present an
example of MOEA application to multi-reservoir systems.
They apply NSGA-II to four interconnected reservoirs in
the Han River Basin. The objectives include maximizing
reservoir releases and storage levels subject to continuity
constraints and end-of-period storage constraints. To the
best of our knowledge, there exists no literature that deals
with applications of MOEAs to optimize reservoir rule
curves.

Macro-evolution algorithm (MA) is a relatively recent
heuristic inspired by the dynamics of species extinction
and diversification over large time scales. MA has been
found to be successful for a wide variety of optimization
tasks [16]. In this paper, we present a methodology, called
the ‘‘macro-evolutionary multiobjective genetic algorithm’’
(MMGA), which allows the MA to deal with multiobjec-
tive optimization problems because of the capability of
diversity preservation.

In the next section, we begin by introducing several
genetic-based multiobjective optimization techniques and
a discussion of their strengths and weaknesses. Then, we
present the macro-evolutionary multiobjective genetic
algorithm (MMGA) and perform an experimental multiob-
jective function optimization to test the MMGA capabili-
ties. After that, we use MMGA for obtaining the Pareto-
optimal rule curves for a multiobjective reservoir system
management problem that considers water supply and
hydropower generation in the Tan-Shui River Basin in
northern Taiwan. The last section presents a discussion
about the findings of this work, as well as future research
directions.
2. Multiobjective optimization and genetic algorithms

Multiobjective optimization can be defined as the prob-
lem of finding a vector of decision variables that satisfies
constraints and optimizes a vector function whose elements
represent the objective functions. These functions result
from the mathematical description of performance criteria,
and in most cases are in conflict with each other. A formal
notation of Pareto optimality is provided by Fonseca and
Fleming [17]. Consider, without loss of generality, the min-
imization of the m components fk, k = 1, . . . ,m, of a vector
function f of an n-dimensional decision variable x in a uni-
verse U, where f(x) = [f1(x), . . . , fm(x)]. A decision variable
xu 2 U is said to be Pareto optimal if and only if there is
no xv 2 U for which v = f(xv) = [v1, . . . ,vm] dominates, that
is, there is no u = f(xu) = [u1, . . . ,um] such that

8i 2 f1; . . . ;mg; vi 6 ui and 9i 2 f1; . . . ;mg; vi < ui:

ð1Þ
In practical applications, searching for all Pareto-opti-

mal solutions is a difficult and time-consuming process.
In most cases, the decision maker has no prior knowledge
about the shape of the search space in a real-world setting.
Usually, the objective functions are inter-dependent,
incommensurable, nonlinear and discontinuous, while the
Pareto frontier is non-convex, discrete and non-uniform.
In general, it is impossible to find an analytical expression
of the curve or surface that contains the non-dominated
solutions.



More recently genetic algorithms (GAs) have been
applied to the search for multi-criteria optima [18,19].
GA has the distinct advantage of being able to handle
multiobjective problems that other gradient-based opti-
mizers have failed to solve [20]. GAs seem particularly
suitable for solving multiobjective optimization problems
because they deal simultaneously with a set of possible
solutions. This allows the identification of several mem-
bers of the Pareto-optimal set in a single run, in contrast
to traditional mathematical programming techniques.
Additionally, GAs are less susceptible to the shape or
continuity properties of the Pareto frontier, whereas these
are real concerns for mathematical programming tech-
niques. Schaffer [18] proposed a Vector Evaluated GA
(VEGA) for finding multiple solutions to multiobjective
problems in a single run. This was achieved by selecting
appropriate fractions of parents according to each of the
objectives, separately. However, the population tends to
split into species particularly strong in each of the objec-
tives if the Pareto trade-off surface is concave and VEGA
lacks an explicit mechanism to maintain diversity. Four-
man [21] also addressed multiple objectives in a non-
aggregating manner. The selection was performed by
comparing pairs of individuals, each pair according to
one of the objectives. The objective was selected ran-
domly in each comparison. Non-dominated sorting GA
(NSGA), first proposed by Goldberg [19], is another Par-
eto-based fitness assignment method. Goldberg [19] also
suggested that using a niching mechanism, such as shar-
ing, would allow the GA to maintain individuals all
along the trade-off surface. Several sharing mechanisms
were tested to this effect by Sareni and Krahenbuhl
[22], who show that clearing achieves good results at
maintaining population diversity. Over the years there
have been criticisms of NSGA, however. For example,
the high complexity of non-dominated sorting makes it
computationally expensive for large population sizes
because of the non-dominated sorting procedure in every
generation [23]. Additionally, NSGA lacks elitism, a pro-
cedure that can be used to accelerate the performance of
GA. The NSGA-II is more efficient than the original
NSGA because it uses elitism and a crowd comparison
operator that keeps diversity [24]. On the other hand,
Fonseca and Fleming [25] propose a slightly different
scheme, whereby an individual’s rank is determined by
the number of individuals that dominate the individual
under consideration in the current population.

3. Macro-evolutionary multiobjective genetic algorithm

(MMGA)

All the GA search methods tend to converge to a single
Pareto-optimal solution after a large number of genera-
tions [8]. Using sharing and niching, GAs as described by
Deb and Goldberg [26], Oei et al. [27] and Goldberg [19]
bypass this problem. Under the single objective sharing
scheme, the fitness values of strings are penalized when
the strings are too similar in the decision space to other
strings in the population (the more strings that are similar
to a particular string, the more the fitness function is penal-
ized). This penalty forces dispersion of solutions in the
decision space so that several different optimal and near-
optimal solutions can be found.

In this paper, we adopt another improved method,
macro-evolution (MA) [16,28], which uses a connectivity
matrix W to compare the fitness values and similarities of
all the strings (called species) in one generation dynamically.
This method replaces the traditional reproduction (selec-
tion) operator of GA to produce better and more diversified
offspring. With MA, large extinctions can generate coherent
population responses that are very different from the slow
Darwinian dynamics of a classical GA. Besides, the popula-
tion of candidate solutions/species might be understood
in terms of an ecological system with connections among
different species, instead of just a number of independent
entities with a given assigned fitness value.
3.1. Macro-evolutionary algorithm

The biological model of macroevolution simulates the
dynamics of species extinction and diversification for large
time scales. The dynamics are based on the relation
between species, and links between species are constructed
at each generation to determine whether a species could be
alive or extinct. Let N be the number of species, held con-
stant. The relationship between species is represented by a
connectivity matrix W, where each item Wi,j(t)
(i, j 2 {1, . . . ,N}) measures the influence of species j on spe-
cies i at generation t with a continuous value. At the end of
each generation, all extinct species are replaced by the
existing species. Now define the n-dimensional fitness func-
tion f as a multidimensional function we want to maximize.
As with a GA, MA uses a constant population size of N

individuals evolving in time through successive updates of
the given operators. Each individual in the MA is described
by an n-input vector with fitness f. The algorithm is
described below.

(1) Connection matrix:
Each individual gathers information about the rest of

the population through the strength and sign of its cou-
plings Wi,j as

W i;j ¼
f ðNiÞ � f ðN jÞ

disðN i;NjÞ
; ð2Þ

where Ni are the input parameters of the ith individual,
f(Ni) are the objective values of Ni, and dis(Ni,Nj) is the
Euclidean distance between Ni and Nj.

The relation of each species to the rest of the population
determines its survival coefficient h as

hiðtÞ ¼
XN

j¼1

W i;jðtÞ; ð3Þ



where t is the generation number. Individuals with higher
inputs hi will be favored.
(2) Selection operator:

The selection operator allows for calculating the surviv-
ing individuals through their relations, i.e., as a sum of pen-
alties and benefits. The state of a given individual Si will be
given by

Siðt þ 1Þ ¼
1 if hiðtÞP 0; alive

0 otherwise; extinct

�
ð4Þ

(3) Colonization operator:
The colonization operator allows for filling vacant sites

that are freed by extinct individuals (such that Si = 0). This
operator is applied to each extinct individual in two ways.
With a probability s, a totally new solution Pnew will be
generated. Otherwise, exploitation of surviving solutions
takes place through colonization. For a given extinct solu-
tion Pi we choose one of the surviving solutions, say Pb.
Now the extinct solution will be ‘‘attracted’’ toward Pb.

Mathematically, a possible, but not unique, choice for
this colonization of extinct solutions is

P iðt þ 1Þ ¼
P bðtÞ þ qk½P bðtÞ � P iðtÞ� if n > s;

P new if n 6 s;

�
ð5Þ

where n 2 [0,1] and k 2 [�1,+1] are uniformly distributed
random numbers, and q and s are given constants in the
algorithm. Therefore we can see that q describes a maxi-
mum radius around surviving solutions and s acts as a tem-
perature, described by the linear relation

sðt; GÞ ¼ 1� t
G
; ð6Þ

where G is the total number of generations. In practice, the
results of using this linear annealing procedure do not
strongly differ from other choices of s(t) [16].

In the MA approach, the survival of species/solutions is
linked with their relative fitness in relation to all the other
species. If the total sum of input connections to a given spe-
cies is positive, it survives. If the total sum is negative, it
disappears from the system. In this sense, the number of
removed solutions is not fixed but strongly dynamic. Some-
times, a large extinction event takes place when a very good
solution is found. The replacement process guarantees both
the exploitation of the high-fit solutions as well as further,
random exploration of other domains of the landscape.
Because of the connection matrix, the entire population is
able to obtain a rather accurate map of the relative impor-
tance of the solutions being explored in the landscape. MA
is applied successfully to optimization problems that can be
formulated in terms of an optimization function even if the
function is highly multimodal or highly multidimensional.
According to Marin and Sole [16], MA has many advanta-
ges when compared with GA using a traditional selection
operator. First, MA can reach higher fitness values than
traditional GAs for equal population sizes. Second, the
probability of success in reaching a good fitness value in
a typical run is higher in MA than in GA. Finally, the time
needed to reach the optimum using the same population
size is lower in MA.

3.2. Using MA for multiobjective optimization

Eq. (2) constitutes the cornerstone of the MA method. It
calculates the relationships between each pair of individu-
als based on the difference between their respective objec-
tive values and their distance in the parameter (decision
variable) space. If f(pi) P f(pj), the value of Wi,j always will
be non-negative. It means that pi tends to survive in the
next generation. The purpose of using the distance between
two individuals is to avoid survival of too many individuals
similar to each other, which would be the case if fitness
were the only selection criterion. If two individuals are
very close, the one with lower fitness will obtain a negative
value of Wi,j and eventually will be eliminated from the
population. By doing this, MA can preserve the diversity
of individuals in any population automatically. In the
formulation described above we assume that high diversity
in the decision (parameter) space translates into high diver-
sity in the objective space. This condition is problem depen-
dent, and furthermore the relative priority given to
diversity in the decision or objective spaces depends on
the particular situation being studied. For the sake of sim-
plicity of the formulation, in this research we have given
priority to maintain diversity in the decision space. In sev-
eral test cases conducted (not discussed) we found that
gradual changes in the decision space translated into grad-
ual variations in the objective space. This is a topic of fur-
ther study and practitioners implementing the proposed
algorithm should be aware of the implications of these
assumptions.

Eq. (4) is used to determine whether an individual is
alive or extinct. The threshold value is zero; in other wordsPn

i¼1

Pn
j¼1W i;j ¼ 0 (where Wii = 0). In the case of uniform

distribution of Wi,j, about half the individuals will be
extinct in the next generation. MA involves a time scale
of order O(N2), where N is the population size.

Due to the diversity maintenance property of MA
described above, it is clear that MA has the potential to
solve multiobjective optimization problems. We now com-
bine MA with GA to form the macro-evolutionary multi-
objective genetic algorithm (MMGA). It should be noted
that MMGA cannot guarantee the convergence of Par-
eto-optimal solutions during the optimization procedure
because it chooses randomly only one objective to optimize
at each generation. We present a simple method to discard
the inferior solutions based on Eq. (1) at the end of each
generation. Because many of the solutions are diversified
and non-inferior only a few solutions need to be deleted
at a time. This method takes O(mN) computing time, where
m is the number of objectives. Therefore, the overall com-
putational requirement of MMGA is O(N2), which is gov-
erned by the MA part of this method when m < N. The low



computational time required by this approach makes it
very promising for engineering optimization problems in
which evaluating the objective function value is a time-con-
suming process.

3.3. Performance measures

In order to allow a quantitative assessment of the per-
formance of a multiobjective optimization algorithm, two
issues normally are taken into consideration. First, we seek
to maximize the spread of solutions found, so that the solu-
tion vectors are distributed as smoothly and uniformly as
possible. Second, it is desirable to maximize the number
of elements of the Pareto-optimal set. Based on this notion,
we adopt a metric to evaluate both of these aspects. The
proposed diversity metric (DM) [22] measures the extent
of spread achieved among the obtained solutions. Here
we are interested in obtaining a set of solutions that spans
the entire Pareto-optimal region. We calculate the Euclid-
ean distance di between adjacent solutions in the obtained
non-dominated set of solutions and the average d of these
distances. The following metric is used to calculate the non-
uniformity in the distribution:

DM ¼ db þ de þ
Pn�1

i¼1 jdi � �dj
db þ de þ ðn� 1Þ�d

: ð7Þ

Here, the parameters db and de are the Euclidean distances
between the extreme solutions and the boundary solutions
of the obtained non-dominated set, as depicted in Fig. 1,
where n is the number of solutions and �d is the average dis-
tance in Eq. (7). A good distribution would make all dis-
tances di equal to �d and db = de = 0 (with the existence of
extreme solutions in the non-dominated set). Thus, for
the most widely and uniformly spread-out set of non-dom-
inated solutions, the numerator of DM would be zero.

3.4. A test problem

We use a test problem to evaluate two different multiob-
jective GAs: one with macroevolution selection and one
Fig. 1. Diversity metric (DM).
without. Veldhuizen [29] cited a number of test problems
that have been used in the past to test multiobjective algo-
rithms. Of these, we choose the following [30]:

minimize Z1ðxÞ ¼ x2;

minimize Z2ðxÞ ¼ ðx� 2Þ2; � 103
6 x 6 103:

Set of non-inferior solutions:

x 2 ½0; 2�:
The decision space is shown in Fig. 2. For this convex

problem, a mathematical programming solution for the
Pareto frontier was obtained using the e-constraint method
with quadratic programming. Fig. 3 compares the MMGA
solutions with the mathematical programming solution.
Fig. 4 presents the solutions obtained with a ranking-based
GA, together with the mathematical programming solu-
tion. The ranking-based GA adopted for this comparison
corresponds to the nondominated sorting genetic algorithm
(NSGA-II) presented by Deb et al. [31]. NSGA-II is more
efficient than the original NSGA, because it uses elitism
and a crowd comparison operator that maintains diversity.
At each generation, NSGA-II combines the parent (Pt) and
child (Qt) populations to form a single population
Rt = Pt ¨ Qt of size 2N. This allows for elitism to be main-
tained in successive generations. Then, the population Rt is
sorted according to nondomination. The sorting procedure
classifies the combined population into several frontiers.
The complexity of simple sorting for non-domination in
the worst case (when there exists only one solution in each
frontier) is O(m(2N)3). Here, m is the number of objectives
and N is the population size. To reduce this computational
requirement to O(m(2N)2), a special procedure is used in
NSGA-II. The crowding distance is an estimation of the
density of solutions surrounding a particular solution in
the population. A solution with a small value of this
distance measure is crowded by other solutions and will
tend to be discarded. The crowding procedure has
Fig. 2. Decision space for the two-objective function test problem.



Fig. 3. The Pareto frontier of MMGA (DM = 0.251).

Fig. 4. The Pareto frontier of NSGA-II (DM = 0.412).

Fig. 5. Parameter behavior of the MMGA.
O(m(2N)log(2N)) computational complexity. Therefore,
the overall complexity of NSGA-II is O(m(2N)2), which
is governed by the nondominated sorting part of the
algorithm.

3.5. Results and discussion

NSGA-II and MMGA are compared by running
NSGA-II with population size = 100 and 250 generations,
whereas MMGA is run with population size = 100 and
1000 generations. The difference in the number of genera-
tions was decided in order to maintain a similar level of
complexity for both algorithms and therefore to avoid bias
the final comparison of the diversity metric. The values of
the DM obtained with NSGA-II and MMGA after equiv-
alent runs are 0.412 and 0.251 respectively, which means
that for this particular example, after runs with equivalent
level of complexity MMGA outperforms NSGA-II signifi-
cantly. Figs. 3 and 4 show the best Pareto frontiers
obtained with MMGA and NSGA-II, together with a ref-
erence frontier obtained with the e-constraint method. For
this simple problem, there is no appreciable difference in
the visual characterization of the Pareto frontier by each
method.

To understand how the parameters q and s influence the
MA behavior, we conducted several numerical experiments
using equal population sizes over the same generations.
The basic results of these experiments are summarized as
follows: There is no well-defined optimum for either q or
s. Typically a wide range of parameter values yields similar
results. Actually, in most cases Eq. (6) seems to be the best
choice, and the range of the specific q value used seems to
be less important. The results of these experiments also are
summarized in Fig. 5. For this reason, MA with q = 0.5
will be used in our study.

4. Application to multi-purpose reservoir management and

operation

We apply MMGA to the management and operation of a
complex real-world reservoir system with multiple purposes.
Water uses in the reservoir system include hydropower and
water supply, and reservoir operation is simulated accord-
ing to rule curves. These rule curves are established at the
planning stage to provide guidelines for operating the reser-
voir. Although rule curves usually remain unchanged from
year to year, they can, if necessary, be updated [32]. We
apply MMGA to optimize the reservoir rule curves in order
to maximize the benefits derived from hydropower genera-
tion while at the same time minimizing water supply short-
ages. Chen [33] studied this problem as a single-purpose



optimization. This paper extends the formulation to a multi-
purpose setting.

4.1. System description

The Fei-Tsui reservoir, completed in 1985 with an effec-
tive storage capacity of 359 million m3, is one of the major
storage reservoirs in northern Taiwan. Located in the
upper stream of the Tan-Shui river basin as shown in
Fig. 6, the hydropower plant at Fei-Tsui has a generating
capacity of 70 MW. This reservoir is a multi-purpose reser-
voir for hydroelectric power generation and water supply.
Fig. 6. The Fei-Tsui reservoir and the
The primary water use in the basin is for potable water
demand for the city of Taipei. Fig. 7 shows a schematic
of the water supply network. The network consists of four
inflow nodes, one reservoir (with power plant), three water
treatment plants for public water supplies, one diversion
node and four junction nodes.

4.2. Input data

The required input data for system simulation includes
historic inflows, reservoir and power plant properties, the
operating rules, evaporation data, and water demand tar-
Tan-Shui river basin in Taiwan.
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Fig. 7. System description of the Fei-Tsui reservoir.

Fig. 8. Decision variable definitions of the original rule curves of the Fei-
Tsui reservoir (see Table 2).
gets of the system. A total of 41 years of historic inflow
data is available. A 10-day time period (the traditional res-
ervoir analysis time unit in Taiwan) was used in the simu-
lation, resulting in a total of 1476 10-day time periods for
the planning horizon. The planned water demand was set
at the target value for the year 2021.

4.3. Simulation model

The purpose of the simulation model is to recreate the
10-day operations of the Fei-Tsui Reservoir by following
its rule curves. The operating rules define the release for
each year as a function of the current storage level and
overall release target values. The rule curves of the Fei-Tsui
reservoir consist of three curves as shown in Fig. 8. The 10-
day operations are described as follows:

(1) When the water level is above the upper limit, hydro-
power generation should be increased to keep the
water level at the upper limit.



(2) When water level is between the upper and lower lim-
its, all operations, including public water supply and
hydropower generation are under normal operating
condition, but hydropower should be generated at
least 6 h per day.

(3) When the water level is between the lower and critical
limits, public water can be supplied as usual, but
hydropower generation must be halted.

(4) When the water level is below the critical limit, public
water supply must be reduced by 30%.

Using the hedging rules along with the rule curves, a bal-
ance is achieved between the water supply shortage and the
storage objectives [32]. In the following section, we describe
how to optimize the rule curves using MMGA.

4.4. Parameter coding

Coding of parameters for solution by GA may vary
according to the nature of the problem itself. In this appli-
cation, the decision variables should describe fully the rule
curves so that a change in the shape and location of a par-
ticular curve influences the performance of the system. As
stated in the previous section, there are three curves (upper
limit, lower limit and critical limit), and each is described
by six decision variables that are coded in a real string.
For each curve, two variables describe a high and low stor-
age level zone (m), while four variables describe the initial
and ending times of the linear transition zones between the
aforementioned high and low storage levels. In order to
maintain the function of flood control, the upper limit
curve will not be changed, so the total number of decision
variables is 12. The details of these variables are described
in Table 1 and Fig. 8. The values of X1, X2, X7 and X8 are
real numbers, which implies that each chromosome is a
real-valued vector �X ¼ ðX 1;X 2;X 7;X 8Þ 2 R4, as opposed
to binary-coded GA, where chromosomes are 0-1 vectors.
However, the values of the other eight variables are inte-
gers, namely X3,X4,X5,X6,X9,X10,X11, and X12. A real-
Table 1
Decision variable definitions for the Fei-Tsui reservoir rule curves

Variable Represents

X1 Elevation of upper horizontal segment on the lower limit
X2 Elevation of lower horizontal segment on the lower limit
X3 Starting time of first inclined line on the lower limit
X4 Ending time of first inclined line on the lower limit
X5 Starting time of second inclined line on the lower limit
X6 Ending time of second inclined line on the lower limit
X7 Elevation of upper horizontal segment on the critical limit
X8 Elevation of lower horizontal segment on the critical limit
X9 Starting time of first inclined line on the critical limit
X10 Ending time of first inclined line on the critical limit
X11 Starting time of second inclined line on the critical limit
X12 Ending time of second inclined line on the critical limit
Z1 Value of water deficit objective
Z2 Value of hydropower objective
coded GA was used to optimize all of the continuous and
integer variables, in order to take advantage of the higher
efficiency of real-coded GA. Post-optimization real-coded
values of the integer variables were simply rounded-off to
obtain the final solution.

The decision variables are subject to the following con-
straints [33]:

• MAX level > X1 > X2,
• X7 > X8 > MIN level,
• MAX level > X1 > X7,
• X2 > X8 > MIN level,
• 1 < X3 < X4 < X5 < X6 < 36,
• 1 < X9 < X10 < X11 < X12 < 36,

where MAX level = 170 [m] and MIN level = 110 [m]
(Website: http://www.feitsui.gov.tw/).
4.5. Management model

4.5.1. Objective function

Water shortage (Z1): Water supply is a priority for the
Fei-Tsui reservoir system. Minimization of the 10-day per-
iod shortage for a total of 41 years (1476 10-day) was
adopted as an objective function in order to meet the goal
of a stable water supply:

Minimize Z1 ¼
X1476

t¼1

ðdemandt � releasetÞ ½cmsð86; 400 m3Þ�;

ð8Þ
where demandt equals dt calculated by using Eq. (16) and
releaset equals Ot calculated by Eqs. (13)–(15). We wish
to note that the release always is constrained to be less than
or equal to the planned demand.

Power generation (Z2): Power generation is another pri-
ority. Power output is proportional to the product of avail-
able head and flow rate through the turbines in the power
plant. The proportionality factor (power-to-discharge
Example of Fig. 6
(original value)

Value for
Min Deficit

Value for
Max Power

155 158.0 163.8
141 141.5 158.6

5 3.0 8.0
12 9.0 11.0
26 11.0 12.0
33 16.0 18.0

140 120.3 140.0
117.5 110.0 137.9
11 25.0 12.0
16 28.0 13.0
25 31.0 30.0
34 34.0 31.0

4319 10,331
83,883 132,941

http://www.feitsui.gov.tw


Table 2
Hydro-power plant characteristics of the Fei-Tsui reservoir

Water level [m] 170 165 155 148.3 140.8 130 125 120 117.1

Hydropower constants [kW/cms] 985.4 948.5 849.8 780.9 697.9 597.6 545.4 489.0 453.7

Fig. 9. The Pareto frontier of MMGA (with DM = 0.4774).
ratio) [kW/cm] changes with water level, and the values
adopted in this study are shown in Table 2. Although
power generation is the ultimate objective, it can be
replaced by a surrogate objective consisting of the total
number of hours of hydropower generation. Selection of
the surrogate objective is justified based on the hedging
rules currently used by the system’s management, which
express hydropower operation in terms of the number of
hours of generation per day. The second objective is to
maximize the total time of power generation (hrs):

Maximize Z2 ¼
X1476

t¼1

ðhours of hydropower generationÞt:

ð9Þ
Direct inclusion of total power output in the objective vec-
tor can be achieved easily, although the nonlinearity of the
resulting expression could influence the convergence behav-
ior of the MMGA.

4.5.2. System constraints

The water balance of a reservoir system is considered the
system constraint. In terms of other constraints, water lev-
els at any period must be higher than the minimum level
(intake elevations) and below the flood control level or
other limitations. All diversion facility and power-plant
equipment capacity limitations in the system must be satis-
fied. The details follow (see Fig. 7):

The continuity equation for the Fei-Tsui Reservoir can
be written as the following:

St þ m1;t � Ot � Et ¼ Stþ1; ð10Þ
m1;t ¼ IPing–Lin;t þ IDi–Yu–Ku;t; ð11Þ
Smin;t 6 St 6 Smax;t; ð12Þ

where St = beginning storage; St+1 = ending storage;
It = inflow during time period t; Ot = release during time
period t; Et = evaporation loss during time period t;
Smin,t = minimum storage; and Smax,t = maximum storage.
The locations of m1, IPing–Lin and IDi–Yu–Ku are shown in
Fig. 7.

During each time period t, the relationship between the
rule curves and the hedging rules determines the upper
bound of a supply link in the system. The following equa-
tions represent the relationship:

If Smin;t 6 St < Scritical limit; then Ot 6 0:7 � dt ð13Þ
If Scritical limit;t 6 St < Slower limit;t; then Ot 6 dt ð14Þ
If Slower limit;t 6 St < Supper limit;t;

then Ot 6 maxðdt; P tÞ ð15Þ
dt ¼ m4;t � m2;t; If d t < 0 then d t ¼ 0 ð16Þ
where Scritical_limit,t = critical limit storage; Slower_limit,t =
lower limit storage; Supper_limit,t = upper limit storage;
dt = planned demand of water supply and Pt = planned
demand of hydropower generation. The locations of d,
m2, m4, INan-Shi and ITong-Hou are shown in Fig. 7.

5. Results and discussion

Fig. 9 presents the trade-off curve between the water
supply shortage (Z1) and hydropower generation (Z2)
objectives obtained with MMGA. The Pareto frontier
was obtained after 500 generations with a population size
of 100 and the resulting diversity metric (DM) of the
MMGA is 0.477. The minimum water shortage value is
approximately 4400 cms when hydropower generation is
no more than 85,000 h. On the other hand, the maximum
hydropower output is approximately 135,000 h, but at
the cost of increasing water shortage more than two-fold,
to approximately 10,500 cms.

In general, water shortage and hydropower generation
increase when the lower and critical limits are higher. In
contrast, both water shortage and hydropower generation
decrease when the lower and critical limits are lower. In
the feasible space, the lower limit defines the hydropower
generation; when it is high there is high water head to gen-
erate more power. Furthermore, the critical limit deter-
mines the rationing of water supply; when it is high it
could cause a greater amount of water shortage.

Figs. 10 and 11 show the ranges (lower bound, upper
bound and average value) of the optimal solutions for
the lower and critical limit on the Pareto frontier. They



Fig. 10. The Pareto-optimal solution range of the lower limit.

Fig. 11. The Pareto-optimal solution range of the critical lower limit.
indicate that the original lower limit is on the lower bound
from May to September (the flood control period) and the
original critical limit is on the upper bound from December
to February (dry period) of the optimal ranges. In other
words, it is obvious that there are plenty of spaces for rais-
ing the original lower limit and dropping the original crit-
ical lower limit to achieve more hydropower generation
and less water shortage.

6. Conclusions

Due to the limitations of conventional multiobjective
optimization methods, this paper develops a macro-evolu-
tionary multi-objective genetic algorithm (MMGA). The
proposed MMGA is relatively easy to implement and
was applied to a test problem taken from the literature,
yielding a better spread of solutions than NSGA-II.
Trade-off information can be extremely relevant in
complex management scenarios, and may aid decision-
makers in selecting management policies according to soci-
etal, political or other considerations that are difficult to
model.

In the case study, we applied MMGA to rule-curve opti-
mization for a multipurpose reservoir system. The problem
is highly nonlinear with mixed integer variables and a com-
plex non-convex Pareto frontier. The operating rule curves
define long-term target storage levels and target releases
and can be used to help system operators make decisions
regarding releases for water supply and hydropower gener-
ation. The results show that MMGA finds an acceptable
spread of Pareto-optimal solutions with a relatively low
diversity metric (DM). The results also indicate that
MMGA can generate a smooth and well-spread Pareto
frontier, representing the trade-off between water shortage
and hydropower generation associated with a multi-pur-
pose reservoir system. Additionally, the overall computa-
tion time is proportional to the square of the population
size (N2) using the MMGA, which is lower than that of
well-established multiobjective algorithms such as NSGA-
II, which has a computing complexity of m(2N)2, where
m is the number of objective functions. Therefore, the
exceptionally low computational time requirement by the
MMGA makes it a very promising approach to water
resources optimization problems in which the computa-
tional cost is a vital issue.

Future work includes extending the presented method-
ology to problems involving more than two objectives.
For reservoir operations, a more complete study should
take into account the benefits of flood control, ecological
preservation and other purposes of a multi-purpose
reservoir.
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