
Introduction

Every mining project requires defining the
mineral resources prior to mine design and
planning. This definition is based on
geological knowledge of the orebody and on
sample information from an exploration
drilling grid, usually with infill drilling in the
areas to be extracted during the first years of
the project. The first step in resources
estimation is an exploratory analysis aimed at

understanding the characteristics of the
available data and at identifying homogeneous
geological domains within the deposit,
according to the spatial continuity of grades
and to geological features such as lithology,
mineralogy and alteration.1–4

Three problems arise during this process:

➤ The definition of geological domains
relies on the subjective interpretation of
the mining geologist and on his
understanding of the genetic processes
that caused the mineralization. Various
interpretations are therefore possible. 

➤ The delineation of the geological
domains is always subject to errors,
since only fragmentary information is
available through a finite set of samples
drilled in the deposit. Delineating the
domains must be done carefully,
accounting for geological knowledge
about the deposit genesis. Alternatively,
one could consider modelling the
uncertainty in the boundaries layout by
resorting to a geostatistical simulation
technique.5,6

➤ The boundaries that define the contact
between adjacent geological domains are
seldom ‘hard’, particularly for porphyry
copper mineralization, that is, the grades
measured at either side of a boundary
are not independent. Besides, the
boundary may be defined by a change in
the local mean grade, which is usually
gradational rather than abrupt. 

Normal practice is to estimate the grades
and to assess the mineral resources within
each geological domain independently.7,8 This
approach implies that:
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➤ grades within a geological domain are not influenced
by information across the boundary, i.e. there is no
spatial correlation of the grades across the boundary
(hard boundary)

➤ grades are assumed stationary within each domain,
that is, they do not show a significant change in the
local mean as one gets closer to the boundary. 

Alternatively, several authors suggested considering a
single domain and incorporating auxiliary variables that
codify the geological characteristics into the grade estimation
process.9,10 However, so far, such an approach has not seen
a wide application in the mining industry.

This paper focuses on the problem of grade estimation in
the presence of soft or hard boundaries between geological
domains. To address this problem, one must know when a
boundary can be called soft or hard and, if a soft boundary
exists, the question is how to incorporate information from
across this boundary to estimate the grades in a particular
geological domain. In the following, several geostatistical
approaches to geological control are compared through a case
study from a copper mine in Chile. 

Methodology

Hard or soft boundaries?

A contact between two geological domains, from an
alteration, mineralogy or lithology point of view, is
considered hard if there is an abrupt change in mineralogy or
grade without a transition at the scale of observation. On the
contrary, a soft boundary shows a transition zone between
the two domains, making it difficult to identify the exact
layout of the limit.11

Structural control of grades, such as faulting and
displacements, will normally preclude a smooth transition
between geological domains. Abrupt changes in the
petrophysical properties of adjacent domains frequently
translate into a hard boundary. In particular, if the porosity
of the rock to the mineral bearing fluids is heterogeneous
from one domain to another, the grade is likely to change
abruptly. 

In many cases, however, changes in the grade behaviour
are not so abrupt and one observes a transition zone where
the local mean grades vary smoothly between one domain
and the other. This trending behaviour translates into a
correlation between data located on each side of a boundary
(generally inferred by an expert geological interpretation),
which can be used to improve the estimation of mineral
resources near the domain boundaries. The possible trend in
the grades is handled by using robust estimation techniques
such as ordinary kriging, in which a local mean is implicitly
calculated for every location where the grade is being
estimated.12

The tools usually considered to quantify the spatial
correlation are the direct variogram and, when dealing with
multiple variables (in this case study, the grades within
different geological domains), the cross variogram.13 The
latter is defined as:

where u and u + h are two locations separated by the lag
vector h, X is a random field representing the grade within a
geological domain and Y is a random field for the grade
within a different domain. Given that the geological domains
are, by definition, disjoint, X and Y are never simultaneously
known at the same location. Accordingly, the cross variogram
cannot be inferred from the data. For this reason, we use
another tool, known in geostatistical applications as the
pseudo-cross variogram14,15, which can be calculated even
when there are no matching samples between X and Y: 

This formula is meaningful, since both random fields X
and Y refer to the same physical variable (the grade of the
element of interest), expressed in the same unit, within
different geological domains. 

Once all the pseudo-cross variograms are calculated, a
visual examination of their plots indicates whether a
significant correlation in the grades across the boundaries
exists or not and, if so, up to which distance the data across
the boundary should be considered for grade estimation in
the domain of interest.

Reference cases 

In order to assess the quality of the geostatistical methods
that will be proposed for geological control, two reference
cases are considered: 

➤ Case 1—Ordinary kriging is performed within each
geological domain by using hard boundaries, that is,
the block grade in a domain is calculated using only
the drill hole samples from the same domain and a
variogram calculated exclusively from the samples
within this domain. This case represents the common
practice in the mining industry.

➤ Case 2—Ordinary kriging of block grades is performed
disregarding all boundaries and geological information.
The grade variogram is inferred from all the samples,
irrespective of the geological domains they belong to.

Accounting for information across the boundaries

To assess the relevance of using data from different
geological domains, the following approaches are considered:

➤ Case 3—Traditional ordinary cokriging of the block
grades, considering the grade within each geological
domain as a separate variable16. The cokriging system
is based on the direct and pseudo-cross variograms of
the different variables, which are fitted by using a
linear model of coregionalization8,13. This cokriging
type uses as many unbiasedness constraints as
variables are considered (see Appendix).

➤ Case 4—Standardized ordinary cokriging of the block
grades, which uses a single unbiasedness constraint
(Appendix).7,8,17 This cokriging type implicitly
assumes that the mean grades are the same on both
sides of the domain boundaries, at least at the scale of
the cokriging neighbourhood, an assumption that
seems reasonable when considering soft geological
boundaries.
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➤ Case 5—Ordinary kriging within each geological
domain, akin to Case 1, but considering all the data
within a dilated neighbourhood of the domain volume.
This allows data from adjacent domains to be
incorporated in the kriging system (provided that they
are close enough to the boundary) as if they belonged
to the domain of interest. 

Prior to applying the five methodologies to the case
study, one could expect Case 1 to outperform Case 2, since
the latter does not account for the geological information.
However, this situation might change if the grade transitions
are smooth near the boundaries and the kriging search
parameters (number of samples and search radii) are
appropriately defined. 

Further improvements are expected with Case 3 and 
Case 4, since the incorporation of secondary information (via
the use of covariates) reduces the theoretical estimation
variance and therefore provides more precise results.
However, these improvements may be counterbalanced by
the greater difficulty in fitting simultaneously the grade
variograms and pseudo-cross variograms with a linear model
of coregionalization8,13. A poor fit of these variograms may
degrade the quality of grade estimates. 

Finally, Case 5 represents an intermediate situation in
between Cases 1 and 2, where information from across the
boundary is considered only up to a finite distance. The use
of a grade variogram for each geological domain provides an
advantage over Case 2, for which a single (global) variogram
model is used. 

Case study: porphyry copper deposit 

Presentation of the data 

Data from a porphyry copper deposit in Chile are now used to
compare the performance of the aforementioned approaches
to resource estimation in the presence of soft geological
boundaries. The data correspond to 2 376 composites from
an exploration diamond-drill hole campaign. The composites
are 12 m long, which corresponds to the bench height in the
mine. Part of the drill holes are located on a relatively regular
grid, spaced approximately 40 m in the horizontal plane,
completed by infill drills in the central part of the deposit.

Each composite is assigned a geological domain, which in
this case relates exclusively to lithology, since mineralogy
and alteration are not relevant factors for the definition of
geologically and statistically consistent domains. Although
the rock codes were originally six, they were grouped into
three main types (Figure 1a), namely:

➤ Granodiorite (code 1). This is the host rock where
breccias intruded. It is located in the eastern and
southern parts of the deposit.

➤ Tourmaline breccia (code 2). This breccia has
granodiorite clasts with cement composed by
tourmaline and sulphides such as chalcopyrite, pyrite,
molybdenite, and some bornite. Its emplacement is
related to the main alteration-mineralization event.
This rock has the highest mean grade (about 1.20 per
cent) and is centrally located in the deposit. 

➤ Other breccias (code 3). They are composed by three
different breccia types and outcrop in the western and
southern areas of the deposit. Their emplacement is
simultaneous or more recent than the intrusion of
tourmaline breccia, relocating and diluting it. 

In addition to the drill hole database, production data are
available from several benches (Figure 1b). These correspond
to 12 793 samples taken at blast holes over 13 benches of
the mine. Although the original rock code was not logged on
these samples, for the validation of the proposed method-
ologies, a rock code has been assigned, based on the closest
neighbour sample from the drill hole database. 

Blast hole samples show a higher mean grade than drill
holes (1.20 per cent versus 1.05 per cent), but this is due to
their central location where copper grades are higher. The
sampling procedures for drill holes and blast holes have been
subject to a careful quality assurance and quality control
programme to ensure that there is no systematic bias and
that the variance of the errors is within accepted industry
ranges. The summary statistics from all the data sets are
shown in Table I.

Variogram analysis and modelling
When considering the cokriging approaches (Cases 3 and 4)
the direct and pseudo-cross variograms are required. All
these variograms are modelled with a nugget effect and two
exponential nested structures, as shown in Figure 2 and
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Figure 1—(a) Location map of drill hole samples coded by rock type; (b) Location map of blast hole samples coded by copper grade for a particular bench



summarized in Table II. The mathematical consistency of the
model is checked by verifying that the matrices of contri-
butions to the sill for the different nested structures are
positive definite, that is, the eigenvalues of the matrices of
sill contributions are positive.13 One observes that, at a lag
distance of 100 m, all the pseudo-cross variograms are close
to their sills, which indicates that the correlation becomes
very small. Therefore, this distance is chosen as the maximal
search radius to use in Case 5, in which the grade estimation
within a given geological domain incorporates data from
adjacent domains.

The direct variograms obtained from the joint fitting are
considered in the cases when the pseudo-cross variograms
are not used (Cases 1 and 5). Also, it should be noted that
the nugget components of the pseudo-cross variograms are
absent from the cokriging systems, since there is never a
collocated secondary sample at the location where the
primary variable is estimated (proof in Appendix).
Accordingly, the linear model of coregionalization is relevant
only in the structured portion of the pseudo-cross
variograms.
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Table I

Basic statistics from drill hole and blast hole data sets. 

Number of Mean Std. dev. Coef. Min Lower quartile Median Upper quartile Max 
data (%Cu) (%Cu) of Var. (%Cu) (%Cu) (%Cu) (%Cu) (%Cu)

Drill holes All data 2 376 1.054 0.645 0.612 0.120 0.625 0.940 1.330 7.240
Granodiorite 354 0.709 0.423 0.604 0.120 0.400 0.600 0.920 3.650

Tourmaline breccia 1 635 1.196 0.661 0.552 0.160 0.783 1.080 1.450 7.240
Other breccias 387 0.769 0.515 0.670 0.140 0.410 0.620 0.990 3.710

Blast holes All data 12 793 1.200 0.621 0.517 0.110 0.790 1.090 1.480 7.710
Granodiorite 1531 0.825 0.445 0.539 0.170 0.500 0.730 1.050 4.400

Tourmaline breccia 10 028 1.287 0.620 0.482 0.110 0.870 1.160 1.550 7.710
Other breccias 1 414 0.991 0.578 0.583 0.160 0.560 0.870 1.310 4.200

Figure 2—Direct and pseudo-cross variograms of the copper grade for the different geological domains fitted with a linear model of coregionalization.
Sample variograms are shown as lines with dots at the calculated lag distances, while the models are presented as lines without dots. The horizontal
variograms are represented by dashed lines and the vertical variograms by solid lines



Case 2 requires the knowledge of the grade variogram as
if no geological boundaries existed. All drill hole data are
then pooled together for the calculation and fitting of the
sample variogram. The resulting model has a nugget effect of
0.02 and two nested exponential structures, the first one with
a contribution to the sill of 0.200, horizontal range of 50 m
and vertical range of 90 m, and the second one with a sill
contribution of 0.37 and ranges of 70 m in the horizontal
plane and 180 m in the vertical direction (Figure 3). One
observes that the overall sill is higher than the data variance
(Table I). This may be due to the effect of combining all the
domains into a single one, or to the relatively small size
(with respect to the correlation range) of the sampled
domain. The impact of this higher sill on kriging estimates is
not relevant, since kriging weights are independent of the
scaling of the variogram.

Estimation and validation using jack-knife

The prediction of the grade values for blocks over a regular
grid with a mesh of 10 m x 10 m x 12 m is done for the five
cases, using the information from the drill hole data set and
an assumed rock type model. The resulting maps (Figure 4)
show clear differences, particularly in the areas where copper
grades are extrapolated and, most importantly, near the
assumed boundaries of the geological domains. The
application of hard boundaries to the estimation of mineral
resources (Case 1) imposes artefacts that are highly
dependent on the geological model and on the layout of the
boundaries, which in reality are but an interpretation from
the sample information and are inevitably subject to error.

The same effect can be observed when differentiating the
geological domains and incorporating data from across the
boundaries as covariates (cokriging approaches). However,
when the standardized ordinary cokriging is considered
(Case 4), the grade estimates are significantly smoother near
the boundaries than in the case of traditional ordinary
cokriging (Case 3). This stems from the fact that
standardized cokriging uses the same local mean at both
sides of the boundary and therefore assumes grade
continuity. In contrast, traditional ordinary cokriging
assumes that the (unknown) mean grades of the geological
domains are not the same, which produces discontinuities in
the grade estimates near the domain boundaries.

If no geological control is accounted for (Case 2), the map
looks smooth and free of artefacts related to the definition of
the geological boundaries. Incorporating the geology by
modelling a grade variogram in each domain, but allowing

data from adjacent domains to be considered (Case 5) also
frees the resulting estimation map of the strong dependence
upon the assumed layout of the boundaries, as seen in Cases
1 and 3.

To assess the performance of the different methodologies
beyond a visual check of the block grade models, jack-knife
is used against the blast hole data set. The scatter diagrams
between true and estimated grades are shown in Figure 5 .
These diagrams indicate that none of the proposed
approaches suffers from a significant conditional bias, as the
regressions of the true grades upon the estimated grades are
fairly close to the first bisector line. 

In addition, statistical comparisons are made, based on
statistics such as the correlation between the estimated and
true sample values, the mean error, mean absolute error and
mean squared error. The results are presented in Table III .
According to this table, the ordinary kriging approach with
hard boundaries (Case 1) provides the worst results (highest
mean absolute and mean squared errors). This is explained
by the fact that the geological boundaries in the deposit
under study are not ‘hard’ and are associated with
gradational transitions in the mean copper grade, except
maybe the boundary between domain 2 (tourmaline breccia)
and domain 3 (other breccias) in the western part of the
deposit. Regarding the other methods, one observes that
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Table II

Parameters of the linear model of coregionalization fitted to the sample direct and pseudo-cross variograms 
of the copper grades

Head domain Tail domain Nugget effect Exponential model sill Exponential model sill 
variance Horizontal range = 70 m Vertical range = 100 m Horizontal range = 100 m Vertical range = 160 m

Domain 1 (Granodiorite) 0.100 0.090 0.100
Domain 2 (Tourmaline breccia) 0.100 0.340 0.200

Domain 3 (Other breccias) 0.005 0.220 0.110
Domain 1 Domain 2 0.095 0.104 0.128
Domain 1 Domain 3 0.006 0.109 0.034
Domain 2 Domain 3 0.006 0.240 0.056

Figure 3—Copper grade variogram disregarding geological boundaries.
The sample variogram is shown as lines with dots at the calculated lag
distances and the model is presented as lines without dots. The
horizontal variograms are represented by dashed lines and the vertical
variograms by solid lines
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Figure 4—Plan views of the geological model showing the three geological domains and of the estimated grades obtained with all five methodologies
considered

Figure 5—Scatter plots comparing the actual blast hole grades from the production data set with the grades estimated by all five methods studied
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ordinary kriging disregarding the boundaries (Case 2) or
‘dilating’ the geological domains (Case 5) outperforms
ordinary cokriging (Cases 3 and 4). A reason could be the
difficulty in representing the spatial correlation of the grades
within and across the geological domains through a
consistent multivariate variogram model.

On the whole, the use of dilated geological domains 
(Case 5) gives the most precise grade estimates, as it reduces
the mean absolute and mean squared errors with respect to
the other approaches and improves the correlation coefficient
between estimated and true grades, especially in the areas
close to the geological boundaries (Table III). This method is
quite simple to implement and, unlike global kriging 
(Case 2), it uses a variogram model proper to each geological
domain and can therefore account for changes in the grade
spatial continuity with the geological characteristics of the
deposit. The maximal distance for searching samples from
adjacent domains should be chosen on the basis of the
spatial correlation of the grades across geological domains
(analysis of the pseudo-cross variograms) or via a cross-
validation or a jack-knife procedure. This distance can also
be adapted to the boundary type and be smaller when the
grade transitions are sharper. 

Conclusions

The definition of geological domains is highly relevant due to
the recoveries that ores with distinct geological properties
have. Accordingly, the geological information and interpre-
tation must be included in the estimation of mineral
resources. The case study presented in this paper indicates
that the effort needed to perform a cokriging approach brings
little improvement over simpler kriging methods. The
necessity of a linear model of coregionalization for cokriging
often makes the fitting of the sample direct and cross
variograms poorer (and harder) and tends to deteriorate the
final results. 

It is reasonable to expect that a clear geological reason
should support the definition of hard boundaries for grade
estimation. In many mineral deposits, the mineralization is

disseminated and the metal is relocated many times by
different physical and chemical processes, resulting in
smooth grade transitions from one geological domain to
another. Consequently, the use of the information across the
boundaries of the geological model is often relevant. This can
be done in a rather simple fashion, by allowing some samples
of adjacent domains (up to a certain distance from the
boundaries) to be used when estimating the grade in a given
domain. The choice of the distance to which data from across
a boundary are used can be determined by examining the
pseudo-cross variogram (or, alternatively, the lagged scatter-
plots) between grades sampled on each side of the boundary
and by determining the maximal distance for which the
correlation remains significant. Another reason to go for
simpler techniques is that current software for performing
geostatistical analysis and cokriging with more than two
variables is scarce and the results are still hard to validate. 
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Appendix 

The grade estimation by ordinary cokriging (Cases 3 and 4)
uses data from P different geological domains. Henceforth, let
Zp be the random field representing the grade in the p-th
domain and {up

i, i = 1 ... np} be the sample locations in this
domain. The grade estimate at location u belonging to the p0
-th domain is defined by a weighted average of all the
available data:8

[A1] 

In the case of traditional ordinary cokriging (Case 3),
there are as many unbiasedness constraints as the number of
variables considered. The weights of the primary variable
must addup to one, while for each secondary variable the
weights addup to 0, which implies that some secondary data
have negative weights:

[A2]

Such constraints amount to hypothesizing that the
random fields {Zp, p = 1,..., P} have different unknown
means, hence this type of ordinary cokriging should be
applied only in case of abrupt grade transitions near the
geological boundaries. The minimization of the error variance
subject to constraints (A2) leads to the following system of
linear equations, in which Cpq(.) stands for the cross-
covariance function between Zp and Zq, while µ1,... µP are
Lagrange multipliers:8,13,17

[A3]

An alternative to the traditional ordinary cokriging
estimator is the standardized version of it (Case 4) that
imposes a single unbiasedness constraint over all the
available data:7,8

[A4]

In this case, secondary samples are more relevant (their
average contribution is not zero) when estimating the
primary variable at unsampled locations. The single
unbiasedness constraint implicitly assumes that all the
random fields {Zp, p = 1,..., P} have the same unknown
expected value, i.e. that the mean grades are the same (at
least, at the scale of the cokriging neighbourhood) in the
different geological domains. Such an assumption is
consistent with the idea of soft geological boundaries. Apart
from Equation [A4], the standardized ordinary cokriging
weights are determined by the following system of linear
equations:8,17

[A5]

In systems [A3] and [A5], the left-hand side members
contain the covariances between pairs of data, while the
right-hand side members account for the covariances
between the data and the unknown grade. If one assumes
that location u does not coincide with a sample, it is seen 
that the cross-covariance terms are never used at the zero
distance for the right-hand side member. Neither are they for
the left-hand side member, since there is no matching
samples between two different variables (by construction, the
geological domains are disjoint). Accordingly, the cokriging
systems and the resulting cokriging weights are the same 
if one adds nugget effects to the cross-covariances. This
statement justifies why ordinary cokriging can be performed
without specifying the nugget effects of the cross-
structures.     ◆
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