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REAL-TIME MASS PASSENGER TRANSPORT NETWORK OPTIMIZATION 
PROBLEMS 

 

 

ABSTRACT 

 
The aim of Real-Time Mass Transport Vehicle Routing Problem (MTVRP) is to find a solution to route n 
vehicles in real time to pick up and deliver m passengers. This problem is described in the context of 
flexible large-scale mass transportation options that use new technologies for communication among 
passengers and vehicles. The solution of such a problem is relevant to future transportation options 
involving large scale real-time routing of shared-ride fleet transit vehicles. However, the global 
optimization of a complex system involving routing and scheduling multiple vehicles and passengers as 
well as design issues has not been strictly studied in the past. This research proposes a methodology to 
solve it by using a three level hierarchical optimization approach. Within the optimization process, a Mass 
Transport Network Design Problem (MTNDP) is solved. This paper introduces MTVRP and presents a 
scheme to solve it. Then, the associated algorithm to perform the MTNDP optimization is described in 
detail. An instance for the city of Barcelona, Spain is solved, showing promising results with regard to the 
applicability of the methodology for large scale transit problems.  
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Introduction 
 
In this paper, a new class of dynamic problems called “Mass Transport Vehicle Routing Problem” 
(MTVRP) is developed, in which n vehicles (of given capacity) are routed in real time in a fast varying 
environment to pick up and deliver m passengers when both n and m are big. The aim of the problem is to 
minimize the total travel time of passengers (including in vehicle travel time as well as waiting time). 
Therefore, the formulation has to take into account the cumulative travel time of passengers in the system. 
Due to the optimization being based on the passenger cost functions as opposed to being driven by time 
windows constraints as used in package delivery optimization, this problem is fundamentally somewhat 
different from the traditionally studied pick-up-and delivery problems. In addition, the MTVRP involves 
a fundamental design component, solved separately in this formulation under a scheme we refer as “Mass 
Transport Network Design Problem” (MTNDP). This paper is focused mainly on such a procedure, since 
it represents the most difficult piece of the global MTVRP optimization. 
 
The speed required to attain a solution strongly depends on the specific type of problem. For instance, it is 
not necessary for a truck company (performing interstate services) to have an algorithm that attains the 
solution in 5 seconds to route their vehicles. This issue is particularly important, and it is clear that the 
computational speed needed for an algorithm to reach a solution of a given problem depends on the time 
scale of the system changes. A variety of problems can arise in the dynamic case based on the time scale 
of the system variation in relation with the computational time of the dynamic optimization algorithm. At 
one extreme, we have the interstate trucking companies, for which some of the recent dynamic 
optimization algorithms could be used to find solutions much faster than the change in the system state 
itself. At the other extreme, we could identify large-scale demand responsive transit systems, where 
changes happen in real time possibly much faster than the running time of any real time algorithm 
developed for such systems, given the current development of the available technology. For this reason, it 
is necessary to generate algorithms that can respond to changes in the system in an optimal fashion and in 
real time.  
 
The dynamics of the transit passenger transportation problem add a further level of difficulty, mainly 
when the demand is not known in advance. The problem treated is stochastic in nature, both in terms of 
network conditions and in future occurrence of demand points. A possible way to tackle the entire 
problem would be to solve it in different stages. First, we could formulate and solve an algorithm based 
on passenger-costs for a time-dependent vehicle routing problem under known demand. Next, it would be 
possible to use the solutions from that problem for a real time vehicle routing problem with uncertain 
demand. These are the main ideas behind the research presented in this paper and are explained further 
herewith. 
 
This paper is divided into three main parts. 1) First MTVRP is described along with a solution scheme 
based upon three stages. The three stages are synthetically described, but focusing on stage 2, which turns 
out to be the most interesting and challenging development in this research. 2) Secondly, the paper 
describes in detail the formulation and the solution scheme for stage 2. 3) Finally, solutions for stage 2 of 
the process are reported and a final discussion is presented. 
 

Description and Categorization of MTVRP 
 
Complex systems of fleet management, fleet control and vehicle routing problems (VRP) have widely 
been treated by many researchers. A recent review on the topic can be found in (1). However, sometimes 
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the problems treated have no application in the real world because they are too complex and have to be 
oversimplified in order to be studied, as stated by (2) and (3). In our case, the problem itself has no 
restrictions in terms of the formulation and can be applicable to a wide range of different areas. 
 
For package/goods pick up and delivery, the formulation and solution of a static problem is very 
meaningful and (4) identifies the further needs for dynamic formulations in such traditional delivery 
systems. 
 
The broadly studied Traveler Salesman Problem, (TSP) is perhaps the most well known example of the 
key component of a VRP formulation. Many generalized versions of the traditional TSP have been 
studied in the past. As an example, (5) conduct a good overview of methods to solve it and (6) classify 
several formulations for the time-dependent traveling salesman problem (TDTSP), in which costs are 
dependent on their position in the tour.  Another generalization of the classical problem, first introduced 
by (7), is the Probabilistic Salesman Problem (PTSP) where not all nodes have to be visited, and the 
nodes that will be finally visited are not known in advance with certainly. Several researchers have 
largely studied similar problems, as pointed out by (8). The first instance in which time is introduced as 
an explicit variable in the formulation of the Traveling Salesman Problem with Time Windows (TSPTW) 
is found in (9) and (10) .But, as stated above, the problem size and nature of MTVRP does not fit in any 
of the previous formulations.  
 
Another well-known problem with parallels to MTVRP is the dial-a-ride problem. (11) reviewed the 
various approaches used by the research community to solve the problem, classifying the pickup and 
delivery problems into static and dynamic, with and without time windows. But in any case, demand is 
introduced in real time while vehicles are already being routed. In other words, the pattern of demand is 
fully defined before scheduling takes place. Nevertheless, the assumption that all trips are known in 
advance may be reasonable in some situations. For example, on one hand, freight companies face the 
problem of matching a fleet of vehicles to current and future demand, although in those cases demand, 
fleet size, service times, travel times, and travel costs are known in advance. On the other hand, under a 
dynamic scenario such as MTVRP, nothing is known about the demand a priori, and therefore the system 
optimization algorithm should be able to respond to the demand as it appears in real time.  
 
Approaches that rely on vehicle routes found by solving a static VRP problem (for goods delivery) and 
being modified through insertion heuristics, have been largely used for scheduling dynamic passenger 
demand in real time. A study by (12) used a sequential insertion heuristic algorithm for the dial-a-ride 
problem. Other researchers such as (13) and (14) have contributed to the insertion heuristics algorithms 
by implementing adjustments to solve the case of specific transit systems. The work of (15) and (16) is 
also of particular interest to our research. This study models a multimodal system comprised of taxis, 
demand-responsive services and conventional timetabled services, such as buses or trains. A model is 
developed where demand appears in real time and mode choices as well as scheduling decisions are taken 
based upon a time-windowed incremental insertion procedure. The author introduced a periodic 
optimization, followed by a simple steepest-descent improvement strategy. Neither work treated the 
problem as a part of a larger classification that we call MTVRP with a large fleet of vehicles. 
 
Recent research by the authors (17) has developed a new demand-responsive transit system design called 
High Coverage Point to Point Transit (HCPPT). The algorithms therein tackled the problem primarily in a 
decomposed manner, with local control using heuristic operational rules containing notions of optimal 
directions. A question arises in Cortes’ HCPPT model, on how much the system’s performance can be 
improved by changing the vehicle deployment patterns.   This aspect was a pre-specified in that work (the 
vehicles were assigned to operate in areas).  Whether a periodic re-optimization using an appropriate class 
of simplified optimal formulations would improve the HCPPT performance motivated this research.   A 
second issue, perhaps more important, involved the transfer points in the system, which were also pres-
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specified in that research.  Our further research quickly arrived at the need for developing a class of 
algorithms that are fundamental to passenger transport with a large fleet of transit vehicles which are not 
assigned to lines or schedules. 
 
The paper is organized as follows. In the next section the global solution for MTVRP is presented briefly 
introducing to the reader the three stages of the process. Then, the paper focuses on an associated 
fundamental problem that we call Mass Transport Network Design Problem (MTNDP). First, its 
formulation and a discussion of its characteristics are presented followed by a description of its solution 
scheme. Finally, an application of the proposed method is described and its results reported, followed by a 
section with the conclusions and final remarks. 
 

Solution Scheme for MTVRP 
 
Dynamic routing solutions have been found so far using approximations of static cases when the 
dimensions of the problem are small and/or using local heuristics when the dimensions get big. Generally, 
heuristics used for these types of problems do not consider global optimality. A procedure to solve the 
“MTVRP” through three different steps has been developed which seeks optimality by performing a 
hierarchical optimization.  
 
But the fact that the routing decisions are taken in real time does not allow the problem to have a closed 
form. Then, the optimization problem treated cannot be solved under a normal classical optimal control 
scheme because the formulation does not explicitly enumerate search directions at any of the solution 
points.  Thus a question arises on how well the optimization schemes perform.  Simulation of the 
optimization schemes seems to be the only viable way to study this complex problem. Due to the 
dimensions of the problem and the nonlinearities in the costs (passenger costs in vehicle rerouting 
depends on the load of vehicles), microsimulation is the plausible tool within this analysis. 
 
It is obvious that an implementation of a simulation platform for a demand-responsive transit system is 
needed. But it is not obvious how to simulate properly this transit system. Commercial packages are 
based primarily on modeling personal autos, and the capabilities needed to simulate flexible transit 
systems are not available in such software.  Special purpose simulations have been considered in the past. 
(18) developed a macroscopic simulation framework for evaluating city logistics. The model is composed 
of two sub-models, a model for vehicle (pick-up/delivery truck) routing and scheduling problem with 
time windows and a dynamic traffic simulation model for the fleets of pickup/delivery trucks and 
passenger cars on the road network within the city. (19) simulates paratransit systems. Two types of trips 
are considered: advance reservation trips which are requested in advance and real-time trips which are 
requested after service starts and need to be serviced immediately. In this case, the simulation has no 
network associated. (20) described the implementation of different simulation modeling frameworks for 
new transit systems in PARAMICS. The scheme presented here is studied using this framework.  
 
The global optimization implemented in this research is now presented. It can be decomposed in three 
stages as shown in Figure 1 and further explained below. While the paper focuses on stage 2 of this 
optimization process, a brief description of each stage is necessary to understand the main aim of this 
research 
 
 

< Insert Figure 1 here > 
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STAGE 1 - Network aggregation   

In the first stage of this procedure the demand is grouped into zones in order to diminish the complexity 
of the network problem.  Each zone in our studies has approximately 1.5 sq. miles of surface and has 
associated with it the following components: a) One Centroid (similar to Centroids in planning models) 
and b) groups of passengers with their associated origins-destinations trip desires. For brevity, this paper 
leaves out the details of this stage of the process. The networks considered are already aggregated. 
 

STAGE 2 - MTNDP - Solution of the “Mass Transport Network Design Problem” (MTNDP) 

Here “Mass Transport Network Design Problem” is solved. It is an acceptable static problem, which is a 
simplification of the proposed dynamic one in the aggregated network described above. The demand 
appearing in real time is not considered. The solutions of this stage are a set of “global” vehicle routes (or 
vehicle movement “corridors”) and their associated frequencies, which are used to develop an initial 
vehicle deployment pattern for stage 3. This paper focuses on this stage of the procedure and it is further 
explained below. 

 

STAGE 3- LMTVRP Solution of the “Local Mass Transport Vehicle Routing Problem”  

Each zone (corresponding to one centroid and, say, 10 vehicles) is taken independently. The number of 
vehicles being low, known vehicle routing heuristics are used to satisfy the demand appearing in real 
time. The cost function used is similar to the one used by Cortés (17), where the cumulative travel time of 
passengers in the system is taken into account.  
 
Unlike other public transportation design schemes, this modeling scheme does not consider passenger 
behavioral models at any stage (modal split is assumed given, and no other modes are considered in the 
optimization process). Under these circumstances, the solution is found by solving a flow minimization 
problem where the only path decision costs are based on passengers’ travel times. In other words, in a 
current solution, passengers are “forced” to use the vehicles of the proposed system and the path chosen 
will depend only on their travel and waiting times. Introducing a behavioral model into this scheme will 
be taken into consideration as part of further research, considering a real implementation of such a 
system. 
  
This paper now will focus on the important fundamental optimization problem in stage 2. First a 
description of the problem and its formulation are presented, followed by a solution for an example 
application. 
 
 

Solution of the “Mass Transport Network Design Problem” (MTNDP) 
 
Formulation for MTNDP 
 
Consider a network represented by the directed graph G (N, A), with node set N and arc set A.   The arcs 
here can be viewed as “global vehicle corridors” between nodes which represent “areas” (or even transfer 
hubs) in a large urban area.  The intent is to find the “flow” (or frequency) of vehicle movement on these 
corridors, and to find how many vehicle travel on paths that go over such “nodes”, so that a global 
estimate can be made for mass transport vehicle movements.  Note that the actual vehicle movements 
may involve local rerouting of these vehicles on actual network links for passenger and pick-up and 
delivery, as handled by the stage-3 of the scheme.  The global path and flow solution and the associated 
vehicle deployment (mass transport network design) can then be used as the starting solution or the 
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solution that set the global parameters for the LMTVRP problem (stage-3).  One can also view MTNDP 
as solving the trunk route movement problem, if these vehicles are to have non-reroutable trunk route 
travel and re-routable local travel as in the HCPPT problem (17).  The following discussion now focuses 
on these global “paths” and vehicle flows on them.  Though we use the term “stops” as in the standard 
transit network design problem, these are not actual bus stops but are rather areas (represented by nodes) 
where vehicles enter the local streets or terminals rather than travel through as in express transit corridors.  
Thus the solutions would tell us how many vehicles travel from which areas in a large urban network to 
which other areas, at what type of frequency.  The design thus provides us vehicle “routes” which can be 
viewed similar to bus lines or services in a bus network design problem, but are referring to global vehicle 
route corridors rather than bus lines or services with set schedules and frequencies. 
 
Consider a set of paths ( ijkp  being the kith path starting at node i and finishing at node j).  Some of the 
routes might have sub routes, which have both its origin and destination coinciding with intermediate 
vehicle stops of the longer vehicle routes. Let us call the long route “parent” and the sub route “child”. 
For the sake of clarity, Figure 2 draws a simplified example of paths ijkp , 'ijkp ''ijkp  starting at node i and 

ending at node j and paths lmnp  and 'lmnp  starting at node l and ending at node m. In this example, ijkp is a 

parent of lmnp . 
<Insert Figure 2 here> 

 
 
Mass Transport Network Design Problem (MTNDP) aims to find the routes and associated rates of 
vehicles to minimize the travel time of passengers (1). There are three sets of constraints. The first set of 
constraints (2) makes sure that all the demand is satisfied. The second group of constraints (3) are link 
capacity constraints valid for each line, assuring that the number of passengers traveling in one vehicle 
route (alternatively called a vehicle “line” or vehicle “service”) at a given time is smaller than the sum of 
all the available vehicle seats in that line. The last constraint (4) makes sure that the number of used 
vehicles is smaller than the fleet size.   The formulation is the following: 
 

 

lmn
ijk

lmn
ijk

lmn
ijklm

i j k l m n

lm
ijk wtttxfMinimize δ)( +∑∑∑∑∑∑

 
 
 1=∑∑∑

i j k

lm
ijkf    ml,∀   Continuity Constraint  (1) 

 ijk
lmn
ijk

l m

a
lmnlm

lm
ijk Crxf ≤∑∑ δφ   kji ,,∀  Link Capacity Constraint (2) 

 Nrtt ijk
i j k

ijk
ijk ≤∑∑∑      Total Fleet Constraint  (3) 

 
 ijkp    = kth  path between node i and node j 

 ijkr      = rate of vehicles on path pijk  (vehicles/unit time) 

 ijx      = rate of demand from node i to node j (passengers/unit time) 

 lmn
ijktt   = in-vehicle travel time from l to m using lmnp , child of ijkp  (unit time) 

 lmn
ijkwt  = waiting time from l to m using lmnp , child of ijkp (unit time) 

 lm
ijkf    = fraction of demand lmx  traveling on ijkp , parent of lmnp  
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 lmn
ijkδ   = 1 if lmnp  is a child of ijkp , = 0 otherwise 

 a
ijkφ     = 1 if  ijkp goes over link a, = 0 otherwise 

 C        = Vehicle capacity (passengers / vehicle) 
 
It is important to see that the objective function depends on the sum of waiting and travel time 
( lmn

ijk
lmn
ijk wttt + ), while in constraint (4) only the travel time ( lmn

ijktt ) is considered. This is because the 
objective function represents time consumed by passengers, as opposed to the third constraint, in which 
only the travel time of vehicles is considered. Hence, waiting time does not need to appear in the third 
constraint because it does not have an effect on the vehicles travel time. Note however that it is precisely 
the presence of the waiting time in the objective function that makes MTNDP non-linear. the problem 
becomes linear only for a fixed set of routes and frequencies (in other words, for a given set of ijkr for all 
i, j and k) where the waiting times for each route are known. This characteristic has been exploited in the 
methodology explained in the next sections to solve MTNDP.  
 
An examination of the details would reveal some similarities between the MTNDP formulation and the 
well known Network Design Problem (NDP), studied by  (21), (22), (23), (24), (25) and (26), among 
others. But there exist differences between MTNDP and NDP that make our problem easier to solve. 
MTNDP is not a subset or a simplified version of NDP; rather, these are just two different problems. The 
primary difference is that NDP is geared towards finding a network design that is immediately followed 
by frequency setting and scheduling, whereas the MTNDP finds a solution at an abstract (or aggregate) 
level composed of transit “flows”. Furthermore, the solution to MTNDP violates some of the basis for 
NDP, for example MTNDP identifies a situation without considering the return of the transit vehicles to 
the starting point of the vehicle route. The flow for each line “appears” at the origin of the line, and then 
travels along the route, picking up and dropping off passengers and later “disappears” at the destination 
(or terminus) of the line. Note that this would be impossible to implement in the real world, but its 
solution is what gives global optimality in the p[resent of local routing optimization. 
 
In terms of the theoretical details, NDP presents a concave (27) and multiobjective objective function 
arising from the fact that it tries to minimize both passenger and operator cost. Therefore, in the case of 
NDP, the tradeoffs among the conflicting objectives need to be addressed because it is multi-objective. 
But in MTNDP, only the passenger costs are minimized, therefore the objective function is simpler. Also, 
we do not accept transfers. Another difference is that the combinatorial explosion originating from the 
discrete nature of NDP is not present in MTNDP because its variables are continuous. Also, and perhaps 
most importantly, the network taken into account for MTNDP is an aggregated one; therefore the sizes of 
the networks needed are relatively small compared to the networks solved by researchers working on 
NDP (28). Finally, our problem aims to create a transit system from scratch, whereas, in general, the most 
conventional NDP schemes starts from an already created system adding new lines and/or changing the 
existing ones to optimize the system..  
 
To further explain, imagine a “rate of passengers” willing to travel from the origins to the destinations.  
The solution for MTNDP is the vehicle “lines” and the associated frequencies to perform these operations 
with a minimum user cost. Therefore, our interest is to find the “lines” (which can be viewed as loose 
collection of fleet vehicles operating in some corridors) and vehicle frequencies between each OD pair, 
minimizing the travel time of users with two restrictions: a given fleet size (a), a maximum vehicle 
capacity (b).  The length of the routes and the frequencies of the vehicles identify the vehicle deployment 
and trunk/express travel patterns in different areas of a real world network.  In the next section, the steps 
performed to find a solution are described and an example is presented. 
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Solution Scheme for MTNDP 
 
MTNDP is a minimum cost flow problem consisting of two levels. In the first level (we call it “Transit 
Problem” or TP), there are vehicle flows, or “empty seats” flows. In the second level (we call it 
“Passenger Flow Problem” or PP) there are passenger flows. 
 
Seat flows are not explicitly present in the objective function, but passenger flows depend on vehicle 
flows because it is obvious that vehicle flows cannot be smaller than passenger flows at any point. In 
order to deal with this scenario, an iterative process is proposed where first a set of vehicle flows are 
found in a relaxed form of TP and then, for this fixed set of vehicle flows, the best set of passenger flows 
is found in the PP. Once the TP and PP are solved, we have a feasible solution, (in other words we have a 
set of both vehicle and passenger flows). At this point, we start the procedure again: we try to find a better 
set of vehicle flows (solution of TP) that improve the overall solution and fix them. For this fixed set of 
vehicle rates, the best passenger flows are calculated. These operations are performed successively until 
no more improvements are found. Figure 3 shows the implemented procedure used to solve MTNDP. In 
the rest of this chapter, the parts of the problem shown Figure 3 are explained in detail. 
 

<Insert Figure 3 here> 
 

The MTNDP is a non-linear function. As noted above, non-linearity in the objective function is induced 
by travel time ( lmn

ijk
lmn
ijk wttt + ), which includes the in-vehicle travel time ( lmn

ijktt ) and the waiting time 

( lmn
ijkwt ). Furthermore, the expected waiting time for a given passenger is inversely proportional to the rate 

of vehicles in the line (corridor) where he or she is traveling.  For the purposes here, we conservatively 
assume that lmn

ijktw = 1/ ijkr , though this depends on the vehicle headway distribution, as is well-known (and 
furthermore, this waiting time depends on the local real-time routing heuristics in any event). It is clear 
however that the non-linearity of this function arises from the waiting time.  
 
Now, once the set of routes and the frequencies are known, (i.e., a feasible solution for the TP), then the 
vehicle rates are fixed, the waiting times are not variables anymore: they become just known constants, 
thus the objective function has a linear form.  That is, for fixed (temporary) costs and vehicle rates, our 
problem is linear. Now the TP and PP are treated separately in the next sections and then the iterative 
process between TP and PP is described. 
 
Transit Problem (TP)  
 
TP finds a set of routes and associated frequencies to satisfy a given demand pattern. It is solved using a 
heuristic described above. It is important to note at this point that the heuristic is solved only once and its 
solution used as an initial solution for the iterative process; as it can be seen in Figure 3 shown above. 

STEP 1- Feasible initial solution:  A frequency is associated with each transit vehicle line with positive 
demand. Vehicle rates are set to its “minimum desired rate” from each node i to each other node j which 
is equal to the rate of demand of passengers traveling from i to j, multiplied by cost from i to j and divided 
by the passenger capacity of vehicle units (the number of seats).  

 
The solution obtained under the “minimum fleet needed” step is feasible because all the constraints are 
satisfied, but it is sub optimal because each passenger (nodal O-D pair) is using a line with the termini at 
the two nodes. On the other hand, under this solution, all vehicles are full all the time. Hence, the number 
of vehicles needed in this solution (let us call it F1) is expected to be lower than the optimal solution.  
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STEP 2- Transit vehicle route integration:  For each arc of each parent route, the rate of vehicles for the 
parent route is set equal to the maximum of the sums of all the rates needed for all child routes. The 
operation is performed for all parent routes with a maximum preset number of links, starting by the parent 
route with the highest number of child routes. The procedure checks the fleet constraint at each increase 
of vehicle flows. This step of the process eliminates redundant lines and creates empty space in parent 
line’s vehicles.  Let us call the fleet size needed in this step of the process F2.  In any case F1 < F2, but 
neither is larger than the maximum fleet size (N) fixed in the MTNDP formulation. 

 

STEP 3-  Transit vehicle route truncation:  Once rates for all parent routes are set, child routes are not 
needed anymore. But, if all child routes were cancelled, the resulting network would only be composed of 
high frequency parent routes and the fleet constraint might be violated. Equilibrium between parent routes 
and child routes is achieved here by canceling the child routes which have a lower rate than a predefined 
value and setting the rest of the child rates to a variable fraction of its previous rate. Let us call the fleet 
size used in this situation F3. Note that F3 > F1 and F3 < F2. Again, none of the fleet sizes are larger than 
the maximum fleet size N.  

 
Once the above heuristic is completed, the PP problem can be optimized. The original network topology 
is changed to take into account the operational restrictions of the vehicles introduced in our model. First 
of all, transfers are not allowed. Secondly, we are routing vehicles as if they were taking part of a public 
transportation service line, therefore passengers who are traveling in a sub-path of any longer path can 
enter into a vehicle that is serving the bigger path but not vice versa. An “expanded” network depicting 
these phenomena is built, for use in the linear multicommodity flow optimization in the PP problem that 
follows. Each OD is represented by a super sink and a super source, corresponding to one commodity and 
each considered path is represented separately.  
 
The TP solution allows the computation of the expected passenger waiting time for each line. A matrix 
with all the waiting times for each line is computed and is fed into PP, explained in the next section. 
 
Passenger Problem (PP)   
 
For a given set of vehicle rates, the waiting times for all routes are known and PP becomes a Linear 
Multicommodity Minimum Cost Flow Problem, (LMMCFP) dealing only with a unique set of variables: 
passenger flows. The well-known network simplex schemes can be implemented on the expanded 
network. Each origin-destination pair is treated as a different commodity. LMMCFP have been solved in 
the past either with partitioning methods, resource directive or price directive decomposition methods. 
Lately other algorithms have been developed such as the interior point methods (29). According to (30), 
(31) and (32), price directive decomposition methods perform better when a lot of commodities are 
considered; therefore a variant of this method has been implemented in this research.  
 
Price directive decomposition eliminates the bundle constraints in the matrix by placing prices to these 
constraints and introducing them into the objective function. The resulting system is a relaxed “minimum 
flow cost problem” for each commodity. The problem has a dual variable for each arc ( aw ) 
corresponding to the continuity constraint and a dual variable for each commodity ( kσ ) corresponding to 
the link capacity constraint. Following this formulation, a pricing problem is solved at each step. If the 
complementary slackness conditions hold, then the solution is optimal and the procedure stops, otherwise, 
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a new pricing problem is solved until an optimal solution is found. Interested readers are directed to (33) 
and (34).  
 
Iterative Process   
 
In the previous sections, both TP and PP have been described and their solution schemes have been 
presented separately. Both solutions are useful for our ultimate goal, but need to be combined in order to 
obtain a solution for the MTNDP. The last part of the scheme, which ties both problems and finds the 
solution for MTNDP, is introduced in this section.  
 
A particular implementation of a steepest descent method has been coded to optimize the problem. The 
essential idea behind our gradient-search is that each solution of TP gives one point in the solution space 
and the objective value for the MTNDP problem presented in equations (1) to (4). The optimization finds 
the gradient using a perturbation of the solution and the global optimization proceeds using a steepest 
descent method.  The reason why this procedure is selected is that the TP solution can be found relatively 
easily using the LLMCFP scheme.   This explains the need for us to split the optimization problems to 
two subproblems, PP and TP.  The procedure is as follows: 
 
Start with a solution of the TP and PP and call the cost of the overall problem 

,...),...,,...,,,...,,( '''''''''212211122121 kjikji rrrrrrF . An “anchor” path ''' kjip  is chosen and its rate ''' kjir  fixed to 

''' kjir +∆r. Now, each one of the remaining paths '''''' kjip  (different than ''' kjip ) is considered independently 

and a unit of vehicle flow is decreased in '''''' kjip , setting the new rate to. '''''' kjir -∆r. For this new situation, 

the value for F( ,....,, 122121 rr ,....,, 212211 rr ''' kjir +∆r,…, '''''' kjir -∆r, …) is computed. Then the gradient for 

each pair “ ''' kjip - '''''' kjip ” can be written as follows: 

 
r

rrrFrrrrrF
r

F jkikjijkikji

kji ∆
−∆−∆+

=
∂
∂ ,...),..., ,...r,...,r,(,...),..., ,...r,...,r,( '','','''''211122121'','','''''211122121

''''''

 

 
Once this operation has been performed for each '''''' kjip , it is possible to write the gradient vector as 
follows: 
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⎠
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∂
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F

r
F

r
F

.  

 
At this step, a new cost is computed where the new objective function is then: 

New
r
FrrrrrrFF kjikji ∂
∂

−= λ,...),...,,...,,,...,,( '''''''''212211122121  

The algorithm runs until optimality is attained. Next section shows the results for one of the cases treated. 
 
 
Numerical Application 
 
 
A network corresponding to the city of Barcelona in Spain has been chosen as an example to solve 
MTNDP through the methodology explained in the previous sections. Figure 4 shows the original 
network and the remaining network after performing the aggregation of the nodes into centroids. The 
node numbers, link numbers and the corresponding in-vehicle travel costs (in green) are also shown in the 
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same figure. Note that the nodes of the aggregated network correspond to the main hubs of the existing 
underground network. Also, the links correspond to “global vehicle corridors” which do not have to 
coincide exactly with the existing roads of the city, because the aim of the aggregated network is just to 
simplify the real network and diminish the number of nodes and links.   In all the scenarios considered, 
vehicle capacity was set to 5 passengers and the integration was done for paths with more than 2 nodes (in 
other words, path integration was performed for all the paths considered in this network). The code was 
run for different values of λ and different numbers of iterations. The values of the Objective function for 
MTNDP for these different settings are presented in Figure 5. 
 

< Insert Figure 5 here> 
 
The Figure shows a decreasing trend for all curves, meaning that the sum of travel times for all 
passengers in the system improves in all the studied cases, starting at the same initial solution and 
finishing at similar solutions. 
 
Note that the values of the Objective functions for the first iteration are the same for all scenario runs. 
This is normal since the first iteration only depends on the solution of the TP, which, for all cases is the 
output of the heuristic explained above. Figure 5 shows that for all curves, there is a threshold value, after 
which the solution does not improve anymore, even if we continue to iterate. At this point, optimality has 
been achieved and the algorithm stops. Notice that, the final solution is not exactly the same in all 
situations.  
 
A first observation would be that the smaller the ∆r, the smother the convergence rate is and the more 
accurate the final solution is. This result is consistent with the intuitive thought that if “small” changes are 
performed in vehicle rates, the changes in passenger flows are also small, giving a more accurate solution, 
while if only “big” changes on rates are performed, then only a subset of passengers can travel through 
their best path, resulting in a suboptimal objective function value.  
 
Also, it is easy to realize that for small ∆r, the curves are smoother than for big ∆r. Again, is intuitive to 
think that when ∆r is small, each step of the algorithm is going to improve the solution by a small amount, 
drawing a smooth curve. On the other hand, when ∆r is big, each step of the algorithm is going to give a 
bigger change on passenger paths and passenger travel times, resulting in a less smooth curve as shown in 
the figure. 
  
The slope of the curves is much higher at the beginning of the algorithm than at the end, meaning that for 
a given experiment, the improvement of the solution for the first iterations is much higher than for the 
lasts iterations. In the first iteration after the initial solution, waiting times are introduced in the system for 
the first time, making the travel times of passengers higher and, in some cases, completely different. 
Therefore, it is normal that in the first iterations, the changes in vehicle rates implies a big change in 
passenger costs. After the initial iterations, the influence of waiting times is “stabilized” and the changes 
over the vehicle rates do not have such a big influence on passenger’s costs. Then, the improvements on 
the objective function for each step of the algorithm becomes smaller. 
 
As expected, the time required for more accurate solutions is much higher than that for the the less 
accurate solutions. The computational time taken by our code was compared with the time taken by 
CPLEX. For data on computational times and a discussion on these issues refer to (35).  
 
 
 
 



Pagès, Jayakrishnan and Cortés 13

Conclusions and further research  
 
The main contribution of this paper is identifying a new problem called “Real Time Mass Transport 
Vehicle Routing Problem” and describing a solution algorithm. The solution scheme for MTVRP 
involves solving an associate problem called “Mass Transport Network Design Problem” (MTNDP). This 
paper also describes MTNDP problem, shows its formulation and presents results on the application of 
the algorithm. This methodology is expected to be of use for the academic community to solve large scale 
dynamic routing problems. 
 
Forthcoming research is expected in MTVRP introducing improvements in stage 3, which was not 
developed in detail in this paper. As far as MTNDP is concerned, the solution scheme for it has been 
implemented using a steepest descent algorithm which seeks optimality by performing small changes in 
the vehicle flows and looking into the costs of passenger flows. But, this is only one of the possible 
solution methods for MTNDP. Inspired by the particular form of the problem, in the future it would be 
worth trying to solve MTNDP by using a Benders decomposition approach by dividing the linear part and 
the non-linear part of the objective function of the problem.  
 
Acknowledgements 
 
This research was partially financed by CALTRANS, the Henry Samueli School of Engineering at the 
University of California, Irvine, the University of California Transportation Center (UCTC), the 
California Catalonia Program. Balsells - Generalitat de Catalunya Fellowhip. Catalunya. Spain, Fondecyt, 
Chile, grant 1030700 and the Millennium Nucleus "Complex Engineering Systems". The authors would 
like to thank Jaume Barceló (Department of Statistics and Operations Research, Universitat Politècnica de 
Catalunya, Spain) for his valuable comments. 
 

References 

 
1. Bräysy O. and Gendreau M. Vehicle Routing Problem with Time Windows, Part I: Route 
Construction and Local Search Algorithms. Transportation Science. Vol. 39 No. 1, 2005, pp 104-118 
 
2.  Bodin, L.D. Twenty years of routing and scheduling. Operations Research, Vol. 38, 1990.pp. 
571-579,  
 
3. Hang Xu, Zhi-Long Chen, Srinivas Rajagopal, Sundar Arunapuram. Solving a Practical Pick up 
and Delivery Problem. Transportation Science, Vol 37, No. 3, 2003, pp. 347-364. 
 
4. Psaraftis H. Dynamic Vehicle Routing Problems. Vehicle Routing: Methods and Studies. B. L. 
Golden and A.A. Assad (Editors). Elsever Science Publishers B.V. 1988. 
 
5.  Laporte, G. The Traveling Salesman Problem: An overview of Exact and Approximate 
Algorithms. European Journal of Operational Research Vol. 59, 1992, pp. 231-247. 
 
6.  Gouveia L., Voβ S. A classification of formulations for the (time-dependent) traveling salesman 
problem. European Journal of Operational Research Vol. 83, 1995, pp. 69-82. 
 
7. Jaillet, P. A Priori Solution of a Traveling Salesman Problem in which a random subset of the 
customers are visited. Operations Research Vol. 18, 1988, pp. 51-70.  



Pagès, Jayakrishnan and Cortés 14

 
8.  Laporte et al. New insertion and Postoptimization procedures for the Traveling Salesman 
Problem. Operations Research Vol. 40, 1992, No. 6. 
 
9.  Gendreau M. Hertz A. Laporte G. and Stan M. A Generalized Insertion Heuristic for the 
Traveling Salesman Problem with time windows. Operations Research Vol. 43, No. 3. May – June 
1998. 

 
10.  Salomon et al. Solving the discrete lot sizing and scheduling problem with sequence dependent 
set-up costs and set-up times using the Traveler Salesman Problem with Time Windows. European 
Journal of Operational Research Vol. 100, 1997, pp. 494-513.  
 
11.  Savelsberg, M.W.P. and Sol. The general pickup and delivery problem. Transportation Science 
Vol. 29(1), 1995, pp.17-29.  
 
12.  Jaw et al. A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with 
time windows. Transportation Research Part B Vol. 20B No. 3, 1986, pp 243-257.  
 
13.  Quadrifoglio L., Dessouky M., Palmer K. An Insertion Heuristic for Scheduling MAST Services, 
Presented at UCTC conference, Irvine, February 2005. Submitted for publication in Journal of 
Scheduling. 

 
14.  Diana and M. Dessouky. A new Regret Insertion Heuristic for Solving Large-Scale Dial-a-Ride 
Problems with time windows. Transportation Research Part B Vol. 38, No. 6, 2004 pp. 539-557 

 
15. Horn, M.E.T. Multi-modal and demand-responsive passenger transport systems: a modeling 
framework with embedded control systems. Transportation Research Part A Vol. 36, 2001, pp.167-
188.  

 
16. Horn, M.E.T. Fleet scheduling and Dispatching for Demand Responsive Passenger Services. 
Transportation Research Part C, Vol 10, No. 1, 2002 pp. 35-63. 

 
17. Cortes C. Ph D. Dissertation. High-Coverage Point-to-Point Transit (HCPPT): A new design 
concept and simulation-evaluation of operational schemes for future technological deployment” UCI, 
2003. 
 
18. Taniguchi et al. City Logistics. Pergamon Elsevier Science Tokyo. 2001. 
 
19. Fu L. Scheduling dial-a-ride paratransit under time-varying, stochastic congestion. Transportation 
Research Part B 36 pp. 485-506. 2002. 

 
20.  Cristián Cortés, L. Pagès and R. Jayakrishnan,  Microsimulation of Flexible Transit System 
Designs in Realistic Urban Networks Presented at the 84nd Annual Meeting of the Transportation 
Research Board Meeting, Washington D.C. 2005 and forthcoming Publication in Transportation 
Research Record. 

 
21. Mandl C. Evaluation and optimization of urban public transportation networks. European 
Jorurnal of Operational Research Vol 5, 1980, pp. 396-404. 
 
22.  Hasselstrom. Public Transportation Planning – A mathematical programming approach. PhD 
Dissertation. Department of Business Administration, University of Gothemburg, Sweden 1981.  



Pagès, Jayakrishnan and Cortés 15

 
23. Ceder and Wilson Bus Network Design. Transportation Research, Vol. 20B, 1986, pp 331-344. 
 
24.  Baaj and Mahmassani Hybrid Route Generation Heuristic Algorithm for the design of Transit 
Networks. Transportation Research Vol 3, No. 1, 1994, pp 31-50. 
 
25.  Cynthia Bahnhart, Hong Jin and Pamela H. Vance. Railroad Bocking: A network Design 
Application. Operations Research Vol. 48, No. 4, 1998, pp 603-614. 
 
26. Rob Van Nes. Multi user-class urban Transit Network Design. Presented at the 82nd Annual 
Meeting of the Transportation Research Board Meeting, Washington D.C. January 12-16, 2003  

 
27. Newell, G. Some issues related to the optimal design of bus routes. Transportation Science, 
Vol.13, 1979, pp. 20-35. 

 
28. Cynthia Barnhart, et al. Composite Variable Formulations for Express Shipment Service Network 
Design. Transportation Science Vol.36, No.1, 2002, pp.1–20 

 
29. Karmarkar N K (1984) A new polynomial time algorithm for linear programming. Combinatorica 
4: 373–395  

 
30. Kennington J L (1978) A Survey of Linear Cost Multicommodtiy Network Flows. Operations 
Research 26(2): 209–236 

 
31. Ali A, Helgason R V, Kennington J L , Lall H , (1980) Computational comparison among three 
multicommodity network flow algorithms. Operations Research 28: 995–1000 

 
32. Ahuja, R K, Magnanti, T L, Orlin, JB (1993) Network Flows. Prentice Hall, Englewood Cliffs, 
New Jersey 

 
33. Kennington J L, Helgason RV (1980) Algorithms for network programming. John Wiley & Sons, 
New York 

 
34. Kim, Barnhart C (1999) Multimodal Express Package Delivery: A service Network Design 
Application. Transportation Science Vol 33, No. 4: 391-407 

 
35. Pagès and Jayakrishnan. Mass Transport Vehicle Routing Problem (MTVRP) and the Associated 
Network Design Problem (MTNDP). Accepted for presentation at the International Scientific Annual 
Conference Operational Research Bremen. Germany. 9-13 September 2005  

 
 
 



Pagès, Jayakrishnan and Cortés 16

 

LIST OF FIGURES 

 
Figure 1 Solution Scheme for Mass Transport Vehicle Routing Problem (MTVRP) 
Figure 2 Example parent - child path 
Figure 3 Solution Scheme for Mass Transport Network Design Problem (MTNDP) 
Figure 4 a) Network Studied b) Aggregated Network Studied 
Figure 5 Solution of MTNDP 
 
 
 
 
 
 
 
 



Pagès, Jayakrishnan and Cortés 17

 
 
 
 
 

 
 

Figure 1 Solution Scheme for Mass Transport Vehicle Routing Problem
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Figure 2 - Example parent - child path  

i jl m

l’ m’

l’’ m’’

Path k
Path n

Path n’

Path k’

Path k’’

i jl m

l’ m’

l’’ m’’

Path k
Path n

Path n’

Path k’

Path k’’



Pagès, Jayakrishnan and Cortés 19

 
 

Transit Problem (TP)
Find Bus flows s.t.  Fleet constraint

Inputs: Fleet Demand

Outputs:
Bus flows

Passenger Flow Problem(PFP) (min flow pb.) 
Find Passenger flows. Fleet constraint relaxed

Inputs: Bus flows 
and Costs

Calculate costs 
(in vehicle tt and wt)

Outputs:
Pax flows

Compute total cost
Set one anchor r’
{Compute grad-sensitivity
For each pair r’ and r’’
Find max}
Increase flow
Check fleet constraint
Send flow

Transit Problem (TP)
Find Bus flows s.t.  Fleet constraint

Inputs: Fleet Demand

Outputs:
Bus flows

Passenger Flow Problem(PFP) (min flow pb.) 
Find Passenger flows. Fleet constraint relaxed

Inputs: Bus flows 
and Costs

Calculate costs 
(in vehicle tt and wt)

Outputs:
Pax flows

Compute total cost
Set one anchor r’
{Compute grad-sensitivity
For each pair r’ and r’’
Find max}
Increase flow
Check fleet constraint
Send flow

 
 
 
 

Figure 3 Solution Scheme for MTNDP 
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Figure 4 a) Network Studied corresponding to the city of Barcelona, Spain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 b) Aggregated Network  
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Objective Function Value for MTNDP
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Figure 5 – Solution for MTNDP 
 


