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Abstract

A model of the static equilibrium in the real estate market is studied in this paper and a solution algorithm is proposed.
Consumers and real estate suppliers are assumed to have idiosyncratic differences, which are described by the discrete
choice theory with random-utility and profit-behavior. Consumers are differentiated into clusters by socioeconomic char-
acteristics while suppliers are differentiated by production technology. Consumer behavior is subject to budget constraints
(with fixed income), a quasi-linear utility function, and is affected by neighborhood externalities (households) and agglom-
eration economies (firms). The suppliers’ behavior is restrained by zone regulations and affected by scale and scope econ-
omies. Total households by cluster are exogenous and total supply fits total demand. Real estate combined with location
options is assumed to be discrete and differentiated, then transactions are modeled as auctions. Equilibrium prices are the
result of auctions and the market clearing condition. These conditions generate a discontinuous non-linear location equi-
librium problem where convexity is obtained by applying the MNL logit in all decisions. The equilibrium is described by a
fixed-point equation system that, under some specified conditions, has a unique and stable solution; such conditions are
analytically defined and represent a minimum degree of choice dispersion in the model. A fixed-point algorithm is pro-
posed to solve the equilibrium, along with the conditions that assure convergence. This real estate equilibrium model
can be applied to the highly complex reality of urban environments at a relatively low computational cost.
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1. Introduction

The accumulated research in studies of urban land use shows the system’s high degree of complexity when
all interactions amongst consumers and suppliers are included, generating a complex non-linear mathematical
problem. Some complexity is due to the diversity of agents with different and interdependent behavior. House-
holds, for example, behave differently in relation to socioeconomic attributes, whereas firms behave differently
in relation to economic activity and business size; all of these interact through various forms of location exter-
nalities. Additionally, real estate options provided by suppliers are differentiated goods, distinguished by
dwelling attributes as well as by their location. At the same time, production costs are subject to scale and
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scope economies. Finally, the state plays a strong role by imposing a variety of regulations that affect the
market.

In previous research, (Martı́nez, 2000), this problem has been partially studied with the following set of
assumptions:

• Urban land is a quasi-unique good bought and sold in an auction-type market.
• Real estate options are discrete and differentiated units defined by the location zone and building type.
• The available location is assigned to the best bidder.
• Bids are made by households and firms that compete for real estate options.
• Consumers’ bids are assumed to be random variables, thus considering the idiosyncratic nature of the

agents.
• Consumers’ bids are assumed mutually interdependent as their location choices define the neighborhood

quality for residences and the agglomeration economies for non-residents.
• The supply side is represented by a time-series deterministic model that predicts the number of supply units

by zone and building type based on price and previous stock.
• Equilibrium is achieved when all consumers find a location somewhere in a static framework.

These assumptions describe a competitive auction market, where the prices are defined endogenously by an
auction mechanism as consumers simultaneously find a location through the rule of the best bidder. The expli-
cit modeling of location externalities, namely neighborhood quality and agglomeration economies generates
equilibrium conditions described by a non-linear mathematical problem. This model is called the Random
Bidding Model (RBM) and has been developed into operational software using a specific solution algorithm,
MUSSA, currently applied to the city of Santiago (Martı́nez and Donoso, 2001).

In this paper we develop a new model of equilibrium that extends the RBM model. The principal modifi-
cation is the adoption of new assumptions about how supply agents behave in the competitive market, in this
case by adding idiosyncratic variability among them. This variability is modeled by introducing randomness in
the supply side, within the approach of static equilibrium. The new-static and maximum profit-logit model
replaces MUSSA’s times-series sub-model of deterministic supply. This requires, however, the study of some
important issues. The first is that the new supply model does not predict absolute values for prices and rents,
but rather relative ones. The second issue is how to impose land development regulations on the supply model.
Third is that the change in the mathematical form of the equilibrium model requires the study and develop-
ment of a specific solution algorithm.

The new model is called Random Bidding and Supply Model (RB&SM), which has the advantage of offer-
ing better consistency in the behavior of all the agents in the system. It also takes better advantage of the math-
ematical structure generated by logit models. Most importantly, the new supply model can incorporate the
effects of economies of scale and scope in the real estate market, which are predominantly responsible for den-
sification and sprawl tendencies. Thus, real estate supply is driven by the microeconomic optimal behavior of
real estate producers, in contrast with previous models that react, using an econometric model, to the surplus
of previous periods without representing suppliers’ behavior explicitly (see Simmonds, 1999; Waddell, 2002;
Wegener, 1985).

The main assumption of this model is that the land use system attains a partial static equilibrium. It is par-
tial because transports cost are assumed exogenous. Some urban specialists may argue that a static equilibrium
is unrealistic because building infrastructure takes time, which introduces delays in the supply side. Addition-
ally, a number of land use modelers have abandoned the equilibrium paradigm in favor of a dynamic dis-equi-
librium framework, implemented by (micro to meso) simulation models. However, there are several points to
make on the merit of the equilibrium approach. First, for forecasting the city development at a time horizon
sufficiently large (compared to the building delay), the assumption that supply is able to closely match demand
is plausible. Second, even in a dynamic framework some definition of equilibrium is conceivable to represent
the market forces. See for example Martı́nez and Hurtubia (2006) where the demand side of the RB&SM and a
dynamic supply model are used to attend a notion of equilibrium with excess of demand or supply. Third, the
equilibrium model, particularly under the closed form of the RB&SM, can be used efficiently to formulate
optimization tools for urban planning (Martı́nez and Aguila, 2004). Finally, equilibrium conditions provide



relevant and consistent information on the formation of prices, while non-equilibrium models use econometric
functions representing hedonic rents that bear no consistency with the demand-supply process over time or
with the evolution of the regulatory context.

The model is described in Section 2. The solution algorithm and an analysis of performance are presented in
Section 3. The application of the model is discussed in Section 4 and conclusions are summarized and dis-
cussed in Section 5.

2. Model formulation

2.1. Assumptions

The urban land market performs an imperfect competition because unique combinations of building and
location attributes differentiate goods (real estate properties). This characteristic arises from the fact that
an urban location is valued for what surrounds it (neighborhood, parks, infrastructure, etc.), which cannot
be reproduced by a production process. For this reason, the market behaves like an auction, which is studied
in the rent or urban economic theory developed initially by Alonso (1964). Under this condition, goods go to
the highest bidder, with bids representing consumers’ willingness to pay. Thus, the consumers’ behavior is
modeled by their bid function instead of by their utility. This valuation function includes attributes that
describe the complex interaction amongst consumers, namely the location externalities, which constitutes
another argument for market imperfection, and at the same time introduces great analytical complexity to
the model.

In our model, we apply the Random Utility Theory developed for the case of auctions by Ellickson (1981)
and Martı́nez (1992), and for the real estate profit maximization by Anas (1982). In practice this implies that
consumers (who choose their best location) and suppliers (who choose their best offer) will be modeled under
the assumption that their behavior function – bid and profit respectively – follows a random distribution;
therefore decisions are represented by probabilities. Additionally, in this model the set of discrete location
options is identified not only by zone, but also by building type, which form a finite set of alternatives that
constitutes the discrete space where those who supply and those who demand make their decisions. Finally,
although the model can be defined as dis-aggregated at the level of each agent and location, in practice aggre-
gated versions are used, where consumers are classified into socio-economically homogeneous categories
(index h ¼ ð1; . . . ; �hÞÞ and the supply is described by location or zone (index i = (1, . . . ,�i)) and property type
(index v ¼ ð1; . . . ;�vÞ).

2.2. The auction model

The variable that describes consumers’ behavior in the market is their bids, representing their willingness to
pay (WP) for the location to achieve a certain level of utility. The theory that relates both functions, utility and
bids, shows that the latter represents the expenditure function (in all goods except location). The bid function
is derived inverting – in the property price – the indirect utility function conditional on the location (Solow,
1973; Rosen, 1974; Martı́nez, 1992).

This theory yields the following relationship between the indirect utility function V and bids for real estate:
Bhvi ¼ Ih � V �1

h ðzvi; P ;U h; bhÞ, with Ih the household income, P the price vector for goods and bh the utility
taste parameters; zvi is the vector of attributes that describes the real estate and its location. It is possible
to demonstrate that for bid functions thus defined, the location where the agent is the highest bidder is that
of the maximum surplus or maximum utility (Martı́nez, 1992; Martı́nez, 2000), which assures that the auction
outcome, yields an allocation consistent with maximum utility behavior of consumers.

In the RB&SM model, equilibrium is attained for P and bh taken as exogenous parameters (hence hidden in
what follows). Additionally, we assume a quasi-linear consumer’s utility function, that is U hðx; zÞ ¼
a0x0 þ U 0hðx�0; zÞ, being linear only in one good (x0) of the goods vector. Although this assumption imposes
a theoretical limitation on the model, in practice it has a small impact, as we only require the utility to be linear
in one dimension of the large vector of consumption goods and location attributes. The inverse of the indirect
quasi-linear utility function conditional on location attributes, yields the following bid function: Bhvi = Ih �



f(Uh) � g(zvi). This additive assumption introduces significant benefits in calculating the land use equilibrium,
allowing the model to find solutions to a complex non-linear urban equilibrium. Using these assumptions, we
use the following generic consumers’ bid function:
1 Vec
2 No
Bhvi ¼ b1
h þ b2

hviððP �=�iÞhv; ðS�iÞvÞ þ b3 ð1Þ
where the bid components are:

• b1
h: defined as b1

h ¼ Ih � f ðU hÞ � b3, it adjusts utility levels to attain equilibrium.
• b2

hvi: defined as g(zvi) describes the valuation of property attributes. Some attributes are exogenous to the
location process, such as rivers, parks, and hills. These attributes, then, are represented by zone attractive
parameters in this term. The more complex attributes, however, are those endogenous in the model that
describe location externalities and are defined by two types of variables. First the distribution of agents
in the zone, given by the probability vector (PÆ/Æi)hv,

1 that describes attributes like neighborhood quality
by the socio-economic characteristics of agents located in the zone. Second, the building stock available,
(SÆi)v, that describes the built environment in the zone.

• b3: is a constant term, independent of consumers and supply options, which adjusts bids to absolute levels
in the whole market. This component is only relevant in the calculation of absolute values for rents.

In the case of firms (non-residential activities), their WP function is derived from the profit function for
each economic sector or industry, assuming homogeneous intra-sector behavior. In this case, it is also assumed
that the bid function is additive, as in (1).

To include the behavior variability produced by idiosyncratic differences between consumers within a clus-
ter, bids are assumed to be random variables, denoted by eBhvi ¼ Bhvi þ ehvi, with random terms ehvi which are
assumed identical, independent (IID) and distributed Gumbel. This distribution is justified by Ellickson (1981)
noting that it is consistent with the maximum bidding process of the auction, where only the maximum bid
within a cluster is relevant for the auction. The choice of this distribution also has important practical conse-
quences in the solution algorithm. From these assumptions, the (multinomial) probability that one of the Hh

2

agents type h is the highest bidder in (v, i), conditioned on the supply being available, is given by
P h=vi ¼
H h expðlBhviÞP
gH g expðlBgviÞ

ð2Þ
where the parameter l is inversely proportional to the variance of the bids. Here the aggregated version of the
multinomial logit probability is utilized, which includes the correction for different sizes among agents’ clus-
ters, as proposed by McFadden (1978).

Future versions of this model may drop the IID assumptions to allow for different degrees of correlation
between random terms. Although these versions could be developed based on available research on discrete-
demand models, further research will be required to generate the suitable equilibrium algorithm for each alter-
native model specification.

Thus, replacing (1) in (2), the auction model is
P h=vi ¼
H h expðlðb1

h þ b2
hviððP �=�iÞhv; ðS�iÞvÞÞÞP

gH g expðlðb1
g þ b2

gviððP �=�iÞgv; ðS�iÞvÞÞÞ
ð3Þ
where b3 is cancelled out, implying that location probabilities depend on relative bids across bidders, not on
their absolute values.

In a synthetic form this is written as the
Location fixed point P h=vi ¼ P h=viððb1
� Þh; ðP �=�iÞhv; ðS�iÞvÞ 8h; v; i ð4Þ
tors notation: ðx�j Þk ¼ ðxkj;8k ¼ ð1; . . . ; �kÞÞ, then ðP �=�iÞhv ¼ ðP h=vi;8h 2 ð1; . . . ; �hÞ; v 2 ð1; . . . ;�vÞÞ and ðS�iÞv ¼ ðSvi;8v 2 ð1; . . . ;�vÞÞ.
tation: Overlined variables denote exogenous information required by the model.



which shows that the probability variable is present both in the right and left sides of an unsolvable equation.
This is the mathematical description of the interdependence between consumer decisions, i.e. location exter-
nalities, in which the location of an agent depends on locations of other agents (households and firms) in
the same zone, and on the built environment represented by the real estate supply in the zone.

As a result of the auction, the rent of a real estate is determined by the expected value of the highest bid,
which, according to the Gumbel distribution, is the known logsum-or implicit value- function given by
rvi ¼
1

l
ln

X
g

H g expðlBgviÞ
 !

þ c
l

ð5Þ
with c the Eulers’s constant. This expression can be expressed by two terms, only for the benefit of exposition,
as
rvi ¼
1

l
ln

X
g

H g expðlðb1
g þ b2

gviÞÞ
 !

þ b3 þ c
l
¼ �rvi þ b3 ð6Þ
Then, the rent depends on bids Bhvi , therefore, in on all other variables in the model.
We observe that Eq. (6) is a hedonic function, since rents are built as the contribution of consumers’ val-

uation of attributes. However, in contrast with econometric hedonic functions that estimate the average val-
uation of consumers for each attribute, this equation aggregates the differentiated consumers’ valuation in a
way consistent with the underlying bidding process and with the constraints on consumers and suppliers
behavior that defines the regulated context. Thus, this rent Eq. (6) considers the changing conditions of the
market system.

2.3. Supply model

This section contains the main theoretical extension to the original MUSSA model proposed in this paper.
In previous research Martı́nez and Roy (2004) studied the economic supply problem as a chain of market pro-
cesses, from agricultural landowner, to land developers and real estate developers. Here, we shall concentrate
on the final real estate supply. The rest of the chain is hidden, but it may be incorporated explicitly by expand-
ing this model with Martı́nez–Roy’s model.

2.3.1. Producers’ behavior

The behavior of real estate suppliers consists of deciding what combination of building and zone (v, i) would
generate the maximum profit, subject to prevailing market regulations. The profit function is defined as the
difference between the rent (rvi) that will be obtained from a supply option and its production cost (cvi), includ-
ing land, construction and maintenance cost items. Then the total profit yield by Svi sold units is
pvi ¼ Sviðrvi � cviÞ

There are some theoretical aspects to analyze in designing the supply model. One is the assumption of heter-
ogeneity of profit across different zones, caused by differences in market conditions, information, and mobility
of resources. Indeed, urban markets are highly regulated by zoning regulations, defined both by zone and
building type, hence it is plausible that profits may differ by sub-markets – defined by (v, i) – at equilibrium.

A second important aspect is the heterogeneity of suppliers, which occurs when they have different profit
functions, because, for example, their size may determine their access to technology affecting fixed costs. The
model should, therefore, permit different profit functions by types of developer (clusters), thus
cvi ¼ ðcvij; j ¼ ð1; . . . ;�jÞÞ, with �j the total number of developers.

Another theoretical aspect is the level of profit aggregation that the supplier maximizes. In the presence of
scale economies (intra sub-market economies), denoted as cvij = cj(Svij), each supplier j should define the opti-
mal production level Svij by maximizing profit in each sub-market independently. In the presence of economies
of scope (inter sub-market economies), rational behavior must consider the use of a more complex strategy
looking for an optimum combination set of supply options in all sub-markets. Thus, the more general case
includes full interdependency in cost, denoted as cvij = cj((S� � �)vij), where production cost depends on what



is built everywhere by every builder. Less complex interdependencies are, of course, likely to occur in real mar-
kets. For example suppliers might be concerned only with their own costs.

Then, the general problem of the jth supplier, including economies of scale and scope, may be written as
MaxS���j pj ¼
X

vi

SvijðrviððS���ÞvijÞ � cjððS���ÞvijÞÞ

s:a: Svij 2 ðRi; T vijÞ 8v; i; jX
vi

Svij ¼ Sj 8j
ð7Þ
The set of restrictions indicates that supply must comply with the set of regulations at each zone (Ri) and is
constrained by the technology available to the building sector (Tvij). The second set of constraints is optional,
with the role of providing exogenous information about each supplier’s market share Sj.

To develop an operational supply model, we recall Anas (1983) to combine two methodologies: the max-
imum entropy approach and the logit approach. The model is developed using the entropy method in Appen-
dix A. With regard to the logit approach, it should be noted that in the suppliers’ problem (7), rents are
random variables, hence profits are also random. Moreover, the Gumbel distribution under maximization pre-
serves the same scale parameter, therefore, rents distributions have the same l parameter of the bid functions
defined above. Thus in a model with deterministic costs, profits would be Gumbel distributed IID with the
same scale factor as the bids.

The RB&SM makes the following assumptions to obtain an operational supply model. We assume the
developers’ profits as independent, identical and Gumbel distributed variables with scale parameter k-not nec-
essarily equal to the demand model parameter l-in order to consider unobserved random effects on costs or
other missing variables. Thus, the expected number of residential supply units, type (v, i), supplied by devel-
oper j, denoted Svij, is given by the multinomial probability (Pvij) that this unit type is the maximum profit
option for the j 0s developer in the industry. This is
S�vij ¼ SP vij ¼ S
exp kð~pvij � qjÞP

v0i0j0 exp kð~pv0i0j0 � qj0 Þ
ð8Þ
where k is inversely proportional to the profit variance and S is the total number of units supplied by all devel-
opers in all building types. qj is the parameter that adjusts the solution to the developer’s j share of the market.
This result is derived from the entropy approach in Appendix A.

Some issues of the supply model (8) should be commented upon. This model is more limited than the
general formulation in (7), as it assumes the following additive condition: Maxpj ¼

P
viSvijMaxpvij, which

holds only if individual profits pvij are independent across real estate sub-markets, a condition also assumed
in the distribution of profits. Such a condition hardly holds if the technology of the building industry gen-
erates economies of scope, because in this case building costs, denoted as cvij = cj((S� � �)vij), are explicitly
dependent on the mixture of production in sub-markets. Nevertheless, it is theoretically possible to model
such dependency – completely or at least partially – by the cost function itself, leaving a small correlation
between the random terms, which are then yield independent as we have assumed. In the applied field, how-
ever, it would be wise to explore more complex logit-model structures than the multinomial, which will
remain for future research because it affects the equilibrium algorithm discussed below. Another technical
point is that similar to the location probability, b3 is again cancelled out, implying that what matters in
the suppliers’ choice are relative prices, not their absolute values. This is plausible because the total supply
S is given exogenously for this equation, then Eq. (8) distributes total supply across alternative options
requiring only relative prices.

Note that p (and also q) are dependent on supply, through location externalities in rents and because of
scale economies in the production costs. Then, the reduced form of the supply model is
Supply fixed point Svi ¼ S � P viððb1
� Þh; ðP �=��Þhvi; ðS��ÞviÞ ð9Þ
with P vi ¼
P

jP vij, which represents the fixed point equation of the non-linear supply model. It is important to
note that this model does not yet include the constraints imposed in (7) to represent zoning regulations (R).
Technology restriction (T), however, may be included in the cost function of profits.



2.3.2. Planning regulations

Modeling regulations is a fundamental feature of a land use model, especially to make it applicable as a
design tool for zoning plans. In the RB&SM model, we incorporate linear regulations of the following
form:

P
va

k
viSvi 6 Rk

i , where the coefficients ak – associated with the kth restriction – and the restrictions’
values Ri are all exogenous parameters of the model. Of course their linear form limits the diversity of reg-
ulations that can be considered, but the linear form is sufficient for the great majority of actual urban
regulations.

In order to incorporate linear regulations in the model, we build upon the bulk of research on these types of
problems, especially on entropy models. See for example the model proposed recently by Martı́nez and Roy
(2004). From our analysis in Appendix A we define the following ‘‘suppliers’ optimal behavioral function’’
that maximizes profit subject to comply with the set K of regulations in the city, with Ki regulations in each
zone i:
~pvij ¼ pvij þ p0vij �
X

k2½1;...;Ki �
ck

i ak
vi
with p0vij ¼
P

v0i0Sv0i0j
opv0 i0j
oSvij

, a term that adjusts suppliers’ behavior to take into account the dependency of profits

on scope economies of production, i.e. benefits of producing in several locations simultaneously.
Let us interpret the last term in the behavioral function containing the cs’ parameters, which are Lagran-

gean multipliers that adjust supply to zone regulations at each zone. We know that the values of these para-
meters are ck

i P 0 8i; k, taking the value zero when the corresponding constraint is not binding. These
parameters have a relevant practical economic interpretation: they represent the marginal profit obtained
by suppliers if the corresponding regulation is marginally relaxed, usually called ‘‘shadow prices.’’ Thus, these
parameters can be used as an index to assess each regulation by their impact on the economy. This shadow
price is, in fact, an increase in the production cost of the real estate supply, produced by an increase in the
land price input factor; hence, it represents a capitalization on land prices of a monopoly power generated
by the regulation of a scarce land.

A relevant observation in calculating gamma parameters is that, in the context of the set of regulations
included, only one constraint (denoted below as �k) is actually binding at each zone, whose corresponding
parameter is denoted by ci and called the ‘‘binding parameter.’’ Then,

• ck
i ¼ 0; 8ðk 6¼ �k 2 KiÞ; c�k

i ¼ ci P 0; and cia
�k
vi ¼

P
ki2Kcki

i ak
vi.

• ci ¼ maxk2Kic
k
i ; the binding parameter is the superior of all parameters’ values in each zone.

•
P

va
k
viSviðciÞ < Rk

i 8k 6¼ �k, i.e. the binding parameter ci assures that all non binding constraints hold, so their
respective parameters can be assumed equal to zero.

The implication is that the behavior function is then ~pvij ¼ pvij þ p0vij � cia
�k
vi and the number of parameters

needed to be calculated is not equal to the number of constraints, but to the much smaller number of zones.
Nonetheless, an efficient algorithm is required to be able to identify the binding regulation without calculating
all c parameters.

The calculation of the set of binding parameters ci "i, may be performed applying the known MART algo-
rithm (see Appendix A), but we use the fixed point method using the following expression:
Regulation fixed point c
�k
i ¼

1

ka�k
0i

ln
S

R
�k
i

X
vj

a
�k
vi exp kðpvij þ p0vij � c

�k
i ða

�k
vi � a

�k
0iÞ � qj � p̂jÞ

" #

with p̂j ¼
1

k
ln

X
v0i0j0

exp kðpv0i0j0 þ p0v0i0j0 � qj0 � c
�k
i0a

�k
v0i0 Þ

" # ð10Þ
which is derived in Appendix A. Notice that c P 0, which complies with a theoretical condition for Lagran-
gean multipliers. The more practical advantage of this method is that Eq. (10) has the known logsum expres-
sion that has a simple iterative solution procedure (see below).



2.4. Equilibrium

Here we study the auction-Walrasian equilibrium of the land use market. There are several alternative spec-
ifications of equilibrium for the urban land use market, from that stating that every agent is located some-
where, i.e. demand is thus satisfied but supply may not be fully used, to a more demanding version in
which demand and supply are equal. All these options are represented by
X

vi

SviP h=vi P Hh 8h ð11Þ
in which equilibrium is verified for each consumer category h and for all simultaneously. The RB&SM con-
siders the equality case, which represents the most used static equilibrium criteria. The inequality condition,
also referred to as dis-equilibrium, leads to a dynamic formulation of this model that is beyond the scope of
this paper (for a dynamic model see Martı́nez and Hurtubia, 2006). The equality condition is met if b1 verifies
that
b1
h ¼ �

1

l
ln

1

Hh

X
vi

Svi expðlðb2
hvi � �rviÞÞ

 !
8h ð12Þ
which is obtained solving (11) for b1
h under equality. As rvi depends on the bids in (6), then Eq. (12) can be

written in a reduced form as
Equilibrium fixed point b1
h ¼ bhððb1

� Þh; ðP �=��Þhvi; ðS��ÞviÞ ð13Þ
which constitutes another fixed point, this time in vector b1 whose solution verifies equilibrium conditions. As
expected, this fixed point has the same logsum functional form as the c’s Eq. (10), because the equilibrium
condition also represents a set of linear constraints.

To interpret the term b1 recall from Section 2.2 that we defined it as b1
h ¼ Ih � f 1ðUhÞ � b3, which ‘‘adjusts

utility levels to attain equilibrium’’; this adjustment can be done solving the equilibrium fixed point Eq. (12).
Note that this result is based on our assumptions of an additive bid function, that b3 is not dependent on index
h and that income is fixed in our model. Then it follows that all adjustments on b1 represent the (negative)
monetary equivalent adjustments in clusters’ utility levels: the higher the bid for a location, the lower the util-
ity obtained (all location attributes held constant). Thus, the values obtained from (12) represent a monatry
index of the utilities attained by agents at equilibrium. As expected, ceteris paribus and neglecting second
order effects caused by non-linearities, this index increases with H h, therefore utility decreases with population
because the supply is more demanded. Conversely, more supply increases utility, while higher rents have the
opposite effect. This index also has a direct and very useful application for the evaluation of a land use system,
because it represents the consumers’ benefit, or the compensating variation (Martı́nez, 2000), associated to an
urban scenario under equilibrium.
2.5. Additional analysis: absolute rents and expenditures in goods

The model is based on the specification of a WP function or bids that should meet the restriction of house-
hold income. It is also desirable, that bids reproduce absolute values of rents. Here we comment on methods,
complementary to the core RB&SM model, that comply with these conditions.

The values of bids and rents previously defined are relative values within the model until the term b3 is iden-
tified. One method to obtain this parameter is to assume that total supply S depends on absolute values of
rents and on external macroeconomic variables (X). Then
S ¼ Sðr;X Þ; r ¼ f ðrvi; 8v; iÞ ð14Þ
where X is a vector of macroeconomic indices and r is an aggregate rent index, for example, the average rent or
the maximum rent index of the city. Both X and r are assumed dependent on the country’s economy rather
than the city’s internal economy, such that (14) reflects a relation of investors’ behavior in the capital market



(see Di Pacuale and Wheaton, 1996). Having (14) calibrated, it can be solved for b3 because in static equilib-
rium S is known (equal to the total population of agents) and rents are given by Eq. (6).

Another method commonly used is to define a relationship between the absolute rent of land at the city
periphery and the price of an external agricultural zone m, rm. Then,
rm ¼ �rm þ b3 ð15Þ
with �rm given by evaluating the rent model (6) for location m, which yields b3 directly. It is recommended to
choose the approach which uses the best empirical information available.

From either method we have an expression given by
b3 ¼ b3ðb1
� ; P �=��; S��Þ ð16Þ
that allows the calculation of absolute values of rents and bids. It is important to emphasize that from the
point of view of the RB&SM model, b3 does not alter the equilibrium solution in (b1,P./ � � �,S� � �), it only affects
the absolute values of the rents and bids. But, of course, this occurs principally due to the multinomial logit
form of probabilities used in the RB&SM model.

Additionally, the model must meet the agents’ income restrictions, which are:
ðPxÞhvi þ rvi 6 Ih; 8h located at ðv; iÞ ð17Þ
where x is the vector of consumers goods, which we assume continuous, and P its corresponding price vector.
If we also assume that the information is adequate, the auction is capable of extracting the maximum value
possible from consumers’ willingness to pay, then Eq. (17) must hold for equality:
ðPxÞhvi ¼ Ih � �rvi þ b3 ð18Þ
This expression allows us to estimate the level of consumption of goods differentiated by location and cluster,
which constitutes interesting information that directly and explicitly, links location and consumption. This im-
plies that a differential in rents between two locations induces a differential expenditure in goods that is exactly
compensated, on expected – not necessarily actual – values, by an equivalent differential in the utility associ-
ated with the respective location amenities (attributes).

Nevertheless, both Eqs. (15) and (18) should be used cautiously because total expenditure in any location
should also be restricted to being non-negative, which is not necessarily complied by these equations.
3. The equilibrium solution

In this section we analyze how to solve the problem of static equilibrium described by the set of equations
above. Here we propose a solution algorithm and analyze its properties.
3.1. System of equations

The static equilibrium of the urban land use system is represented by the simultaneous solution of the pre-
vious set of equations, which together can be written as the following multi-fixed-point problem:
P h=vi ¼ P h=viððb1
� Þh; ðP �=�iÞhv; ðS�iÞv; ciÞ 8h; v; i

Svi ¼ S � P viððb1
� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ 8v; i

b1
h ¼ bhððb1

� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ 8h
ci ¼ ciððb1

� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ 8i

ð19Þ
which is a system of dependent non-linear equations with dimension [(#h + 1)(#v#i) + (#h) + (#i)], with the
same number of unknown variables. This system is complemented with the equation for absolute bids and
rents:
b3 ¼ b3ððb1
� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ ð20Þ



that does not intervene in the solution of system (19). The solution vector is (b1,P,S,c,b3)*, from which we can
calculate the bids, location patterns, rents and profits.

Note that the fixed point equations system (19) embeds a highly complex mathematical problem, poten-
tially with multiple solutions. This complexity may be reduced significantly by means of lagging interactions,
for example the location externalities effect, assuming that consumers choose location at year t based on zone
attributes of the previous year. In this case Eq. (3) reduces to P t

h=vi ¼ P h=viððb1
� Þh; ðP t�1

�=�i Þhv; ðSt�1
�i ÞvÞ 8h; v; i,

which is no longer a fixed point equation. Another simplification is to eliminate the supply fixed point problem
(Eqs. (9) and (9)) by making the supply side a dynamic model, where supply is decided some time before it
becomes available in the market, as in Martı́nez and Hurtubia (2006). Therefore, the RB&SM model repre-
sents the most complex land use equilibrium problem because it incorporates all interactions in a simultaneous
equilibrium.

3.2. Properties of fixed points

The mathematical properties of each of the fixed-point equations in system (19) are analyzed in Appendix
B, obtaining conditions for each individual equation separately. For the multinomial logit probabilities (auc-
tions or supply), we conclude that the fixed-point solution is unique and the fixed-point algorithm converges to
the solution, if and only if, the probabilities remain within the lower and upper bounds identified in Appendix
B. These bounds mean that consumers’ bids and supply profits should not approach a deterministic (all or
nothing) distribution. This conclusion follows from the fact that these bounds depend on the Gumbel distri-
butions’ scale factors of bids and profits (inversely relayed with their dispersion parameters) and also on the
changes of bid and rent variables. It should be noted that these bounds are not fixed, because bids and rents
are variables in the algorithm, then bounds have to be recalculated in each iteration of the algorithm.

The other two fixed points, associated with equilibrium and linear regulations, have the logsum expression,
although they are different because regulation constraints have parameters a. In both cases we conclude that
the solution is unique and the fixed-point-iteration algorithm converges to the solution. There are cases, how-
ever, where this conclusion does not hold, the most significant case being some conditions that should hold in
the regulations fixed-point iterations, which should be checked in the algorithm.

Thus, each fixed-point equation converges (subject to specific conditions) to a unique solution. Global con-
vergence has only being proved by numerous empirical tests that show that convergence is attained, provided
that convergence conditions for each fixed point do apply.

Existence and convergence to a unique solution is largely caused by the probabilistic formulation of choices
of all agents, which transforms the complex non-linear system (19) into a convex optimization problem. Addi-
tionally, the use of a multinomial logit form for all choices defines the specific solution and explains the high
performance observed in the calculation of the solution.

It is important to understand, however, that the unique solution attained by the model is conditional on the
set of calibrated parameters (see Section 4), because this implies two relevant conditions. First, the model
reproduces the observed system because parameters are estimated to reproduce the observed distributions
of consumers and supply. Secondly, following the property of the multinomial logit, the forecasts of choice
probabilities can be equivalently expressed as an incremental probability calculated as a pivot point estimate
of the observed distribution. The implication of this property is very important because the model solution
represents the expected solution conditional on the observed city represented by the set of calibrated param-
eters. Thus, the forecasted city is not obtained from scratch but from the city’s history.

Finally, it is worth commenting on the robustness of the model. The model is sensitive to behavioral and
scale’s parameters, but the solution changes smoothly with these parameters, except for instability mentioned
above for some scale parameters. This makes the model highly robust to specification differences. What jus-
tifies this feature is the fact that the mathematical problem solved by the model’s algorithm is continuous and
differentiable3 in all the system equations.
3 Differentiability only fails on c’s parameters when the binding constraint changes from one to another within the same zone and
between iterations. However, the simulations made did not show any instability.



3.3. Solution algorithm

The algorithm to solve the equation system (19) and the analysis of the solution’s sensitivity to model
parameters are presented below. It should be noted that in spite of the assumptions made (separability of
bid functions in Eq. (1) and the simplification for regulation parameters in Eq. (10)), the high complexity
of the non-linear system of equations implies that there are no general solution tools, moreover, it is known
that the form given to the functions involved is crucial in the behavior of any solution algorithm. In our case,
this affects the functional form assumed for bids (specifically terms b2

hvi) and production costs in each specific
application of the model. It is also known from experience that in large complex problems, the most efficient
and robust algorithms are those that take advantage of the structure of the equations involved. In our model,
this is highly important because all the equations are derived from the Gumbel distribution, which defines a
unified mathematical structure for the whole problem. Indeed, the first two equations in (19) are multinomial
logit formulae, while the last two are logsum formulae. Therefore, the following algorithm is only valid for the
above specification of the RB&SM model.

The main solution algorithm is the following:
Define the generic vector
x ¼ ðxj; j 2 ð1; 2; 3; 4Þ; x1 ¼ ðb1
h; 8hÞ; x2 ¼ ðP h=vi; 8hviÞ; x3 ¼ ðSvi; 8viÞ; x4 ¼ ðci;8iÞÞ
Call Simplex First Stage procedure: to assure that the regulation set is feasible and to find a point in the
interior.

Initialize: n = 0, m = 0
Iterate the equation system:

(4.1) n = n + 1, t = 1, j = 1.
(4.2) if j = 4 then (if m = 0 x4 = 0; m = 1 call Binding).
(4.3) if j = 2,3 call Bounds.
(4.4) xt ¼ ðxjðxt�1

j ; xk ¼ �xk8k 6¼ jÞ;�xk8k 6¼ jÞ.
(4.5) if jxt

jl � xt�1
jl j> ej8l, t = t + 1, go to 4.2.

(4.6) Dxj ¼ xt
j � �xj;�xj ¼ xt

j.
(4.7) if j < 4 t = 1, j = j + 1, go to 4.2.

Global convergence:

(5.1) if Dx ¼ ðjxjð�xj; 8jÞ � �xjj > ej; 8jÞ, go to 4.1.
(5.2) if m = 1 stop, print x� ¼ ð�xj; 8jÞ; n = 0, m = m + 1 go to 4.1.

The bounds procedure:

(i) Calculate upper bounds fU = fU(h;xt�1) and lower bounds fL = fL(h;xt�1).
(ii) If fL < xt�1

j < fU go to 4.4; stop, print ‘‘no convergence’’.

The binding procedure:

(i) Starting values: c0 ¼ fck
i ¼ 0; 8i; kg.

(ii) Constraints’ evaluation:
Di ¼ min
k2Ki

Rk
i �

X
v0
ðak

v0iSv0iÞ
 !

; ki ¼ arg mink2Ki Rk
i �

X
v0
ðak

v0iSv0iÞ
 !

; �ci ¼ ðcki
; 8iÞ
Iterations n = 1:

(iv) if Di 6 0, �cn
i ¼ cið�cn�1Þ8i.
if Di P 0;�cn
i ¼ 08i.



(v) if j cn
i � cn�1

i j> e8i, n = n + 1 go to (iv).
Final parameter: c� ¼ fck

i ¼ cn
i ; 8i; kg.

The algorithm sequentially solves the corresponding fixed-point equation for each of the four variable vec-
tors xj until convergence is attained, called ‘‘local t-iteration’’. The next vector xj+1 is then adjusted and so on
until the whole vectors set is adjusted, which completes a general iteration. Within a local iteration, the fixed
point is solved for all elements of the vector (xji 2 xj,"i) simultaneously, by simply repeatedly evaluating the
variable in the corresponding fixed-point function, holding the other variables fixed x�j at their current values.
Sometimes this is called ‘‘the picking algorithm,’’ which in this case is applied to a set of fixed points. The local
iteration procedure converges once the variables are within a tolerance value; global convergence requires con-
vergence in all variables.

The exceptions to this general procedure are associated with the presence of zone regulations. First, the
algorithm starts (line 2), checking for the feasibility of regulations, finding an interior point such that
S0

vi P 0; 8v; i, equilibrium
P

viS
0
vi P

P
hH h

� �
and regulations

P
va

k
viS

0
vi 6 Rk

i ; 8i
� �

are feasible. Second, the
equilibrium is first solved ignoring all regulation constraints (m = 0) to find the unrestricted solution. This
solution is taken as the starting point to apply the algorithm for the constrained problem (m = 1). This
procedure avoids getting an incorrect solution produced when the algorithm approaches the feasible set
from outside, a non-feasible point, because it gets stuck at the edge of the feasible space and can not find
the interior (non-binding) of that space. Conversely, when the algorithm starts from a point in the interior
of the feasible space, the global solution is unique (except when the logit model tends to a deterministic
choice model, as explained below). Third, the algorithm identifies the c-fixed point and calls up the Bind-
ing procedure to select the most violated constraint at each zone and adjust profits to comply with
regulations.

A weakness of this algorithm is that it is restricted to linear forms of zoning regulations. To relax this lim-
itation, further research is required to assure the convergence of the specific c-fixed point. Alternatively a more
general optimization method could be used, but of course the convergence properties will depend on the spe-
cific problem and the method used.
3.4. Simulation tests

The following conditions have been applied in the simulations to gather empirical evidence on the model
performance. Real estate profits are homogeneous in the industry, i.e. pj = p"j. Consumer bids are additive
functions, as in (1). Dependency between agents’ choices is defined by location attributes specified in term
b2. In our tests the following linear form is used:
b2
hvi ¼ ah

X
h0v0

Zh0P h0=viSvi þ bh

X
v0

Y v00iSv0i ð21Þ
The first term with Ph/vi describes generic location attributes associated with the distribution of agents: the
neighborhood quality related with socioeconomic characteristics of other households in the zone and the value
of agglomeration externalities given by the presence of economic activities. Here vector Z describes agents’
characteristics such as average income of households, number of commercial businesses in the area, etc.
The second term with Sv0i, describes the externalities associated with the built environment. In this case, vector
Y describes residential density, average building height, etc. With these two types of terms, any set of (linearly
defined) zone attributes can be specified with the model variables. The sets of parameters a and b represent
values that the consumer assigns to each attribute of the zone, usually called the ‘‘hedonic price’’, given exog-
enously to the model and calibrated from observations of locations and rents.

For each fixed point and also for the complete equilibrium set of Eqs. (19), the functional form and con-
vergence were studied through simulation. The sensitivity of the solutions to their most relevant parameters
was also studied. The dimensions used in the simulation are: 4 agents’ clusters ð�h ¼ 4Þ, 5 zones (�i = 5), and
2 dwelling types ð�v ¼ 2Þ. A population of 100 agents is distributed in the following clusters:



Cluster
 No. agents
 Average income (Zh)
1
 10
 4 units

2
 15
 3 units

3
 25
 2 units

4
 50
 1 units
The information on attributes and parameters used are fictitious, but meaningful because they were defined
considering Santiago City’s land use model MUSSA.

The main results obtained are:

• Dependence on the starting point. The solution is independent of the starting point. It only becomes depen-
dent once the multinomial scale parameters l and k are large, which reflects deterministic behavior of
agents’ choice process.

• Convergence. Individually, each function converges very fast, between two and six iterations, indicating
that the multinomial and logsum functions are contracting. The complete system of fixed points has the
same property. This result is highly relevant because it allows equilibrium to be studied in large urban sys-
tems at a very low computational cost, despite the high complexity of the model.

• Sensitivity analysis. The solution is highly robust to changes in the model parameters. However, unstable
solutions appear for large values of the scale parameters l and k, again associated with deterministic
behavior.

• Important parameters. The scale parameters l and k are the most important in the equilibrium solution.
Residential location externalities, represented by the average zone income, have the strongest power to shift
the location probability curves, thus affecting the solution, but they do not affect the curve form nor the
convergence property.

• Efficiency in large-scale applications. Comparing the prototype case ð�h ¼ 4;�v ¼ 2;�i ¼ 5Þ with a case of sim-
ilar size to Santiago city ð�h ¼ 65;�v ¼ 12;�i ¼ 404Þ, i.e. 8 · 103 times larger, we observed that, for the same
standard PC computer, the convergence time increased from 2.5 s to 150 s, only 60 times longer. The
reduced number of iterations relative to the increase in the problem size can explain this time saving. This
reduction is expected because the larger the problem dimensions, the wider the spread of the distribution of
agents and the fewer the changes between iterations, thus convergence is achieved more quickly.

Some additional comments. The deterministic, all-or-nothing, behavior represented by high values of scale
parameters, produces an instability that is justified by the theory. It means that the best bidder in the auction
changes drastically with small changes in parameters and supply attributes, which yields an unstable land-use
pattern. In fact, in the deterministic case with location externalities the equilibrium space contains multiple
points. Second, note that because the solution for b1 provides only relative values, there are multiple solution
points that differ only in b3. Our third comment is on the independence from the starting point, which does not
mean that the system solution does not depend on its history. It only means that given a history and the evo-
lution of exogenous parameters (like population), the market equilibrium is unique in the model. We remark
that history is embedded in parameters and attributes (initial land use and location patterns), because the mul-
tinomial logit model is, by construction, an incremental model depending on past variables and their changes.

4. Methodology for application

It is worth describing briefly the methodology used to apply the model for forecasting the city development
along time and under shocks of exogenous variables, called forecasting scenarios. The shocks may be on the
population by cluster (which represents changes on both the consumers’ income and population) and on trans-
port costs that reflect congestion and infrastructure adjustments.

Transport costs and the location pattern define access indices (accessibility and attractiveness) assumed
exogenous in the model. They represent zone attributes in the bid function that are updated interacting with



a transport model. The consumers’ valuation of access advantages is determined by behavior parameters of
their bid function. The time delay between land use and transport adjustments may be introduced on the inter-
active procedure, for example applying the land use model using access data from a previous time period.

The model behavioral parameters, both on demand and supply, need to be fitted against observed data-
preferably a panel data- of residential and firm locations, real estate supply and rents. The standard fitting
approach is to apply the maximum likelihood method to the bid and supply probability functions (3 and 8
respectively). A data set of the observed location of households and firms can be used to estimate the para-
meters of the bid function b2, as for example ah and bh in Eq. (21). The set of calibrated behavior parameters
is assumed to remain constant in the future, while the model calculates the b1 parameters to attain equilibrium
at each period. Similarly, a data set of rents and production costs can be used to calibrate the parameters of
the profit functions; these are the parameters of the cost functions assumed constant in the forecasting proce-
dure. The calibration procedure will also provide estimates for the Lagrangean multipliers of regulations c,
which represents estimates of the regulation shadow prices at the observed context. The modeler should verify
that the observed data complies with the planning regulations, otherwise regulations data should be adjusted
to be realistic. Nevertheless, the model updates c parameters for each forecasting year.

Noting that rents depend on bids and supply depends on rents, it becomes evident that the whole system
depends only on bids and production costs functions. It is then recommended that the set of parameters be
calibrated simultaneously using demand, supply and rents functions (3, 8 and 6 respectively). In sum the model
is applied using calibrated behavior parameters, but it endogenously updates all parameters that represent
constraints that change in the future scenario: the equilibrium condition and the zoning regulations, then it
updates location of agents and supply of real estate options. Total supply S is also endogenously determined
in the model to fit with total demand. Moreover, zones attributes are endogenously determined by the model,
except of course attributes of the natural environment (e.g. rivers, lakes, coast fronts, etc.).

Existing stock is assumed exogenous and fixed in the model, however this assumption can be easily removed
defining the probability of redevelopment to the existing stock, which adds to new stock. This is a standard
methodology in current models, which can be incorporated by estimating a set of supply probabilities with
specific profit functions. Similarly, it is possible to extend the model to identify movers and non-movers among
consumers. This can be done by defining a probability function that estimates the number of movers of each
cluster at any point in time, the rest remains fixed at their locations; this also defines the proportion of occu-
pied and vacant stock at each zone. With these two extensions the equilibrium is applied to a subset of the
market on each forecasting period: movers and new population, and vacant and new building stock. Thus,
the model can estimate the city changes for any future year. These extensions, however, do not follow each
agent and real estate unit along time, like micro-simulation models do, rather the methodology applies a
meso-level of aggregation based on categories and representatives of them with an idiosyncratic distribution
of behavior. What is relevant for this paper is that these extensions introduce no further difficulties in the equi-
librium model, which still yields a unique solution at each forecasting time period.

The model may be used for a longitudinal study, that is, to forecast the development of the city land use and
rents along time for policy and projects assessments. These studies may consider different scenarios, each one
representing alternative changing paths for the set of exogenous parameters along time, such as population
growth, increase on income, number of firms transport cost, etc. For each scenario and time period, the model
calculates the solution of the location pattern and rents. Decisions on delays of transport adjustments will
have to be defined by the modeler on empirical bases. But the modeler may also introduce other delays,
for example, the new building stock and redevelopment may be decided a few years in advance to their actual
availability in the market; agents interactions -location externalities- may also be delayed assuming time lags
for the information to be transferred. Both delays have the effect of changing the multinomial fixed-point func-
tions (Eqs. (4) and (9)) into a simple evaluation of probabilities, thus reducing the complexity of the model
substantially.

5. Conclusions

The equilibrium model of the land market presented in this paper incorporates the idiosyncratic nature of
suppliers’ behavior that, added to the random bidding model of consumers’ behavior previously developed,



generates the new Random Bidding and Supply Model, RB&SM. This model is totally defined within the
mathematical structure provided by the Gumbel distribution, so that the set of equations that defines the equi-
librium problem has a structure that provides statistical consistency among all the variables and equations of
the model.

The logit supply model proposed has several advantages. It generates highly efficient fixed-point algorithms
despite the complexity introduced. It is able to describe economies of scale and scope, which are responsible
for density tendencies in the real estate market. It also models a large number of zone regulations in the urban
market, producing an output with an index of the economic impact of each regulation and their price effect on
land values.

The equilibrium is described by a non-linear equation system. The convergence properties and uniqueness
of the solution have been analytically demonstrated for each equation, identifying the bounds for these prop-
erties to hold. By means of simulations, we have concluded that the whole RB&SM equation system converges
to unique solutions for a wide range of parameters (within the bounds previously mentioned), including start-
ing points and scale parameters. This is the case except when behavior becomes deterministic, i.e. when the
variance of the random distributions of bids and profits decreases (scale factors increase). This is an expected
result because the deterministic choice process is discontinuous in a differentiated goods market. In contrast, a
significant variance in choice behavior introduces continuity and the probability approach produces convexity
in the equilibrium problem, generating stable and unique solutions.

The model can be extended in various aspects to relax the assumptions of the simulations studied here. One
consists of introducing a process to generate the bidders’ choice set for the auctioneer, to replace the assump-
tion that all agents are potential bidders everywhere. A second aspect consists of introducing non-linear
restrictions to equilibrium, for example to represent more complex urban regulations. This would require
the use of other algorithms whose solutions are, in general, less stable. A third point is to produce more flexible
ways to assure compliance with income constraints, with potential extensions to model consumption of all
goods and the labor market simultaneously.

Finally, the model can be applied calibrating behavior parameters in a standard way and use them to fore-
cast the land use and location of activities along time responding to changes in the external scenarios. We have
shown several ways to apply the model, for example allowing redevelopment of real estate and consumers’
inertia to relocate. Thus the model does provide a number of application options for the modeler that will
be dependent on the data available, but always under the approach of market equilibrium.
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Appendix A. Derivation of supply model from an entropy approach

We assume that suppliers maximize their individual profit facing imperfect information modeled by an
entropy term that makes profit stochastic variables.
Max
vi

pj ¼
X

vi

Svijpvij �
1

k
Svijðln Svij � 1Þ 8j

s:t:
X
v2V

ak
viSvi 6 Rk

i 8k 2 ð1; . . . KiÞ; i 2 ð1; . . . ; IÞX
vi

Svij ¼ Sj 8j 2 ð1; . . . JÞX
vij

Svij ¼ S

ðA1Þ
where S and Sj are exogenous information of the total supply and each supplier j’s market share respectively.
Rk

i is the exogenous set of Ki regulations in zone i. The information on market shares is optional because the



model may produce that information from profit variables, but if it is available, we recommend specifying Sj

because it may provide complementary information on market behavior missed in the maximum profit
assumption of behavior.

Assuming, for convenience and temporarily, that all regulations are binding, the Lagrange function is
L ¼
X

vi

Svijpvij �
1

k
Svijðln Svij � 1Þ �

X
ki

ck
i

X
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The first order conditions are:
oL
oSblm

¼ pblm þ
X
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Svij
opvij
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k
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X
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l ak

bl � qm � a ðA2Þ
We denote ~pblm ¼ pblm þ
P

viSvij
opvij

oSblm
�
P

kc
k
l ak

bl. Each component in the second term contains two effects:
opvij

oSblm
¼ orvi

oSblm
� oc

oSblm
, representing the impact of supply changes on profits through prices and through scale

and scope economies, respectively, across the urban area. The total effect across all alternative locations is cal-
culated by adding across vi options, denoted by p0blm. If we assume that suppliers have incomplete information
of market performance, then this term should be multiplied by a factor belonging to [0,1].

Equalizing (A2) to zero we obtain optimum values of supply
S�vij ¼ exp kð~pvij � qj � aÞ ðA3Þ
Imposing the constraints of problem (A1) to the solution yields expressions for the market-size parameter a
and the market-share parameters q:
expð�kaÞ ¼ S
X

vij

exp kð~pvij � qjÞ
" #�1

and ðA4Þ

expð�kqjÞ ¼ Sj

X
vi

exp kð~pvij � aÞ
" #�1

ðA5Þ
where (A4) and (A5) are the known balancing factors of linear constraints in entropy models. From (A3) and
(A4) we get
S�vij ¼ S
exp kð~pvij � qjÞP

v0i0j0 exp kð~pv0i0j0 � qj0 Þ
¼ SP vij ðA6Þ
which reproduces Eq. (8) in the text. In this equation ~pvij represents an adjusted profit that complies with all
linear regulations R and adjusts behavior to the supplier anticipation of scale and scope economies. The
parameter k represents the degree of randomness of the supply variable; if k! 1 the problem (A1) tends
to be deterministic, if k ! 0 the solution becomes homogeneous with Svij = 1/S.

For any kth regulation of zone i that is not binding at the solution, by Kun–Tucker conditions, ck
i ¼ 0.

Binding parameters satisfy the first constraint of problem (A1) for the equality, then replacing (A3) in the
binding constraint, denoted by �k, yields:

P
vja

k
vi exp kð~pvij � qj � aÞ ¼ R

�k
i , or expanding ~p we obtain,
X

vj

ak
vi exp kðpvij þ p0j � qj � aÞ expð�kc

�k
i a

�k
viÞ ¼ R

�k
i ðA7Þ
which is the formula used to find gamma parameters.
Because gamma’s parameters are multiplied by the parameter vector a in the exponentials, Eq. (A7) can not

be directly solved for gamma. This is known as the cross entropy problem (Fang et al., 1997), where gamma
parameters can be solved applying the MART algorithm. This algorithm assures convergence to the unique
optimal solution if the problem has a non-empty interior and Rk

i P 0; 0 6 ak
vi 6 1 8k; v; i. In our case, vector

R components correspond to total supply, thus they are obviously non-negative. Additionally, to assure that
ak

vi 2 ½0; 1�, it is sufficient to scale the kith constraint dividing it by the �ak
i ¼ maxvðak

viÞ. Note that the MART



algorithm assures convergence only, but not the sign of c, which is a crucial point considering that, by defi-
nition, in our case c P 0.

Here we developed an alternative approach to solve gamma parameters. We simply multiply (A7) by
expðkc�k

i a�k
0iÞ, with a�k

0i taken arbitrarily from vector ða�k
�iÞv. We advise to choose a�k

0i ¼ maxva
�k
vi because conver-

gence is thus assured in Appendix B. Then solving for gamma yields
c
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i0a

�k
v0i0 Þ

" # ðA8Þ
which is a fixed-point expression for gamma.

Appendix B. Convergence of fixed points

Let us consider the fixed point f(x) = x, or g(x) = f(x) � x = 0. Sufficient conditions for existence of a solu-
tion x* for g continuous are:
g0ðxÞ < 0; 8x 2 R; gðx ¼ 0Þ > 0; 9x=gðxÞ < 0 ðB1Þ
and convergence is assured if �2 < g 0(x), given that (B1) holds.
Let us revise these conditions for each fixed point.

(i) The Multinomial Auction probability: P h=vi ¼ P h=viððb1
� Þh; ðP �=�iÞhv; ðS�iÞv; ciÞ 8h; v; i
gðP h=viÞ ¼
expðlðb1

h þ b2
hviððP �=�iÞhvÞÞÞP

h0 expðlðb1
h0 þ b2

h0viððP �=�iÞhvÞÞÞ
� P h=vi ðB2Þ
with g continuous in R. Since the first term is a probability in [0,1], then g(x = 0) P 0, with equality only for
bh = �1. Additionally g(x =1) < 0 because the first term is a probability in [0,1] while the second term
(�Ph/vi) tends to �1. Then, we only need to verify that �2 < g 0(Ph/vi) < 0.
g0ðP h=viÞ ¼ lP h=vi
ob2

hvi

oP h=vi
�
X

h0
P h0=vi

ob2
h0vi

oP h=vi

" #
� 1 ðB3Þ
Then �2 < g 0(Ph/vi) < 0 if �1 < lP h=viDb02hvi < 1, with Db2
hvi obviously defined by the term in parenthesis in (B3).

This imposes the following upper and lower bounds for the multinomial probability:
� 1

lDb02hvi

< P h=vi ¼
H hvi

Svi
<

1

lDb0hvi

ðB4Þ
with Hhvi = PhviSPvi and Svi = SPvi. These bounds depend on the scale factor l, inversely related with the stan-
dard deviation of bids, which states that a solution exists as long as the distribution of bids is significantly
random.

Additionally, if b2 is linear in attributes, as in Eq. (21) in the text, then:
ob2

gvi

oP h=vi
¼ bgZhP vi, and the upper and lower bounds are:
�1 < lP h=viZhP vi bh �
X

h0
P h0=vibh0

" #
< 1 ðB5Þ
Introducing the relationship between logit scale parameters and the standard deviation, these bounds may be
expressed as 1

l ¼ rb

ffiffi
6
p

p > 1
S jH hviZhbhj, with rb the standard deviation of bids and p = 3.1416 . . ..

Then, we conclude that, within the space defined by upper and lower bounds for auction probabilities, the
solution exists, is unique, and the fixed-point algorithm converges to the solution.



(ii) The Multinomial Supply probability: Svi ¼ SP viððb1
� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ
gðP viÞ ¼
expðkðrviðP viÞ � cvi � cviÞÞP

v0i0 expðkðrv0i0 ðP viÞ � cv0i0 � cv0i0 ÞÞ
� P vi ðB6Þ
Similarly to case (i) g(x = 0) > 0; g(x =1) < 0, so we need to prove that
�2 < g0ðP viÞ ¼ P vik
orvi

oP vi
�
X
v0�i0

P v0i0
orv0i0

oP vi

" #
� 1 < 0 ðB7Þ
which yields �1 < P vikDr0vi < 1, with Dr defined as the term in parenthesis. Additionally,
orwj

oP vi
¼
P

h0P h0=wj

ob2
h0wj

oP vi
.

Again, we obtain bounds for probabilities:
�1

kDr0vi
< P vi <

1

kDr0vi
ðB8Þ
that impose a minimum level of dispersion on the distribution of supply options.
In the case of bid functions linear in attributes
ob2
hwj

oP vi
¼

bh

P
g

ZgP g=wi þ ahX wi 8j ¼ i

0 8j 6¼ i

(
ðB9Þ

which yields:
1

k
¼ rs

ffiffiffi
6
p

p
>

1

S
Svi

X
h

P h0=vi bh0

X
g

ZgP g=vi þ ah0X vi

 !�����
�����: ðB10Þ
with rs the standard deviation of suppliers’ profits.
Then, we conclude that, within the space defined by upper and lower bounds for supply probabilities, the

solution exists, is unique, and the fixed-point algorithm converges to the solution.

(iii) The equilibrium condition: b1
h ¼ bhððb1

� Þh; ðP �=��Þhvi; ðS��Þhv; ðc�ÞiÞ
gðbhÞ ¼ �
1

l
ln

X
vi

Svi

H h
expðlðbhvi � rviðbhÞÞÞ

" #
� bh ðB11Þ
We start proving that �2 < g 0(x) < 0. This implies that
�2 < g0ðbhÞ ¼
P

viSvi expðlðbhvi � rviðbhÞÞÞ � orvi
obhP

v0i0Sv0i0 expðlðbhv0i0 � rviðbhÞÞÞ
< 0 ðB12Þ
with orvi
obh
¼ P h=vi. This condition may also be written as:
X

vi

Svi expðlðbhvi � rviðbhÞÞÞ � P h=vi <
X
v0i0

Svi expðlðbhvi � rviðbhÞÞÞ andX
vi

Svi expðlðbhvi � rviðbhÞÞÞ � P h=vi > �
X

vi

Svi expðlðbhvi � rviðbhÞÞÞ
ðB13Þ
which holds always because the left hand side is positive since Ph/vi 2 [0, 1],Svi P 0, and the exponentials are
also positive.

Now we verify that there exists bh such that g(bh) > 0 and also that g(bh) < 0. We have
gðbhÞ ¼ �
1

l
ln

X
v0i0

Svi

H h
expðlðbhvi � rviðbhÞÞÞ

" #
� bh ¼ �

1

l
ln

X
v0i0

Svi

Hh
P h=viðbhÞ

" #
ðB14Þ



then

(a) gðbhÞ > 0!
P

v0i0SviP h=viðbhÞ < H h, holds for bh!�1 because P(bh = �1) = 0.
(b) gðbhÞ < 0!

P
v0i0SviP h=viðbhÞ > H h, holds for bh! 1 because P(bh =1) = 1 and S > Hh except for the

extreme case when there is only one cluster.

Then, we conclude that the solution always exists, is unique, and the fixed-point algorithm converges to the
solution (except in the case of only one agent cluster).

(iv) The Regulations fixed points: ci ¼ ciððb1
� Þh; ðP �=��Þhvi; ðS��Þvi; ðc�ÞiÞ
gðc�k
i Þ ¼

1

ka�k
0i

ln
S

R
�k
i

X
vj

a
�k
vi exp kðpvij þ p0vij � c

�k
i ða

�k
vi � a

�k
0iÞ � qj � p̂jðcÞÞ

" #
� c

�k
i

with p̂j ¼
1

k
ln

X
v0i0j0

exp kðpv0i0j0 þ p0v0i0j0 � qj0 � c
�k
i0a

�k
v0i0 Þ

" #

In this case
g0ðc�k
i Þ ¼

1

a�k
0i

P
vja

�k
vi exp kðpvij þ p0vij � c�k

i ða
�k
vi � a�k

0iÞ � qj � p̂jðcÞÞ a�k
0i � a�k

vi �
op̂j

ock
i

� �
P

v0j0a
�k
v0i exp kðpv0ij0 þ p0v0ij0 � c�k

i ða
�k
v0i � a�k

0iÞ � qj0 � p̂j0 ðcÞÞ
� 1 ðB15Þ
with
op̂jðcÞ
oc�k

i

¼ �
P

vjP vija
�k
vi.

Denoting p�k
vij ¼ pvij þ p0vij � c�k

i ða
�k
vi � a�k

0iÞ � qj � p̂jðcÞ, the condition g 0(ci) < 0 holds if:
P
vj a�k

via
�k
oi � ða

�k
viÞ

2 þ a�k
vi

P
v0j0 P v0ij0a

�k
v0i

h i
expðkp�k

vijÞP
v0j0a

�k
v0ia

�k
oi expðkp�k

v0ij0 Þ
< 1
which, after some simplifications, yields:X

v0j

P v0ija
�k
v0i < a

�k
vi 8v; i ðB16Þ
and the condition �2 < g 0(ci) holds when a�k
vi < a�k

oi 8v; i.
The second condition is secured if we choose a�k

oi ¼ maxvða�k
viÞ, but the (B16) is not verified always, which

implies that this relationship must be verified in the algorithm at each iteration. Nevertheless, note that
(A6) assures that

P
vjP vij < 1 (probabilities are equal to one only when profit is infinite), then for a large num-

ber of zones Pvij values are small, thus condition (B16) is likely to hold.
Additionally, g(ci = 0) > 0 implies that
X

vj

S � a�k
vi

R
�k
i

exp kðpv0ij0 þ p0v0ij0 � qj0 ÞÞP
v0i0j0 exp kðpv0ij0 þ p0v0ij0 � qj0 Þ

¼
X

v

a
�k
viSviðc

�k
i ¼ 0Þ > R

�k
i ðB17Þ
which requires that the regulation be violated; then this condition holds always for c > 0. Finally,
gðck

i ¼ 1Þ < 0 requires that (1/k)ln(exp(�1)) < 0, which holds always.
Then, we conclude that, provided the regulation is binding, that a�k

oi ¼ maxvða�k
viÞ and that condition B16

holds, the solution exists always and is unique, and moreover, the fixed-point algorithm converges to the
solution.
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