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ABSTRACT: The behavior of ion-exchange chromatography
is well understood with respect to changes in ionic strength,
pH, resin ligand density, bed height, elution flow rate, and
gradient slope. Their relative importance for any specific
chromatographic situation varies. When a chromatographic
operation utilized to purify a human therapeutic protein is
prepared for validation before commercial production,
numerous tests have to be performed to establish the relative
importance of each operating parameter to define its future
role and importance in the framework of in-process con-
trols. This prioritization process is usually performed using
a purely empirical approach. In this work, we demonstrate
the application of a rational approach based on chromato-
graphic theory to prioritize operating parameters. Both
methodologies, empirical and rational, were performed to
evaluate a specific ion-exchange chromatography operation
for the preparative separation of closely related protein
species. We show that the application of the rational
approach has the potential to accelerate the evaluation
and significantly reduce the amount of analytical testing
needed.

KEYWORDS: chromatographic theory; process character-
ization; ion exchange chromatography; protein
Introduction

The development work that has to be invested to advance
the production process of a biologic molecule to a state
acceptable to regulatory agencies for commercial produc-
tion is substantial. Typically, after a decision to commer-
cialize a product candidate is reached based on early clinical
results, the production process is optimized for commercial
production at the anticipated production scale. While
Correspondence to: O. Kaltenbrunner
material produced using the optimized process is tested in
the pivotal clinical trial, the process is characterized in
preparation for validation and regulatory submission.
Figure 1 outlines an overall flow of this commercialization
process. The methodology for process optimization and
selection of process conditions using mathematical models
has been described in a recent paper (Shene et al., 2006). One
important aspect of the commercialization process is the
establishment of the rationale and justification for sufficient
and appropriate in-process controls for future production.
Regulatory agencies expect the manufacturer to identify all
critical process input and output parameters that should be
monitored or controlled within predefined ranges during
process validation as well as commercial production to
ensure the product is of the desired quality (ICH, 2006a).
Additionally, justification is expected for considering other
control parameters as non-key to process performance as
these will not be monitored and controlled as closely on a
routine basis. For all parameters of all process operations,
these justifications and acceptance ranges have to be
established prior to process validation (ICH, 1999; Gardner
and Smith, 2000). The methodology described in this paper
is a replacement of most steps of the sub-process flow chart
for screening experiments outlined in Figure 1.

The setting of appropriate validation ranges is important
for future process success with respect to both production
economics and regulatory compliance. The information and
knowledge gained from process development, characteriza-
tion studies, and manufacturing experience provide
scientific understanding to support the establishment of
the process design space. Working within the design space is
not considered as a change while movement out of the
design space is considered to be a change and would normally
initiate a regulatory postapproval change process (ICH,



Figure 1. Process flow chart from a decision to commercialize a biologic to product launch. The sub-processes of process characterization and screening experiments are

outlined.
2006a). The setting of too narrow operating ranges during
validation increases the likelihood of accidental deviation
from, and restricts the possibility to make intentional small
changes to, the specified operating range of the validated
process in future commercial operation. Too wide operating
ranges increase the likelihood of failing product quality
acceptance criteria during validation and commercial
operation. The validation range of an operating parameter
has to bewider than the intended normal operating range, but
within the range to meet the acceptance criteria.

Abundant information about process response to varia-
tions in operation parameters is typically available from the
initial process development. However, more often than not
this information is not sufficient to justify the setting of
validation criteria. Therefore, the response of a process
output to variations in input parameters is investigated in
some detail before process validation in a process
characterization phase. To prioritize studies, characteriza-
tion usually starts with a risk analysis based on the available
process information and facility constraints (ICH, 2006b).
As a result, insignificant operating parameters are elimi-
nated from further analysis and the potential risk factors for
the process are identified (DeSain and Sutton, 2000). After
the elimination of non-important factors, the remaining
factors are studied in fractional factorial experimental
designs to identify the true dominating factors while



minimizing the number of experiments (Kelley, 2000). The
characterization can be finalized by augmenting the
experimental designs to identify interactions and response
curvature for the remaining dominating parameters.

In the case of ion-exchange chromatography operations,
the number of potentially important factors is large, since
the potential for eliminating operating parameters during
risk analysis is limited. Typically, buffer conditions like ionic
strength and pH, flow rate, column load amount and
quality, ligand density, pool collection criteria, bed height,
and gradient slope in the case of a linear gradient elution
cannot be eliminated a priori. This leads to large
experimental designs and substantial analytical support
requirements as each experiment may have to be analyzed
with several assays to test for purity of the protein with
respect to product variants, host cell contaminants, and
process impurities (Winkler, 2000). On the other hand,
extensive theoretical knowledge about the impact of
parameters on ion-exchange behavior is available (Helffer-
ich, 1962). The normal application of experimental screen-
ing designs is the selection of a subset of dominating effects
for a regression model when little theory is available to guide
the selection.

In this work, we demonstrate the applicability of
chromatographic theory to reduce the experimental and
analytical requirements during process characterization of a
chromatographic operation. We performed both the typical
screening of parameters in a fractional factorial experi-
mental design and, independently, developed a theoretical
model as described by Yamamoto et al. (1988) for a
particular ion-exchange chromatography operation. While
the original model is based primarily on the response of
protein elution to ionic strength, flow rate, and gradient
slope, extensions have been attempted to account for protein
load concentrations (Jungbauer and Kaltenbrunner, 1996),
pH, and resin ligand density (Watler et al., 2003). In this
work, a model for linear chromatography accounting for
buffer ionic strength, pH, resin ligand density, bed height,
flow rate, and gradient slope is discussed. With the
application of a linear model, all input parameters except
column load, load quality, and pool collection criteria can be
analyzed. The typical output parameters of protein purity
and host cell contaminant levels cannot be described in the
model, but resolution and peak position can be used instead
as surrogate parameters. The results of the modeling
approach versus the fractional factorial screening experi-
ments are compared and it is shown that the model can be
applied to reduce substantially the effort of parameter
screening.
Theoretical Aspects

Fractional Factorial Screening

The typical approach for initial parameter screening in
process characterization is the application of a fractional
factorial experimental design of resolution III, i.e. a design
that will be able to identify main effects, but all main effects
have aliases with two-factor interactions. These two-factor
interactions must be assumed to be zero for the main effects
to be meaningful (Montgomery, 2000). A resolution III
design is a powerful approach as long as the assumption of
sparse effects can be made. In that case, the resolution of
the design can be increased for the dominant main effects
by eliminating insignificant main effects. On the other
hand, if all main effects in a resolution III design are
significant, they cannot be distinguished from potential
two-factor interactions of other significant main effects.
The chance of all main factors being significant is high due
to the preceding risk analysis that already eliminated all
likely insignificant factors and due to the multiple
responses under investigation. Factors that are insignif-
icant for one response can significantly affect another. To
get useful process information, the experimental screening
designs have to be expanded to resolution IV designs; no
main factor has aliases with two-factor interactions
(Montgomery, 2000).

Another often-ignored quality criterion of experimental
screening design results is the resolution with respect to the
minimum detectable difference of a response. The desirable
least significant value should be defined upfront to be able to
distinguish process significance from statistical significance.
However, from a basic experimental design without
replicates no information is available on variability. The
model is saturated and no degrees of freedom are available
for error.

This fractional factorial methodology of selecting a subset
of effects for a regression model is normally used when there
is little theory to guide the selection. This method has been
of practical use for many years despite the fact that it violates
standard statistical assumptions because the resulting model
has been selected rather than tested.

For the usual nine to ten potential factors such as ionic
strength (1), pH (2), flow rate (3), column load amount (4)
and quality (5), ligand density (6), pool collection criteria
front (7) and back (8), bed height (9), and gradient slope
(10), a resolution III design requires 16 experiments, while a
resolution IV design requires 32 experiments. Specific
factors like load quality and column bed height can
drastically increase the experimental complexity for an
automated chromatography system. To minimize this
difficulty, the experimental matrix can be split into two
or more independent subsets without increasing the
experimental effort. Splitting experimental designs into
subsets reduces information on two factor interactions that
are not considered a main output in this early screening
phase.
Ion-Exchange Model

According to the law of mass action, the equilibrium of
a protein (P) and its counter ion (I) interacting with an



ion-exchange resin can be expressed as

zI � P þ zP � I $ zI � P þ zP � I (1)

where z denotes the charge of an ion and bars denote ion-
exchanger bound ions.

For this equilibrium, the equilibrium constant Ke
P;I can be

expressed based on activities (a) as

Ke
P;I ¼

a
zIj j
P � a zPj j

I

a
zIj j
P � a zPj j

I

(2)

For a monovalent counter-ion and the introduction of an
activity coefficient (g) as the ratio of the activity (a) and the
fluid phase concentration (c) and the absorbed phase
concentration (n), Equation (2) can be expressed as

Ke
P;I ¼

nP
cP

cI
nI

� � zPj j
� gP

gP

gI
gI

� � zPj j
(3)

From this the distribution coefficient (K) of the protein P
can be expressed as

K ¼ nP
cP

¼ Ke
P;I � G � nI

cI

� � zPj j
(4)

where the lumped activity coefficient term G is

G ¼ gP

gP

gI

gI

� � zPj j
(5)

For electroneutrality on the resin, the concentration of
available stationary ionic groups (ns) has to be balanced by
protein and counter ion as

ns ¼ zPj j � nP þ nI (6)

For linear chromatographic conditions zPj j � nP << nI
and Equation (4) and Equation (6) can be combined to

K ¼ nP
cP

¼ Ke
P;I � G � ns

cI

� � zPj j
(7)

This derivation was outlined, expanded and simplified by
Yamamoto et al. (1988). The nomenclature of symbols is
aligned with the comprehensive review of ion-exchange by
LeVan et al. (1997). An empirical relation of the distribution
coefficient K and ionic strength cI was described by
Yamamoto et al. as

KðIÞ ¼ A � I�B þ Kcrt (8)

where Kcrt takes the sieving effect under non-binding
conditions into account, B represents the number of
interacting charges of the protein jzPj, I represents liquid
phase counter ion concentration cI, and A is a lumped
parameter including equilibrium constant, activities of
species, and resin ligand density.

A ¼ Ke
P;I � G � ðnsÞ zPj j (9)

Equation (9) allows the expansion of Equation (8) to
account for changes in resin ligand density in the form of

KðI; nsÞ ¼ A0 � ns

I

� �B

þ Kcrt (10)

A0 is the combined parameter of the equilibrium constant
(Ke

P;I) and the activity coefficient term (G).
To include the effect of pH in the model, the effect of pH

on ns, jzP j, and A0 has to be considered. For the case of a
separation on a strong ion-exchange resin, the operating pH
will be more than two pH units apart from the pK of the
ionogenic ligand. In that case, the apparent resin ligand
density (ns) will be minimally affected by pH changes and
pH changes will mainly change the number of binding
sites of the protein jzPj interacting with the resin. This
dependency of the number of binding sites on solution pH
can be found in the literature for several standard proteins
(Ståhlberg and Jönsson, 1999; Yamamoto and Ishihara,
1999). While the underlying theory is complex and
rigorously developed (Ståhlberg and Jönsson, 1999; Shen
and Frey, 2004), for the purpose of the evaluation of
chromatographic behavior within the narrow operational
pH range of a commercial protein chromatographic
operation the dependence of jzPj on pH can be approxi-
mated by a quadratic polynomial.

The effects of pH on A0 are complex. From Equation (5) it
is obvious that G will change with pH as the number of
interacting charges changes. Ke

P;I can be derived from the
Donnan potential as a function of swelling pressure (p) of
the ion-exchanger and partial molar volumes (n) of the
solutes as

Ke
P;I ¼ exp � p

RT
� ðvP � vI � jzPjÞ

h i
(11)

This indicates that Ke
P;I is also a function of pH as swelling

pressure changes with pH (Michaeli and Katchalski, 1957).
However, this change is orders of magnitude smaller than
the change of the other terms with pH. Consequently,
Equation (10) can be expanded to include dependence on
pH as

KðI; ns; pHÞ ¼ p � q � n
s

I

� �BðpHÞ
þKcrt (12)



where

p ¼ Ke
P;I �

gP

gP

; (13)

q ¼ gI

gI

; (14)

and

BðpHÞ ¼ r þ s � pH þ t � pH2 (15)

In the theory described by Yamamoto et al. the
parameters A and B can be determined from linear gradient
data according to

GH ¼ IBþ1
R

A � ðBþ 1Þ ð16Þ

where GH is the normalized gradient slope of a gradient of
length VG from I0 to Iend

GH ¼ ðIend � I0Þ � ðVt � V0Þ
VG

(17)

and IR is the ionic strength at the peak maximum during
gradient elution. Using Equation (16) to determine
parameters p, q, r, s, and t for multiple species (i), the
equation can be expanded to

GH ¼ I
BðpH;iÞþ1
R

AðpH; ns; iÞ � ðBðpH; iÞ þ 1Þ (18)

with

AðpH; ns; iÞ ¼ pi � ðq � nsÞBðpH;iÞ (19)

BðpH; iÞ ¼ ri þ si � pH þ ti � pH2 (20)

Furthermore, the ionic strength at the peakmaximum can
be calculated for any combination of gradient slope (GH),
pH, and ligand density (ns) as

IRðGH; pH; nsÞ

¼ ðAðpH; ns; iÞ � ðBðpHÞ þ 1Þ � GHÞ�ðBðpHÞþ1Þ (21)

The relation in Equation (21) can only hold for the
assumption that protein elution is completely dominated by
the gradient and the absorbed species is virtually immo-
bilized on the stationary phase at the buffer condition of
load, wash, and gradient initiation. If this assumption
cannot be satisfied, the peak profile has to be generated
iteratively by numerical procedures as described by
Yamamoto et al. (1988).
Resolution between two species in a chromatographic
separation is defined as

RS ¼
tR;2 � tR;1

2 � ðs1 þ s2Þ
ð22Þ

Here tR and s are retention time and variance of the two
species under consideration. Yamamoto et al. (1988) have
shown that, for ion-exchange chromatography, in the case of
a linear gradient elution of slope G, this definition of
resolution can be expressed for two species eluting at ionic
strength IR,1 and IR,2 as

RS ¼
IR;2 � IR;1

2 � G � ðsu;1 þ su;2Þ
ð23Þ

Here the variance of the peaks is expressed in
dimensionless time (u¼ t�u/L) if L is column bed height
and u is linear flow velocity. Finally, by replacing variances
with the appropriate equations for band broadening in
linear gradient elution, resolution can be expressed as
(Yamamoto et al., 1988):

RsðG; pH; ns; u; LÞ

¼
ðIR;1 � IR;2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L � � dK

dI

� �
I¼IR;1

�H
q

ð1þ H � KIR;1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � G � 2�DL

u þ
d2p �H�K2

IR;1

30�ð1þH�KIR;1
Þ2�Dcrt;1�Kcrt;1

� �s

(24)

Dcrt,1 is the gel-phase diffusion coefficient of protein 1 as
obtained by the moment method under non-binding
conditions. DL is the effective longitudinal dispersion
coefficient.

Equation (24) can be utilized to assess the relative
importance of changes in ionic strength, pH, resin ligand
density, flow velocity, and bed height on the separation.
Materials And Methods

Fractional Factorial Screening

In the traditional parameter screening approach, 11
parameters were screened, and of these, 7 parameters were
relevant for the comparison to the modeling approach.
These parameters were resin lot (1), load concentration (2),
load amount (3), equilibration ionic strength (4), gradient
slope of elution conductivity (5), buffer pH (6), and
flow rate (7). The experiments were performed in two
independent matrices of eight experiments each for subsets
of factors. All main effects are identifiable in this design, but
two-factor interactions have aliases. For the purpose of this
comparison, the two matrices were combined as blocks of
experiments and analyzed for the factors of the original



designs. This allows having all factors of interest in one
analysis. As responses to load concentration and load
amount cannot be described with the simple model used in
this study, these responses are not presented. These
experimental results are presented only in the context of
the comparison to the modeling data.
Load Material for Model Definition Experiments

The load material for the gradient experiments was enriched
in impurities to allow the detection of pre-peak and post-
peak impurities in the UV profile directly without the need
of analytical testing. The enriched load was prepared by
combining pre and post collection fractions of a large-scale
separation of the same operation. This combined material
was concentrated and buffer exchanged to create the final
load material. The column load amount was chosen such
that pre and post peak impurities were detectable in the UV
profile of the gradient experiments as separate peaks. In a
typical elution profile for a preparative separation, the pre-
peak and post-peak impurities merge with the main peak
(Fig. 2A). In the elution profiles created by the enriched load
with low loading, the species are distinguishable from the
UV profile (Fig. 2B). This allows the direct retention
measurement of the main product species and pre-peak and
post-peak impurities without the need for analytical testing.
Figure 2. Comparison of chromatograms. (A) Typical elution profile for pre-

parative column load. Start and end collection points are indicated as dashed lines.

Pre-, main, and post-peak are merged. (B) Representative elution profile with the

enriched column load material and low loading amount used for the model definition

experiments. Pre-, main, and post-peak are indicated on the UV profile.
Results

Linear gradient experiments were performed at different
gradient slope and different buffer pH. As shown by
Yamamoto et al. (1988), the elution data of varying gradient
slope for a specific buffer condition can be used to determine
the dependence of the distribution coefficient on salt
concentration and, ultimately, to predict the peak profiles.
An overlay of the gradient data in this study and simulation
results are shown in Figure 3. To assess the dependence of
the elution behavior on pH, experiments were performed at
four different pH values around the target pH. At each
buffer pH, five to nine experiments at different gradient
slopes were performed to build a data set of 29 gradient
experiments. For each experiment, the ionic strength at peak
maximum was determined for the pre, main, and post-peak
in the elution profile. These experimental data were fitted to
Equation (18) for all protein species (i) simultaneously to
determine parameters pi, q, ri, si, and ti of Equations (12) and
(15). This resulted in the fit of 13 parameters simultaneously
to the 74 available data points. Figure 4 shows a
representative fit of gradient data for the subset of main
peak data. Equivalent data fits are performed simultaneously
for pre and post peaks. All fitted parameters are given in
Table I. Utilizing Equations (19) and (20), the dependence
of parameters A and B of Equation (8) on pH can be
visualized (Fig. 5).

Similarly, ionic strength at peak maximum (IR) can be
calculated for any gradient slope and pH using Equation
(21). However, if the gradient condition is such that the
protein elutes very early in the gradient, the moving protein
zone has not yet reached its maximum velocity. In this case,
Equation (21) does not hold and retention can only be
predicted by numerical procedures. The deviation between
the numerical procedure and Equation (21) increases with
increasing gradient slope (see Fig. 6) and increasing wash
volume between load and elution. In general, we can assume
Figure 3. Comparison of small-scale experimental data (symbols) and simula-

tion results (lines) for eight gradient slopes (GH). Retention is expressed in normalized

time, u¼ t�u/L.



Figure 4. Surface plot of gradient data of gradient slope (GH) vs. pH and ionic

strength at elution peak maximum. Data are for the main peak species. The graph

represents one surface of the simultaneous fit with Equations (18)–(20). Fit results are

shown in Table 1.

Figure 5. Dependence of parameters A and B of Equation (12) on pH. Dotted

line: pre-peak, solid line: main-peak, dashed line: post peak. ns¼ 0.17 mol/L resin.
that Equation (21) can be applied if the distribution
coefficient of a species is at least 200 at the beginning of the
gradient (KI0). Additionally, this sensitivity emphasizes the
importance of the duration of the isocratic wash phase
before gradient initiation in case of insufficient retention at
the initial buffer condition.

Within the ranges of input parameters (Table II), all
values of KI0 are above 200 with the exception of conditions
combining low ligand density (ns) with high initial salt
concentration (I0). While this exception immediately
identifies the condition as inappropriate and unstable for
the process, for the purpose of this study all ionic strengths
at peak maximum (IR) were calculated numerically to
eliminate the deviation caused by the simplified approach
using equation 21.
Parameter Prioritization by Modeling

Resolution between the species and retention of all species
were calculated for all combinations of parameters from
Table I at high, low, and center point level. This leads to a full
factorial set of 25 data points that were created from
numerical procedures and equation 24. These 32 data points
can now be analyzed to rank the individual contribution of
single factors and their interactions to the resulting
resolution between the species and to retention of the
Table I. Model parameters for the three protein species of interest.

Species p (� 106) r s t

Pre-peak 0.49 �18.5 9.9 �0.77

Main-peak 5.48 �26.9 13.8 �1.15

Post-peak 2.21 �24.7 12.9 �1.10

Experimental data for three proteins are fit simultaneously with Equa-
tions (18)–(20). Parameter q¼ cI/nI¼ 1.098, ns¼ 0.17 mol/L resin,
R2¼ 0.974, N¼ 74.
individual peaks. To compare the size of effects, a pareto plot
of orthogonalized estimates can be used. From the pareto
plot ranking of 31 factors and interactions (not shown), the
combined effects of ligand density, I0, pH, flow velocity, and
gradient slope accounted for more than 60% of the total
variability due to main factors. Table III ranks these main
factors according to the strength of their relative effect on
the resolution of pre-peak frommain peak, the resolution of
main peak from post-peak, and the retention of main peak.
This analysis identifies the three parameters I0, pH, and
Figure 6. Deviations between IR calculated by Equation (21), and by numeric

iteration for three proteins as a function of distribution coefficient and gradient slope

G. Increasing gradient slope and decreasing K value at initial ionic strength (I0)

decrease the accuracy of simplified Equation (21) compared to the numerical, iterative

calculation.



Table II. Input parameters and ranges for the full factorial model of

resolution and retention.

Factor Low High Units

u 90 110 cm/h

I0 0.405 0.495 M

G 0.00495 0.00605 M/CV

pH 4.8 5.2 —

Ligand density 0.15 0.20 M/L resin

Table III. Relative contribution (expressed as %) of factors to the

outcome of resolution and peak shift expressed as shift in IR.

Factor

Resolution

DIR (M)Pre–Main Main–Post

Ligand density 54 33 73

I0 34 36 9

pH 4 20 15

u 6 7 0

G 2 4 3

Contributions are from linear regression analysis of modeling results
using a full factorial matrix of input data over the ranges given in Table II.
ligand density as the dominating factors for resolution and
peak position, while gradient slope (G) and flow velocity (u)
have only minor influence.
Fractional Factorial Parameter Screening

Two independent factorial designs of eight experiments each
were performed. The purpose of these experimental designs
was to identify significant main effects. The step recoveries
and analytical results for product purity were analyzed
within their respective experimental designs. While the
statistical power of the two experimental data sets was
different, for the purpose of this analysis, the sizes of the
main effects were combined and normalized by the average
response of their respective data set. Table IV ranks these
main factors according to the strength of their relative effect
on step recovery and key product quality indicators. This
analysis identifies the three parameters I0, pH, and ligand
density as the dominating factors for resolution and peak
Table IV. Relative contribution (expressed as %) of factors to changes in

step recovery and key elution pool quality indicators.

Factor

Quality attributes

Step recoveryPre-peak Main-peak Post-peak

I0 58.6 63.5 50.3 51.1

pH 22.8 7.5 16.6 38.0

Ligand density 9.0 14.0 13.8 6.2

G 4.3 8.5 10.1 2.2

u 5.3 6.6 9.2 2.5

Contributions are given relative to the average output value. Values are
from linear regression analysis of two separate fractional factorial experi-
mental data sets for the input ranges given in Table II.
position, while gradient slope (G) and flow velocity (u) have
only minor influence.
Discussion

Parameter screening by chromatographic modeling and by
fractional factorial experimental design both rank the ionic
strength at the beginning of the elution gradient, pH, and
resin ligand density as the parameters that have the highest
effect on separation behavior (Fig. 7.) Similarly, both
methods identify gradient slope and flow rate—within the
range considered in this study—as parameters that have a
lesser effect on the separation behavior. This comparison
indicates that the modeling approach outlined by Yama-
moto et al. (1988) can be applied for the initial screening of
operational parameters during process characterization.

For the typical parameter classification by fractional
factorial experimental design, numerous samples have to be
analyzed for each experiment to establish the response to the
variations in the inputs. In contrast, in the case of parameter
classification by modeling, no analytical testing of samples
had to be performed. This elimination of analytical testing
could be achieved by preparing column load material
enriched in impurities and under-loading the column.
Consequently, the resolution achieved during elution was
sufficient to identify the dominating impurities eluting just
prior and post the main species directly from the UV trace of
the elution. Therefore, although 29 gradient experiments
were performed to define the model, versus 16 fractional
factorial experiments to screen for main effects, the overall
time and resource savings was much greater by using the
model.

In the modeling approach, only dependence on pH, initial
ionic strength (I0), and gradient slope (G) are investigated
explicitly. The remaining model parameters are addressed
based on the theoretical dependencies. The dependence of
the separation behavior on resin ligand density is calculated
in Equation (21). The experiments are only performed for
one resin lot and the dependence of residence time and
resolution is assessed by extrapolation. This is especially
useful as the availability of resin samples over the entire
specification range accepted by the resin vendor is typically
limited. The dependence on flow rate is addressed while
calculating resolution by Equation (24). It should be noted
that the dependence on column bed height could be assessed
in a similar fashion during calculation of resolution. In our
work, column bed height was not considered in the
fractional factorial experimental design, as it was considered
insignificant in the initial risk analysis. When added to the
parameter classification bymodeling, the effect of bed height
variability �10% of target was of similar magnitude as the
effects of gradient slope and flow rate.

In addition to the correct classification of parameters and
the elimination of costly analytical testing, the modeling
approach has other advantages. In the model, the test matrix
can easily be expanded with a third parameter level to



Figure 7. Comparison of results from (A) traditional screening approach and (B) modeling approach. Bars indicate individual contributions of variance and lines and symbols

indicate cumulative contributions to variance of the input parameters.
investigate the curvature of the responses. This can be
helpful guidance during experimental design for the final
phases of process characterization, when interactions of
factors and curvature of responses are investigated.

Some limitations of the modeling approach should be
kept in mind. As the model does not account for nonlinear
effects of column overloading, no information of the effect
of loading can be included in this assessment. If a particular
separation were dominated by nonlinear effects, this analysis
would be less realistic in its predictions. However, even in
this case, the prioritization of other parameters should hold
and be useful for eliminating non-significant factors from
more detailed further studies.

The model parameters are not identical to the parameters
typically monitored and analyzed during development and
characterization of a separation operation. While during
development quality indicators based on analytical testing
and product recovery are usually studied, in the case of our
non-representative column loading with respect to both
load amount and quality these parameters would be virtually
meaningless. As demonstrated in Figure 7, in this analysis we
investigated the effects of input parameters on surrogate
responses, specifically retention and resolution. The effects
of input parameters on individual species retention time and
resolution between the species of interest and early and late
eluting impurities should be a good approximation of the
separation behavior under normal operating conditions.
Any operational parameter that significantly affects the
relative elution position of a species, under these model
conditions, will very likely also have an effect on the elution
behavior under normal operating conditions. Any opera-
tional parameter that has no significant effects on relative
elution positions of a species will very likely also have no
effect on the elution behavior under normal operating
conditions. As differences in elution behavior between the
target protein and host cell impurities are typically much
larger than the differences between the target protein and the
pre-peak and post-peak impurities analyzed in this study,
this general assumption should also be applicable to the case
of host cell or process impurities.

Since the modeling approach uses lumped parameters
obtained by fitting of a certain number of experimental data,
the physical significance of the individual model parameters
is relatively limited and wider interpretations and applica-
tions of an established model for a specific operation have to
be approached carefully. While Figure 5 demonstrates that
the values for model parameters A and B are of a realistic
magnitude they are not expected to reflect the true physical
value of the underlying fundamental parameters.
Conclusion

The potential for applying a model describing the behavior
of an ion-exchange separation has been demonstrated.
While this work is limited to a linear gradient elution
situation, the same model was applied successfully to
describe elution by a stepwise change in ionic-strength
(Ishihara and Yamamoto, 2005) and isocratic elution
(Watler et al., 2003). This is an indication that this
modeling method would prove useful for process char-
acterization for all types of ion-exchange operations. Such a
modeling approach can be used to reduce a screening matrix
of 10 parameters to a matrix of 4. The remaining parameters
are load amount and quality, and pooling criteria on both
front and back of the elution profile. Using this work as an
example, the effect of load amount and quality can quickly
be tested in separate experiments. This screening can then be
followed by rigorous characterization of the parameters
identified as influential while analyzing pseudo-pools of



different pooling criteria for each elution condition to
include the characterization of pooling criteria that are
critical for both step recovery and product quality.

The study of mock loads enriched in the significant
impurities to levels detectable on standard chromatography
equipment proved very useful. In this case, the separation
behavior could be tested without incurring the usual
analytical expenses and time requirements. Such an
approach can be applied for the identification and
elimination from further consideration of insignificant
process input parameters. The overall impact of parameters
found to be process significant and their potential
interactions would then be studied in a more comprehensive
subsequent study in combination with all other factors
found significant. This subsequent phase of process
characterization also allows verification of the parameter
ranking provided by this methodology with respect to all
output parameters monitored.
Notations
a a
ctivity
A, B e
mpirical parameters in Yamamoto model
c fl
uid phase concentration
Dcrt lo
ngitudinal dispersion coefficient at non-binding

conditions
DL lo
ngitudinal dispersion coefficient
dp r
esin particle diameter
G g
radient slope normalized to column void volume;

(Iend� I0)�V0/VG
H v
oid fraction; (1� e)/e¼ (Vt�V0)/V0
I io
nic strength in Yamamoto model (cI)
I0 io
nic strength at the start of the linear gradient
Iend io
nic strength at the end of the linear gradient
IR io
nic strength at peak maximum during gradient elution
K d
istribution coefficient
Kcrt d
istribution coefficient at non-binding conditions
Ke e
quilibrium constant
L c
olumn bed height
n a
bsorbed phase concentration
ns r
esin ligand density, i.e. ion-exchange capacity
P p
rotein
p, q, r, s, t fi
t parameters
Rs r
esolution between adjacent peaks
tR r
etention time
u li
near flow velocity
V0 c
olumn void volume
VG g
radient volume
Vt to
tal column volume
z c
harge of protein or counter-ion
g a
ctivity coefficient
u d
imensionless time; t�u/L

G lu
mped activity coefficient term as defined in Equation (5)
n p
artial molar volume
p s
welling pressure
s v
ariance around retention time
Subscripts
I c

P p
ounter-ion

rotein
References

DeSain C, Sutton C. 2000. Process hazard analysis and critical point

Identification. BioPharm 13(10):36–40.

Gardner AR, Smith TM. 2000. Identification and establishment of operating

ranges of critical process variables. In: Sofer G, Zabriskie DW, editors.

Biopharmaceutical Process Validation. New York: Marcel Dekker.

p 61–76.

Helfferich F. 1962. Ion exchange. New York: McGraw-Hill.

ICH. 1999. Specifications: Test Procedures and Acceptance Criteria for

Biotechnological/Biological Products. ICH Harmonized Tripartite

Guideline Q6B.

ICH. 2006a. Pharmaceutical Development. ICH Harmonized Tripartite

Guideline Q8.

ICH. 2006b. Quality RiskManagement. ICHHarmonized Tripartite Guide-

line Q8.

Ishihara T, Yamamoto S. 2005. Optimization of monoclonal antibody

purification by ion-exchange chromatography: Application of simple

methods with linear gradient elution experimental data. J Chromatogr

A 1069:99–106.

Jungbauer A, Kaltenbrunner O. 1996. Fundamental questions in optimizing

ion-exchange chromatography of proteins using computer-aided pro-

cess design. Biotechnol Bioeng 52:223–239.

Kelley BD. 2000. Establishing process robustness using designed experi-

ments. In: Sofer G, Zabriskie DW, editors. Biopharmaceutical Process

Validation. New York: Marcel Dekker. p 29–59.

LeVan MD, Carta G, Yon CM. 1997. Adsorption and ion-exchange. In:

Perry RH, Green DW, Maloney JO, editors. Perry’s Chemical Engi-

neers’ Handbook. 7 ed: McGraw-Hill.

Michaeli I, Katchalski A. 1957. Potentiometric titration of polyelectric gels.

J Polym Sci 23:683–696.

Montgomery DC. 2000. Design and Analysis of Experiments. New York:

John Wiley & Sons.

Shen H, Frey DD. 2004. Charge regulation in protein ion-exchange chro-

matography: Development and experimental evaluation of a theory

based on hydrogen ion Donnan equilibrium. J Chromatogr A 1034:55–

68.

Shene C, Lucero A, Andrews BA, Asenjo JA. 2006. Mathematical modelling

of elution curves for a protein mixture in ion exchange chromato-

graphy and for the optimal selection of operational conditions. Bio-

technol Bioeng 95:704–713.
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