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Abstract

This paper focuses on the prediction of the dimensionless retention time (DRT) of proteins in hydrophobic interaction chromatography (HIC) by
means of mathematical models based on the statistical description of the amino acid surface distribution. Previous models characterises the prot
surface as a whole. However, most of the time it is not the whole protein but some of its specific regions that interact with the environment. It seem:
much more natural to use local measurements of the characteristics of the surface. Therefore, the statistical characterisation of thetlestribution
amino acid property on the protein surface was carried out from the systematic calculation of the local average of this property in a neighbourhoo
placed sequentially on each of the amino acids on the protein surface. This process allowed us to characterise the distribution of this proper
quantitatively using three main statistics: average, standard deviation and maximum. In particular, if the property considered is a hygdrophobicit
scale, these statistics allowed us to characterise the average hydrophobicity and the hydrophobic content of the most hydrophobic cluster or hotsp
as well as the heterogeneity of the hydrophobicity distribution on the protein surface. We tested the performance of the DRT predictive model
based on these statistics on a set of 15 proteins. We obtained better predictive results with respect to the models previously reported. The be
predictive model was a linear model based on the maximum. This statistic was calculated using an index of the mobilities of amino acids in
chromatography. The predictive performance of this model (measured as the Jack Knife MSE) was 26.9% better than those obtained by the be
model which does not consider the amino acid distribution and 19.5% better than the model based on the hydrophobic imbalance (HI). In additior
the best performance was obtained by a linear multivariable model based on the HI and the maximum. The difference between the experiment
data and the prediction carried out by this model was smaller than those observed previously. In fact, this model obtained better prediative capaciti
than a previous linear multivariable model decreasing the Jack Knife MSE in 8.7%. In addition, this model allowed us to diminish the number of
variables required, increasing, in this way, the degrees of freedom of the model.
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1. Introduction industry and at the laboratory scale, such as aqueous two-phase
systems and hydrophobic interaction chromatography (HIC). In
The surface characteristics of a protein determine to a gredact, it has been pointed out that the rational design of industrial
extent its main properties. For example, protein functions sucprotein purification processes normally requires an HIC stage
as catalysis or molecular recognition occur predominantly on of1].
near the protein surface. In addition, these properties define the Clearly, the characteristics of the protein surface will be
protein behaviour in purification stages of great importance irdefined by its topology and by the properties of the amino acids
located on the surface as well as how those are distributed on it.
Particularly, inthe case of HIC, it has been shown that the dimen-
* Corresponding author. Tel.: +56 2 6784716; fax: +56 2 6991084 sionless retention time (DRT) can be correlated with the average
E-mail address: jsalgado@ing.uchile.cl (J.C. Salgado). surface hydrophobicity (ASH) calculated as the average of the
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hydrophobicity of each amino acid on the surface corrected byionally inexpensive mathematical models which can improve
its abundancg]. It is important to note that this model did not the performance of the prediction of DRT reported previously.
consider the amino acid distribution on the protein surface. How-

ever, theoretical studies, using simplified protein models, have, Methodology

shown that proteins with a heterogenous hydrophobicity distri-

bution on their surface can establish stronger interactions with & ;. 1.ocal average surface property

hydrophobic ligand than those with a homogenous distribution

[3]. Let S be the surface of a protein. We cagiby a set of points.
The model of Lienqueo et 4#] based onthe ASH has proven Each pointk € S is, for us, a particular amino acid. For each of
to be effective on the DRT prediction for several proteins. Howthese amino acidse S, ASA(k) corresponds to its accessible
ever, there are proteins whose surface distribution prevents thej(irface area. We also defiggk) as the value of an intrinsic
correcthandling by this model. Mahn et[&l] reported four pro-  aminoacidic property ok. The value ofg(k) is given by an
teins for which the model of Lienqueo is deficient. In order toamino acid property vector (APV) (for instance, APV could be

deal with these proteins two models were proposed: one of expeg-hydrophobicity scale). The average surface property (ASP) of
imental naturg5] and another theoreticg]. The experimen- 3 protein is given by:

tal model used a hydrophobic contact area (HCA) determined

through a thermodynamic model that combined electrostaticagp _ 2k < sSASAK)¢ (k) )
hydrophobic interactions and data determined in labordry > ke sASA(K)

The theoretical model used a local hydrophobicity (LH) calcu- L
lated considering only the amino acids located inside the most I the APV (from where the values gf(k) are taken) is sim-

probable interaction zone between protein and stationary matri;P,Iy ahydrophobicity scale, t.hen the.calc.:ulated ASP corrlespon.ds
to the average hydrophobic contribution of each amino acid

which was determined using molecular docking simulations.™ . ; . : :
The main disadvantage of both methodologies is that they ar\é/elghted by its accessible surface area. This quantity has been

very expensive in human and computational resources. used to develop DRT predictive models previoU2$,10] The

On the other hand, we previously introduced a vector calleg;f}‘]SP ofta _protelfn IS com?gtt)efl assumlngt;_ that”ea}[ch_tamlgo %C'd on
hydrophobic imbalance (H[B]. This vector, obtained from the '€ Protéin surtace contributes proportionaily 10 1S abundance

characteristics of the protein surface, represents the displacgj— the ASP valu¢11]. Detalls of the ASP calculation appear in

ment of the surface geometric centre of the protein when thé p_lr_ivu;u;:\)/vorrll{B]. terises th tei ‘ hole. N
effect of a certain amino acid hydrophobicity scale is consid- e characterises the protein surface as a whole. INev-

ered. Therefore, the HI was used as a simple measurement & heless, most of the time it is not the whole protein but some

the characteristics of the hydrophobicity distribution on the pro-_O its specific regions that interact with the environment. The

tein surface. The interpretation of the HI is not trivial becaus%/rvmdu?t'on oflocal measures of ASP seem T“”C“ more natural.
the number of effects that could take part in the calculation of '© define the Ioc:.;\I ASP for each amino atitbcated on the
its magnitude prevent a direct interpretation. Nevertheless, usin%]mace as follows:
the HI we obtained correlation coefficients remarkably b_et_ter (at _ > i e Nr(yASAGW) (i)
least 67%) than models based on the local hydrophobicity anfSPk) = S ASA() ()
the hydrophobic contact area. In addition, the linear combina- G
tion of the Hl and other parameters allowed the development of @here N, (k) is a neighbourhood of radiusaround the amino
multivariable model which improved the predictive performanceacidk. A neighbourhoodV; (k) is defined as the set of all amino
(quantified by the Jack Knife cross validation mean square errogcids located on the protein surface and inside a ball of radius
MSE) by 24.9% with respect to the best model based on HI onlgentered on the amino adidin order to simplify the calculations
and 31.8% with respect to the model based on ASH only. Théhe location of each amino acid was chosen to be equal to the
correlation coefficient obtained for the multivariable model waslocation of itsp-carbon (except for glycine, where iiscarbon
0.899. was used). We chose the location of fearbon (instead of

In this article we propose the statistical description of thea-carbon) since this atom gives a better idea of the amino acid
surface amino acid distribution to predict the DRT of proteinsorientation with respect to the protein backbone.
in HIC in a similar approach to those used kijndson et al. The local ASP was calculated for all the amino acids on the
[3]. Jbnsson et al., using very simple models for polymers angrotein surface for different valuesofFig. 1shows an example.
proteins, showed that the statistical quantification of the hetClearly, if a protein withL amino acids on its surface is consid-
erogeneity degree of the protein surface can be related to ieyed and a set ak neighbourhood sizes is used, the number
adsorption on polymers. In fact, a strong correlation betweewnf times that the local ASP must be calculated.is R. In this
the adsorption ability and the degree of heterogeneity of severalay, the distribution of the local ASP on the surface depends on
protein models was foun@]. the value ofr, the size of the neighbourhood considered in its

Keeping this in mind, the main objective of this article is to calculation.
investigate if the statistical description of the protein surface, as From each local ASP distribution we extracted three main
a way to incorporate information about the amino acid surfacetatistics: the average AgF, the standard deviation Aggand
distribution, allows the development of simple and computathe maximum ASRax. Two linear combinations were also con-
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Fig. 1. Characterisation of the distribution of an amino acid property on the protein surface. The distribution was determined from the studBfdatallated

on a neighbourhood of radius\V,.(k) around each amino acid The local ASP was calculated for all the amino acids on the protein surface allowing the quantitative
determination of the surface distribution of this property for a particular neighbourhood radius. In particular, the figure shows the quadfiftoatiistribution

of the APV of Aboderin15] on the surface of-lactalbumin (LA4V) when a neighbourhood of radiusAlis considered.

sidered: ASRax-min and ASPhax-avg Thus, each of th& local random sampling and not through exhaustive analysis as in our
ASP distributions was characterized by five variables. case.
Following the previous analysis, if a set &f neighbour-
hood sizes is used, then each protein in the dataset will b22. Protein set
represented by aR x 5 matrix, where each row of the matrix
contains the statistics calculated for a given radius. Again, if Fifteen proteins with known dimensionless retention time
the APV is a hydrophobicity scale, then these statistics allovand known three-dimensional structure were used: Cytochrome
us to characterise the hydrophobicity distribution on the proteirC (1HRC), Myoglobin (1YMB), Conalbumin (1OVT), Ovoal-
surface. ASR,g and ASRhax give the average hydrophobicity bumin (10VA), Lysozyme (2LYM), Thaumatin (1THV), Chy-
and the hydrophobic content of the most hydrophobic cluster omotrypsinogen A (2CHA)B-lactoglobulin (1CJ5)x-amylase
hotspot, respectively. On the other hand, AGRASPnax-minand  (1BLI), a-chymotrypsin (4CHA), a-lactalbumin (1A4V),
ASPnmax-avg quantified the heterogeneity of the hydrophobicity Ribonuclease S (1RBC), Ribonuclease A (1AFU), Ribonu-
distribution on the protein surface. clease T1 wild type (1RGC) and Ribonuclease T1 variant
A synthesis of the procedure used for the determination o¥45W/W59Y (1TRP).
the statistics written in pseudocode follows:

P = [Py, Py, P3y, .., Pis]

r=1[5, 6, 7, .., 25] A

Pick a protein P from the database

For each radius r in the set of neighbourhood sizes do

For each amino acid k located on the protein surface s.t. ASA(k) > 0 do
Determine the amino acids located inside Wr(k)
Calculate the ASP (k) using equation (2)

Build the local ASP distribution for radius r using the ASP (k) values
Compute the ASP.,y, ASPs4 and ASP,. from the local ASP distribution
End

Our approach is similar to that obdsson et a[3]. However,
Jonsson et al., used very simple protein models, corresponding The three-dimensional structures were obtained from the
to spheres where the amino acids have a binary hydrophobicityDB databas§l2] and the ASA was calculated using the soft-
and equal level of accessible surface area. Additionallyware STRIDE from the protein three-dimensional strucfLigs.
the determination of the hydrophobicity distribution on the DRT data correspond to those used by Lienqueo g2hknd
protein surface used byddsson et al. was made through a Mahn etal[6] and they are the DRTs observed in a hydrophobic
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interaction column, calculated as described in a previous wor

[8].
2.3. Collection of aminoacidic property vectors (APVs)

A collection of 74 APVs was used. This collection covered a

wide spectrum of physical, chemical and biological aminoacidicgﬁﬂaX
characteristics. Amongst them: molecular weight, bulkiness,

hydrophobicity scales, average solvent accessibility, secondal
structure preferences, codon numbers[&fic14-55] Allmem-
bers in the APVs collection were numerically scaled in the

interval [0; 1]. This scaling procedure was carried out so that

Kable 1

Correlation coefficients (Pearson) between the dimensionless retention time
(DRT) and the statistics considered in this study determined on the 15 protein
set

Statistic Pearson Radiu.éx Hydrophobicity scale
ASPrmax-min 0.701 11 HBS
0.675 11 HBS
max-avg 0.652 11 HBS
std 0.644 11 HBS
N5Psyq 0.574 10 HBS

o

values 0 and 1 were associated to the minimum and maximuﬂqA Steps. The best correlation coefficient between the dimen-

values in the original scale, respectively. The hydrophilicity
scales were transformed into hydrophobicity scales assigning

to the most hydrophilic amino acid and 1 to the most hydrophot

bic (the values for the rest of the amino acids were determine

sionless retention time and these characteristics are shown in
‘table 1 These results indicate that the statistics considered in
his work are better correlated to the DRT than the parameters
gsed in previous studies as, for instance, the average surface

linearly). Vectors not associated to hydrophobicity scales wer@ydrophobicity which is the ASP calculated using a hydropho-

not modified.

2.4. Measurement of the performance of the predictive
models

Our goal is to quantify the performance of the statistics
ASPayg, ASPstd, ASPmax, ASPmax-min and ASRhax-avgas pre-
dictors of the dimensionless retention time. This performanc
was evaluated by means of three parameters: the mean squ

error, the correlation coefficient (Pearson) and the Jack Knife

cross validation mean square error (MRE These parameters

were calculated using the equations and methodology presenté

in the previous studfg].

3. Results and discussion

In this section the results obtained when using the statistic
description of the protein surface characteristics as a tool to pr
dict its dimensionless retention time in hydrophobic interactio
chromatography are described.

3.1. Calculation of the statistics using simple
hydrophobicity scales

As in our previous work8], we started considering only very
simple hydrophobicity scales. Three scales were used:

Hard binary scale: It assigns a value of 1 to the amino acids

bicity APV. Actually, ASPyg presents a correlation coefficient
14.1% greater than those obtained for the ASP calculated using
the hard binary scale (HBS). Both magnitudes are very similar.
In fact, the correlation coefficient between Aggand ASP is
0.962. However, the way in which AGR is calculated could
allow a slight correction when the protein has regions with very
low average hydrophobicity. This fact explains the somewhat

getter results shown by AgR with respect to the traditional

The sign of the correlation coefficients is positive for all the
statistics listediffable 1 This observation is coherent with those
%ported inthe literature. AQRy and ASR,ax measure the aver-
age and the maximum hydrophobicity on the protein surface.
In most cases, the greater the global hydrophobicity the greater
the DRT. In addition, it has been reported that the presence of
clusters with high hydrophobicity on the protein surface favours
the interaction of the protein with the HIC stationary matrix
,5,6]. In fact, ASRhax quantifies the hydrophobicity in those

Zz'ones. On the other hand, ASE ASPnax-min and ASRax-min
Measure degree of heterogeneity of the surface hydrophobic-

ity distribution. A high value of these parameters indicates a
high heterogeneity. It has been reported that a big hydrophobic
patch accessible to the hydrophobic matrix favours the interac-
tion with the matrix and thus a high retention time in HIC would
be expectedb].

Itis interesting to note that the better correlation coefficients
shown inTable 1were found mainly in neighbourhoods with
radii between 10 and 1A. This fact suggests a certain level of
coherency in the amount of information required for the calcu-

widely accepted as hydrophobic (Ala, lle, Leu, Phe, Pro, Val)ation of these parameters. A neighbourhood of\ldontains

and O to the rest.

Soft binary scale: As the previous one but it also consid-
ers the amphipathic amino acids (Lys, Met, Thr, Trp, Tyr)
as hydrophobic (assigning a value of 1 to them).

Trinary scale: It assigns a value of 0.5 to the amphipathic
amino acids, 1 to the hydrophobic, and 0 to the rest.

The statistics were calculated for the 15 proteips set con
sidering neighbourhoods with radii between 5 andA2%vith

19.0+ 1.9 amino acids with ASA>0. Certainly, this number
corresponds only to a basic reference, since the contribution to
the protein hydrophobicity of each amino acid in this neigh-
bourhood will be very different. In fact, the contribution of
some amino acids will be insignificant due to their small ASA.
The model chose a medium size neighbourhood. Smaller neigh-
bourhoods could introduce an excessive amount of noise in the
parameters making them too sensitive to local disturbances on
the surface hydrophobicity distribution.
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Table 2 Table 3
Correlation coefficients between the statistics considered in this study dete€orrelation coefficients (Pearson) between the dimensionless retention time
mined on the 15 protein set and calculated using the hard binary scale (DRT) and the average surface hydrophobicity (ASH), local hydrophobic-
ity (LH), hydrophobic contact area (HCA), hydrophobic imbalance (HI) and
ASPmax-min ASPmax ASPmax-avg ASPsg ASPavg statistics
ASPmax-min 1 0.994 0.979 0.890 0.714 Parameter Pearson
ASPmax 1 0.978 0.848 0.738
ASPmax-avg 1 0.836 0.582 ASH —0.528
ASPsq 1 0.597 LH2 0.557
ASPayg 1 HCA? 0.483
; — — : HIP —0.940
Correlation coefficients greater than 0.8 have been highlighted in bold. ASPraxmin 0.908
. . . ASPrax 0.933
Additionally, all features iffable 1preferred the hard binary - asp, ., .. 0.938
scale to represent the amino acid hydrophobicity. This observasspyy 0.624
tion confirms results found previous|g] and it indicates that ASPay —0.309

the best results were obtained when the hydrophobicity of thgne | was reported ifg]. The ASH, LH and HCA were reported [8,6]. The
amphipathic amino acids was defined as hydrophilic (0.0); theil and statistics were calculated using the hard binary scale. The calculations
hydrophobic ones as 1.0 and the hydrophilic ones as 0.0. Thily considered the following proteins: Ribonuclease S (1RBC), Ribonuclease
fact stresses the need for a more complex hydrophobicity scal® (1AFU), Ribonuclease T1 wild type (1RGC) and Ribonuclease T1 variant

The relationships between the statistics considered in thiggsh\ﬂl\gx\r’]‘r’;;([leT]Rp)'
study are shown ifiable 2 In this case, the relationship between b gaigado ot a|[..8].
two parameters was measured using the correlation coefficient
between these magnitudes calculated for the 15 proteins for thmorrelation coefficients obtained by the statistics in this small
hard binary scale. This table shows that Agfs considerably  protein set are almost twofold those obtained for the LH and
different from the other variables. On the other hand, the restiCA and slightly smaller than those obtained for the HI. The
of the variables display quite high correlations. It is importantresults obtained by the statistics justify a further study of these
to note that in some cases As&-min Will be very similar to  parameters.

ASPnax because ASR, can be zero. On the other hand, the

high correlation between ASRx and ASRyq is notorious, and  3.2. Calculation of the statistics using the collection of
it means that both variables must be dealt with carefully in auminoacidic property vectors (APVs)

multivariable model.

Table 3shows the correlation coefficient between DRT and The prediction of the DRT by means of the statistics now
the statistics for a small protein set that contains only fourcalculated using the 74 APVs was tackled. This APV collection
proteins with similar average surface hydrophobicity and verycovered a wide spectrum of physical, chemical and biological
different DRTs. These proteins were the same as those usagninoacidic characteristics. Amongst them: molecular weight,
by Mahn et al.[5]: Ribonuclease S (1RBC), Ribonuclease A bulkiness, hydrophobicity scales, average solvent accessibility,
(1AFU), Ribonuclease T1 wild type (1RGC) and Ribonucleasesecondary structure preferences, codon numbers, etc. The pre-
T1 variant Y45W/W59Y (1TRP). The Ribonuclease T1 variantdictors were constructed using a linear model on the statistics.
has two surface amino acids interchanged, altering, in this wayhe predictive capacity of these models was characterised by
the distribution of hydrophobic amino acids without changingmeans of the determination of the Jack Knife cross validation
the average surface hydrophobicity. Additionally, the correlatiormean square error (MSk) on the set of 15 proteins. The results
coefficients between DRT and LH or HCA reported by Mahnfrom these experiments are shownTables 4 and 5
et al.[6] and amongst the DRT and the hydrophobic imbalance The performance of the statistics in ascending order with
reported by Salgado et dB] are also shown iTable 3 The  respect to the MS is shown inTable 4 This table indi-

Table 4

Performance indices of the linear model based on the statistics on the prediction of the experimental DRT of 15 proteins

Statistic APV Description Radiud] MSE x 10° Pearson MSkk x 10°

ASPstq Zimmerman14] Polarity 18 8.118 0.919 12.337

ASPmax-avg Bhaskaran and Ponnuswaijiy’] Average flexibility index 19 15.045 0.844 21.822

ASPrax Aboderin[15] Mobilities of amino acids on 19 16.530 0.827 22.712
chromatography paper

ASPmax-min Bhaskaran and Ponnuswaifiy’] Average flexibility index 11 20.457 0.780 28.945

ASPyyqg Lifson and Sand€l8] Conformational preference for 11 19.749 0.788 29.061

total g strand
(antiparallel + parallel)

The best model for each feature along with the aminoacidic property vectors (APV) selected for it are listed in ascending order with respectKaoifieeciask
validation mean square error (M§8. The correlation coefficient (Pearson), the mean square error (MSE) and the neighbourhood radii are also shgwn. MSE
values have been highlighted in bold.
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Table 5

Performance indices of the linear model based on the statistics on the prediction of the experimental DRT of 15 proteins

Statistic APV Description Radiud] MSEx10®  Pearson  MSk x 10°

ASPmax Aboderin[15] Mobilities of amino acids on chromatography paper 19 16.530 0.827 22.712

ASPayqg Browne[19] Retention coefficient in TFA 25 22.423 0.755  29.368

ASPmax-min Wertz and Scherad20] Fraction of buried amino acid on 20 proteins 11 27.327 0.690 35.113

ASPmax-avg Bull and Brees¢21] Hydrophobicity (free energy of transfer to surface in 21 26.234 0.705 35.763
kcal/mol)

ASPsq Guy[22] Hydrophobicity scale based on free energy of 13 28.941 0.668 36.478

transfer (kcal/mol)

Only models with a positive slope and which use an APV related directly to measurements of the amino acids hydrophobicity were included. Thefbesaoiodel
feature along with the aminoacidic property vectors (APV) selected are listed in ascending order with respect to the Jack Knife cross validatjoarmesaor
(MSEjk). The correlation coefficient (Pearson), the mean square error (MSE) and the neighbourhood radius are also shewalidSEave been highlighted in
bold.

cates that the best parameter for the prediction of DRT wa#PV of Meek [16] which quantifies retention coefficients in
ASPsg. The linear model associated to that parameter waddPLC at pH 2.1. These results confirm only a part of the obser-
(1.800+£0.319)— (17.276+ 4.441)ASRq and the APV used vations made in the previous section. The difference between
was the APV of Zimmerman et a]14] which quantifies the the predictive capacity obtained by Agpand the one by ASP
amino acid polarity. The ASf coefficient in this model was is similar to those obtained in the previous section. Neverthe-
negative indicating that a protein with a larger ASP standardess, in this case the radius selected by the model is almost four
deviation on its surface, and hence a higher surface heterogen@nes larger. A neighbourhood of 29contains an average of
ity, will have a smaller DRT than another homogenous one. Thi4d58.1+ 74.2 amino acids on the surface (ASA >0). So, the large
behaviour was in opposition to that observed in the previous sectumber of amino acids included in this neighbourhood indicates
tion and to that reported in the literature. These facts forced uthat for medium sized proteins in the database (lergth0 aa)
to discard the models which use the APV of Zimmerman as d@he ASRq will be almost equal to the ASP. In fact, 9 of 15
measurement of the amino acid hydrophobicity. The oppositproteins in the database have an average of 99% of their amino
behaviour observed in the models that use the APV of Zimmeracids inside this neighbourhood. Consequently, in the case of
man can be explained by the way in which this vector quantifieshis model the ASR,q will be different from ASP only in the
the amino acid polarity. The Zimmerman polarity scale assignsase of bigger proteins, such as: 1BLI, 10VA, 10VT, 1THYV,
an extremely high value to the charged amino acids (Arg, Asp2CHA and 4CHA. This behaviour can be explained by the fact
Glu, His and Lys), being this value, approximately, one ordetthat in bigger proteins, and therefore with larger surfaces, there
of magnitude greater than the rest of the hydrophilic or amphiis a higher probability of finding a larger hydrophobic hetero-
pathic amino acids. This fact has the consequence that the valgeneity on the protein surface. In those cases, thexgS®uld
of the polarity index of a substantial part of the hydrophilic or be useful.
amphipathic amino acids is very similar to the ones assigned to A significant amount of difference between the radii selected
the hydrophobic amino acids. by the models was observed. The Ak model selected a

In agreement with the previous discussidable 5was con-  radius of 19, whereas the ASRg model a radius of 38.
structed. Only models with a positive slope and which usea neighbourhood of 18 contains an average of 63i711.4
an APV related directly to measurements of the amino acihmino acids on the surface. The neighbourhood size difference
hydrophobicity were included in the table. Clearly, this oper-can be explained on the basis of the nature of the variables. For
ation of selection modified the order of the variables observe¢hstance, the ASRaxneeds a medium size neighbourhood to be
in Table 4 In this case, the best model is based on the variablgble to detect a hydrophobic hotspot or cluster on the protein
ASPmnax followed by the models constructed on the basis of thesyrface.
variables ASR,g and ASRax-min. The ASRhax model selected
the APV of Aboderir{15] which is an index of the mobilities of - 3 3 Calculation of the statistics using the collection of
amino acids in chromatography. The model based onvd&P  aminoacidic property vectors (APVs) in the hydrophobic
presented an MSk 26.9% better than the one obtained by the;enisphere
best ASP model and 19.5% better than the model based on the
hydrophobic imbalance, both values reporte{Bin The effect in the predictive capacity of linear models when

In addition, the ASR,g probed to be slightly better than its the statistics were calculated in the hydrophobic hemisphere
global counterpart ASP improving the M&Ein only 5.4%.  was investigated. The hydrophobic hemisphere was defined as
The radius selected by othis model was the upper limit of thehe subset of amino acids located in the protein hemisphere
neighbourhood sizes (29. When relaxing this upper limit, pointed out by the hydrophobic imbalance ved&. Briefly,
a minimum MSBk at the radius of 3% was found. In these the HI vector obtained from the characteristics of the protein
conditions the predictive capacity was improved by 10.8% withsurface, represents the displacement of the surface geometric
respect to the one obtained by the ASP. This model used theentre of the protein when the effect of a certain amino acid
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Table 6

Performance indices of the linear multivariable models based on the prediction of the experimental DRT of 15 proteins

No.  Statistics APV Description RadiudY MSEx10® Pearson MSk x10® DF R34 (%)

1 HI, ASPnax Aboderin[15] Mobilities of amino acids on 19 12.606 0.871 19.329 12 0.718
chromatography paper

2 HI, ASPnax Granthan{23]  Polarity 16 14.454 0.850  22.682 12 0.677

3 HI, ASPmax Meek[16] Retention coefficient in HPLC, 11 13.920 0.856 23.313 12 0.689
pH 7.4

4 ASPug, ASPnax  Aboderin[15] Mobilities of amino acids on 19 15.983 0.833 23.650 12 0.643

chromatography paper

Only models with a positive slope and which use an APV related directly to measurements of the amino acid hydrophobicity were included. The fdalsbest mo
in ascending order with respect to the Jack Knife cross validation mean square errQifM&Histed. The correlation coefficient (Pearson), the mean square error
(MSE), the neighbourhood radii, the degrees of freedom (DF) and the adjusted determination coe?ﬁgll)aante( also shown. MSk values have been highlighted

in bold.

hydrophobicity scale is considered. The results show that thenportant variable in the model is AGRBx. Its removal implies
restriction of the amino acids to only those considered inside than increase of almost 3.4-fold the original value of M@EON
hydrophobic hemisphere has a negative effect on the predictivie other hand, the removal of HI only produces an increase of
capacity of these variables. In fact, the performance of théhe MSEk of 17.5%. Even though this decrease in the predic-
models based on ASRx and ASRax-min Was worse. In the tive quality of the model cannot be disregarded, itis significantly
case of ASRaxits MSEjk increased by 30% with respect to the smaller than the one observed when removing AP
value found in the previous section. For the rest of the variables The use of linear multivariable models allowed the improve-
the MSEk decreased, but at the cost of selecting a very smalinent of the results obtained in the previous section. In fact,
radius (5&) indicating that these improvements correspond tothe best multivariable model improve the previous results by
model artifacts. decreasing the MSkk in 14.9%.

The results obtained in this section indicate that the perfor-
mance of the statistics as DRT predictors is related directly to the. 5. Final discussion
amount of information used for their calculation. These statistics
require all of the available information for their determination.  The best DRT predictive model found in this work was the

linear multivariable model that follows:
3.4. Multivariable models based on the statistics

DRT = —(1.748+ 0.827)— (0.164+ 0.185) x HI
In this section the results obtained using linear combinations
of the hydrophobic imbalance, average surface properties and +(5.987 2.179) < ASPmax )
the statistics to predict the DRT are described. The objective ig/here, DRT is the dimensionless retention time, HI is the
to find out whether the linear combination of these variables isiydrophobic imbalance and ASE is the greater ASP value
able to improve the results obtained in Sectiodby the model  observed in a neighbourhood of radius equal td 181l and

based on ASRax. ASPnaxWere calculated using the APV of Abodefirs], which
All the combinations of these variables were systematicallyis shown inTable 7
tested. Nevertheless those models which considered APVs not

related directly to hydrophobicity, as well as those whose coeffi- 70
cients did not present the expected sign (for example, a negative
coefficient for ASRyg), were eliminated. The results obtained in 60

this operation appear ifable 6
Itis interesting to note that the best models were constituted

by HI and ASRyax, only differing in the APV and in the radii =
selected. These results confirm the importance of HI in the pre-
diction of DRT reported in a previous stuBj. In addition, the
presence of ASR.x in all models confirms the results obtained I
in this paper. The best model used the APV of Abod¢ti &
which quantifies mobilities of amino acids in chromatography.

x

<
L
0
=

This APV was the same selected by the best linear model basec "

on ASRyax determined in the previous section. Also the radius 0 ; . r

selected by the model was kept. None HI ASPmax
The relative importance of HI and AgRx in the multivari- Removed variable

able model is shown IRig. 2 This flgure shows the Changes In Fig. 2. Effect of the removal of each one of the variables of the multivariable

the predictive capacity of the model (quantified as its ME  model in its predictive capacity, measured as the observed value of Jack Knife
when removing each one of the variables. Clearly, the mostross validation mean square error (M@JEn the set of 15 proteins.
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Amino acidic property vector (APV) of Aboderii5]

aa Original Scaled to (0; 1)
Ala 5.10 0.51
Arg 2.00 0.20
Asn 0.60 0.06
Asp 0.70 0.07
Cys 0.00 0.00
Gin 1.40 0.14
Glu 1.80 0.18
Gly 4.10 0.41
His 1.60 0.16
lle 9.30 0.93
Leu 10.00 1.00
Lys 1.30 0.13
Met 8.70 0.87
Phe 9.60 0.96
Pro 4.90 0.49
Ser 3.10 0.31
Thr 3.50 0.35
Trp 9.20 0.92
Tyr 8.00 0.80
Val 8.50 0.85

addition, it is interesting to highlight that the sign of the coef-
ficient for HI is negative, maintaining therefore the behaviour
observed previousl8].

Fig. 3shows the scatter plots between the experimental DRT
and the predictions carried out by the ASP model, a linear multi-
variable model reported in a previous work (8) and the linear
multivariable model developed in this work (B). This plot shows
that, in general, the difference between the experimental value
and the prediction carried out by the models is smaller in the
case of the linear multivariable model developed in the present
article (B). In fact, model B obtained better predictive capacities
than model A, decreasing the Ma&by 8.7%. Nevertheless, in
the case of model A, the error is distributed in a more uniform
way than in model B, being observed in that case an outlier with
DRT~0.8. This is clearly indicated by the distribution of the
residual error for the predictive models shownFiy. 4. The
outlier in model B corresponds to the protein RNAse S (1RBC).
The unusual behaviour of this protein was reported previously by
Mahn et al[5] and attributed to its great flexibility. However, if
we took into consideration only the four ribonucleases reported
by Mahn et al. which show unusual behaviour when modelling
DRT by ASP only, the correlation coefficient for the multivari-

The confidence intervals at 95% determined for the parameable model B was 0.901, slightly inferior to the one observed in
ters of the model did not exceed a 50% of their nominal valueshe model A. On the other hand, this correlation coefficient was
with exception of HI. In fact, the uncertainty in the determination 75.4% and 102.3% greater than the correlation coefficients of
of the HI coefficient was the highest, reaching 113% in relatiorthe models based on the LH and HCA, respectively.

to the nominal value. Nevertheless, fhgalue associated to Hl

Finally, a direct relation was not observed between the resid-

was 0.077, since this value being less than 0.1, that term is st&#al magnitude and the protein length or with the value of the
tistically significant at a 90% confidence level. Given the dataDRT, in fact, the correlation coefficient between these magni-
characteristics, this level of significance is still acceptable. Irfudes were inferior to 0.300 in both cases.
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Fig. 3. Scatter plots between the experimental dimensionless retention time (DRT) and DRT estimated by the ASP model and two multivariableend®fels. Th
model and the multivariable model A were described previo[&land the multivariable model B was developed in this work.
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1.0 s observed in previous models. In fact, this model obtained better
predictive capacities than a previous linear multivariable model
= 0.8 1 [8] decreasing the MSkk by 8.7%. In addition, this model
£ 06 allowed a decrease in the number of variables required from
3 three to two increasing in this way the degrees of freedom of the
2 047 model.
i 02 We found that the statistical characterisation of the amino acid
e surface distribution allows the prediction of the dimensionless
£ 00 - retention time of proteins with an acceptable level for many
5 practical applications (correlation coefficients >0.8). The best
0.2 1 predictive model developed in this article was a multivariable
B 3 L model, such as in our previous wdgq. Although, the reduction
ODooOmoL EFL<S>< OS5 <O > of the degrees of freedom (from 13 to 12) and the increase in the
< 3‘(; P = % § 5_ 2 ‘E_ § § g § SE % complexity of the model with respect to the linear model based
B T — on Hl is moderate. The improvement of the predictive capacity

is not particularly important.

Fig. 4. Plot of the residual error between the experimental dimensionless reten-

tion time (DRT) and DRT estimated by the ASP modll) (the multivariable

model A {) and the multivariable model Hl). The experimental DRT@), Acknowledgements

and the dimensionless lengtih)(are also shown. The multivariable model A
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