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Abstract

This paper focuses on the prediction of the dimensionless retention time (DRT) of proteins in hydrophobic interaction chromatography (HIC) by
m s the protei
s nt. It seems
m ribution
a hbourhood
p his property
q rophobicit
s er or hotspo
a ive models
b ed. The best
p o acids in
c by the best
m In addition,
t xperimental
d e capaciti
t umber of
v

K stri
S

1

e
a
n
p

phase
). In

strial
tage

l be
cids
on it.

men-
rage
f the
eans of mathematical models based on the statistical description of the amino acid surface distribution. Previous models characterisen
urface as a whole. However, most of the time it is not the whole protein but some of its specific regions that interact with the environme
uch more natural to use local measurements of the characteristics of the surface. Therefore, the statistical characterisation of the distof an
mino acid property on the protein surface was carried out from the systematic calculation of the local average of this property in a neig
laced sequentially on each of the amino acids on the protein surface. This process allowed us to characterise the distribution of t
uantitatively using three main statistics: average, standard deviation and maximum. In particular, if the property considered is a hydy
cale, these statistics allowed us to characterise the average hydrophobicity and the hydrophobic content of the most hydrophobic clustt,
s well as the heterogeneity of the hydrophobicity distribution on the protein surface. We tested the performance of the DRT predict
ased on these statistics on a set of 15 proteins. We obtained better predictive results with respect to the models previously report
redictive model was a linear model based on the maximum. This statistic was calculated using an index of the mobilities of amin
hromatography. The predictive performance of this model (measured as the Jack Knife MSE) was 26.9% better than those obtained
odel which does not consider the amino acid distribution and 19.5% better than the model based on the hydrophobic imbalance (HI).

he best performance was obtained by a linear multivariable model based on the HI and the maximum. The difference between the e
ata and the prediction carried out by this model was smaller than those observed previously. In fact, this model obtained better predictives

han a previous linear multivariable model decreasing the Jack Knife MSE in 8.7%. In addition, this model allowed us to diminish the n
ariables required, increasing, in this way, the degrees of freedom of the model.
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. Introduction

The surface characteristics of a protein determine to a great
xtent its main properties. For example, protein functions such
s catalysis or molecular recognition occur predominantly on or
ear the protein surface. In addition, these properties define the
rotein behaviour in purification stages of great importance in
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industry and at the laboratory scale, such as aqueous two-
systems and hydrophobic interaction chromatography (HIC
fact, it has been pointed out that the rational design of indu
protein purification processes normally requires an HIC s
[1].

Clearly, the characteristics of the protein surface wil
defined by its topology and by the properties of the amino a
located on the surface as well as how those are distributed
Particularly, in the case of HIC, it has been shown that the di
sionless retention time (DRT) can be correlated with the ave
surface hydrophobicity (ASH) calculated as the average o
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hydrophobicity of each amino acid on the surface corrected by
its abundance[2]. It is important to note that this model did not
consider the amino acid distribution on the protein surface. How-
ever, theoretical studies, using simplified protein models, have
shown that proteins with a heterogenous hydrophobicity distri-
bution on their surface can establish stronger interactions with a
hydrophobic ligand than those with a homogenous distribution
[3].

The model of Lienqueo et al.[4] based on the ASH has proven
to be effective on the DRT prediction for several proteins. How-
ever, there are proteins whose surface distribution prevents their
correct handling by this model. Mahn et al.[5] reported four pro-
teins for which the model of Lienqueo is deficient. In order to
deal with these proteins two models were proposed: one of exper-
imental nature[5] and another theoretical[6]. The experimen-
tal model used a hydrophobic contact area (HCA) determined
through a thermodynamic model that combined electrostatic,
hydrophobic interactions and data determined in laboratory[7].
The theoretical model used a local hydrophobicity (LH) calcu-
lated considering only the amino acids located inside the most
probable interaction zone between protein and stationary matrix,
which was determined using molecular docking simulations.
The main disadvantage of both methodologies is that they are
very expensive in human and computational resources.

On the other hand, we previously introduced a vector called
hydrophobic imbalance (HI)[8]. This vector, obtained from the
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tionally inexpensive mathematical models which can improve
the performance of the prediction of DRT reported previously.

2. Methodology

2.1. Local average surface property

Let S be the surface of a protein. We codeS by a set of points.
Each pointk ∈ S is, for us, a particular amino acid. For each of
these amino acidsk ∈ S, ASA(k) corresponds to its accessible
surface area. We also defineϕ(k) as the value of an intrinsic
aminoacidic property ofk. The value ofϕ(k) is given by an
amino acid property vector (APV) (for instance, APV could be
a hydrophobicity scale). The average surface property (ASP) of
a protein is given by:

ASP=
∑

k ∈ SASA(k)ϕ(k)
∑

k ∈ SASA(k)
(1)

If the APV (from where the values ofϕ(k) are taken) is sim-
ply a hydrophobicity scale, then the calculated ASP corresponds
to the average hydrophobic contribution of each amino acid
weighted by its accessible surface area. This quantity has been
used to develop DRT predictive models previously[2,9,10]. The
ASP of a protein is computed assuming that each amino acid on
the protein surface contributes proportionally to its abundance
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haracteristics of the protein surface, represents the disp
ent of the surface geometric centre of the protein when
ffect of a certain amino acid hydrophobicity scale is con
red. Therefore, the HI was used as a simple measurem

he characteristics of the hydrophobicity distribution on the
ein surface. The interpretation of the HI is not trivial beca
he number of effects that could take part in the calculatio
ts magnitude prevent a direct interpretation. Nevertheless,
he HI we obtained correlation coefficients remarkably bette
east 67%) than models based on the local hydrophobicity
he hydrophobic contact area. In addition, the linear comb
ion of the HI and other parameters allowed the developmen
ultivariable model which improved the predictive performa

quantified by the Jack Knife cross validation mean square e
SE) by 24.9% with respect to the best model based on HI
nd 31.8% with respect to the model based on ASH only.
orrelation coefficient obtained for the multivariable model
.899.

In this article we propose the statistical description of
urface amino acid distribution to predict the DRT of prote
n HIC in a similar approach to those used by Jönsson et a
3]. Jönsson et al., using very simple models for polymers
roteins, showed that the statistical quantification of the
rogeneity degree of the protein surface can be related
dsorption on polymers. In fact, a strong correlation betw

he adsorption ability and the degree of heterogeneity of se
rotein models was found[3].

Keeping this in mind, the main objective of this article is
nvestigate if the statistical description of the protein surfac

way to incorporate information about the amino acid sur
istribution, allows the development of simple and comp
-
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o the ASP value[11]. Details of the ASP calculation appear
previous work[8].
The ASP characterises the protein surface as a whole.

rtheless, most of the time it is not the whole protein but s
f its specific regions that interact with the environment.

ntroduction of local measures of ASP seem much more na
e define the local ASP for each amino acidk located on th

urface as follows:

SP(k) =
∑

i ∈Nr(k)ASA(i)ϕ(i)
∑

i ∈Nr(k)ASA(i)
(2)

hereNr(k) is a neighbourhood of radiusr around the amin
cidk. A neighbourhoodNr(k) is defined as the set of all ami
cids located on the protein surface and inside a ball of radr
entered on the amino acidk. In order to simplify the calculation
he location of each amino acid was chosen to be equal t
ocation of its�-carbon (except for glycine, where its�-carbon
as used). We chose the location of the�-carbon (instead o
-carbon) since this atom gives a better idea of the amino
rientation with respect to the protein backbone.

The local ASP was calculated for all the amino acids on
rotein surface for different values ofr. Fig. 1shows an exampl
learly, if a protein withL amino acids on its surface is cons
red and a set ofR neighbourhood sizes is used, the num
f times that the local ASP must be calculated isL × R. In this
ay, the distribution of the local ASP on the surface depend

he value ofr, the size of the neighbourhood considered in
alculation.

From each local ASP distribution we extracted three m
tatistics: the average ASPavg, the standard deviation ASPstdand
he maximum ASPmax. Two linear combinations were also co
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Fig. 1. Characterisation of the distribution of an amino acid property on the protein surface. The distribution was determined from the study of localASP calculated
on a neighbourhood of radiusrNr(k) around each amino acidk. The local ASP was calculated for all the amino acids on the protein surface allowing the quantitative
determination of the surface distribution of this property for a particular neighbourhood radius. In particular, the figure shows the quantificationof the distribution
of the APV of Aboderin[15] on the surface of�-lactalbumin (1A4V) when a neighbourhood of radius 11Å is considered.

sidered: ASPmax-min and ASPmax-avg. Thus, each of theR local
ASP distributions was characterized by five variables.

Following the previous analysis, if a set ofR neighbour-
hood sizes is used, then each protein in the dataset will be
represented by anR × 5 matrix, where each row of the matrix
contains the statistics calculated for a given radius. Again, if
the APV is a hydrophobicity scale, then these statistics allow
us to characterise the hydrophobicity distribution on the protein
surface. ASPavg and ASPmax give the average hydrophobicity
and the hydrophobic content of the most hydrophobic cluster or
hotspot, respectively. On the other hand, ASPstd, ASPmax-minand
ASPmax-avg, quantified the heterogeneity of the hydrophobicity
distribution on the protein surface.

A synthesis of the procedure used for the determination of
the statistics written in pseudocode follows:

,
J ndin
t bicit
a ally,
t the
p h a

random sampling and not through exhaustive analysis as in our
case.

2.2. Protein set

Fifteen proteins with known dimensionless retention time
and known three-dimensional structure were used: Cytochrome
C (1HRC), Myoglobin (1YMB), Conalbumin (1OVT), Ovoal-
bumin (1OVA), Lysozyme (2LYM), Thaumatin (1THV), Chy-
motrypsinogen A (2CHA),�-lactoglobulin (1CJ5),�-amylase
(1BLI), �-chymotrypsin (4CHA), �-lactalbumin (1A4V),
Ribonuclease S (1RBC), Ribonuclease A (1AFU), Ribonu-
clease T1 wild type (1RGC) and Ribonuclease T1 variant
Y45W/W59Y (1TRP).

the
P oft-
w
D
M obic
Our approach is similar to that of Jönsson et al.[3]. However
önsson et al., used very simple protein models, correspo
o spheres where the amino acids have a binary hydropho
nd equal level of accessible surface area. Addition

he determination of the hydrophobicity distribution on
rotein surface used by Jönsson et al. was made throug
g
y

The three-dimensional structures were obtained from
DB database[12] and the ASA was calculated using the s
are STRIDE from the protein three-dimensional structure[13].
RT data correspond to those used by Lienqueo et al.[2] and
ahn et al.[6] and they are the DRTs observed in a hydroph
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interaction column, calculated as described in a previous work
[8].

2.3. Collection of aminoacidic property vectors (APVs)

A collection of 74 APVs was used. This collection covered a
wide spectrum of physical, chemical and biological aminoacidic
characteristics. Amongst them: molecular weight, bulkiness,
hydrophobicity scales, average solvent accessibility, secondary
structure preferences, codon numbers, etc.[11,14–55]. All mem-
bers in the APVs collection were numerically scaled in the
interval [0; 1]. This scaling procedure was carried out so that
values 0 and 1 were associated to the minimum and maximum
values in the original scale, respectively. The hydrophilicity
scales were transformed into hydrophobicity scales assigning 0
to the most hydrophilic amino acid and 1 to the most hydropho-
bic (the values for the rest of the amino acids were determined
linearly). Vectors not associated to hydrophobicity scales were
not modified.

2.4. Measurement of the performance of the predictive
models

Our goal is to quantify the performance of the statistics
ASPavg, ASPstd, ASPmax, ASPmax-min and ASPmax-avg as pre-
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Table 1
Correlation coefficients (Pearson) between the dimensionless retention time
(DRT) and the statistics considered in this study determined on the 15 protein
set

Statistic Pearson Radius (Å) Hydrophobicity scale

ASPmax-min 0.701 11 HBS
ASPmax 0.675 11 HBS
ASPmax-avg 0.652 11 HBS
ASPstd 0.644 11 HBS
ASPavg 0.574 10 HBS

1Å steps. The best correlation coefficient between the dimen-
sionless retention time and these characteristics are shown in
Table 1. These results indicate that the statistics considered in
this work are better correlated to the DRT than the parameters
used in previous studies as, for instance, the average surface
hydrophobicity which is the ASP calculated using a hydropho-
bicity APV. Actually, ASPavg presents a correlation coefficient
14.1% greater than those obtained for the ASP calculated using
the hard binary scale (HBS). Both magnitudes are very similar.
In fact, the correlation coefficient between ASPavg and ASP is
0.962. However, the way in which ASPavg is calculated could
allow a slight correction when the protein has regions with very
low average hydrophobicity. This fact explains the somewhat
better results shown by ASPavg with respect to the traditional
ASP.

The sign of the correlation coefficients is positive for all the
statistics listed inTable 1. This observation is coherent with those
reported in the literature. ASPavg and ASPmax measure the aver-
age and the maximum hydrophobicity on the protein surface.
In most cases, the greater the global hydrophobicity the greater
the DRT. In addition, it has been reported that the presence of
clusters with high hydrophobicity on the protein surface favours
the interaction of the protein with the HIC stationary matrix
[3,5,6]. In fact, ASPmax quantifies the hydrophobicity in those
zones. On the other hand, ASPstd, ASPmax-min and ASPmax-min
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ictors of the dimensionless retention time. This perform
as evaluated by means of three parameters: the mean
rror, the correlation coefficient (Pearson) and the Jack K
ross validation mean square error (MSEJK). These paramete
ere calculated using the equations and methodology pres

n the previous study[8].

. Results and discussion

In this section the results obtained when using the statis
escription of the protein surface characteristics as a tool to
ict its dimensionless retention time in hydrophobic interac
hromatography are described.

.1. Calculation of the statistics using simple
ydrophobicity scales

As in our previous work[8], we started considering only ve
imple hydrophobicity scales. Three scales were used:

Hard binary scale: It assigns a value of 1 to the amino ac
widely accepted as hydrophobic (Ala, Ile, Leu, Phe, Pro,
and 0 to the rest.
Soft binary scale: As the previous one but it also cons
ers the amphipathic amino acids (Lys, Met, Thr, Trp, T
as hydrophobic (assigning a value of 1 to them).
Trinary scale: It assigns a value of 0.5 to the amphipa
amino acids, 1 to the hydrophobic, and 0 to the rest.

The statistics were calculated for the 15 proteins set
idering neighbourhoods with radii between 5 and 25Å, with
-

easure degree of heterogeneity of the surface hydroph
ty distribution. A high value of these parameters indicat
igh heterogeneity. It has been reported that a big hydrop
atch accessible to the hydrophobic matrix favours the int

ion with the matrix and thus a high retention time in HIC wo
e expected[5].

It is interesting to note that the better correlation coeffici
hown inTable 1were found mainly in neighbourhoods w
adii between 10 and 11̊A. This fact suggests a certain level
oherency in the amount of information required for the ca
ation of these parameters. A neighbourhood of 11Å contains
9.0± 1.9 amino acids with ASA > 0. Certainly, this numb
orresponds only to a basic reference, since the contribut
he protein hydrophobicity of each amino acid in this ne
ourhood will be very different. In fact, the contribution
ome amino acids will be insignificant due to their small A
he model chose a medium size neighbourhood. Smaller n
ourhoods could introduce an excessive amount of noise
arameters making them too sensitive to local disturbanc

he surface hydrophobicity distribution.
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Table 2
Correlation coefficients between the statistics considered in this study deter-
mined on the 15 protein set and calculated using the hard binary scale

ASPmax-min ASPmax ASPmax-avg ASPstd ASPavg

ASPmax-min 1 0.994 0.979 0.890 0.714
ASPmax 1 0.978 0.848 0.738
ASPmax-avg 1 0.836 0.582
ASPstd 1 0.597
ASPavg 1

Correlation coefficients greater than 0.8 have been highlighted in bold.

Additionally, all features inTable 1preferred the hard binary
scale to represent the amino acid hydrophobicity. This observa-
tion confirms results found previously[8] and it indicates that
the best results were obtained when the hydrophobicity of the
amphipathic amino acids was defined as hydrophilic (0.0); the
hydrophobic ones as 1.0 and the hydrophilic ones as 0.0. This
fact stresses the need for a more complex hydrophobicity scale.

The relationships between the statistics considered in this
study are shown inTable 2. In this case, the relationship between
two parameters was measured using the correlation coefficient
between these magnitudes calculated for the 15 proteins for the
hard binary scale. This table shows that ASPavg is considerably
different from the other variables. On the other hand, the rest
of the variables display quite high correlations. It is important
to note that in some cases ASPmax-min will be very similar to
ASPmax because ASPmin can be zero. On the other hand, the
high correlation between ASPmax and ASPstd is notorious, and
it means that both variables must be dealt with carefully in a
multivariable model.

Table 3shows the correlation coefficient between DRT and
the statistics for a small protein set that contains only four
proteins with similar average surface hydrophobicity and very
different DRTs. These proteins were the same as those used
by Mahn et al.[5]: Ribonuclease S (1RBC), Ribonuclease A
(1AFU), Ribonuclease T1 wild type (1RGC) and Ribonuclease
T1 variant Y45W/W59Y (1TRP). The Ribonuclease T1 variant
h way,
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t tion
c ahn
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Table 3
Correlation coefficients (Pearson) between the dimensionless retention time
(DRT) and the average surface hydrophobicity (ASH), local hydrophobic-
ity (LH), hydrophobic contact area (HCA), hydrophobic imbalance (HI) and
statistics

Parameter Pearson

ASH −0.528
LHa 0.557
HCAa 0.483
HIb −0.940
ASPmax-min 0.908
ASPmax 0.933
ASPmax-avg 0.938
ASPstd 0.624
ASPavg −0.309

The HI was reported in[8]. The ASH, LH and HCA were reported in[5,6]. The
HI and statistics were calculated using the hard binary scale. The calculations
only considered the following proteins: Ribonuclease S (1RBC), Ribonuclease
A (1AFU), Ribonuclease T1 wild type (1RGC) and Ribonuclease T1 variant
Y45W/W59Y (1TRP).

a Mahn et al.[6].
b Salgado et al.[8].

correlation coefficients obtained by the statistics in this small
protein set are almost twofold those obtained for the LH and
HCA and slightly smaller than those obtained for the HI. The
results obtained by the statistics justify a further study of these
parameters.

3.2. Calculation of the statistics using the collection of
aminoacidic property vectors (APVs)

The prediction of the DRT by means of the statistics now
calculated using the 74 APVs was tackled. This APV collection
covered a wide spectrum of physical, chemical and biological
aminoacidic characteristics. Amongst them: molecular weight,
bulkiness, hydrophobicity scales, average solvent accessibility,
secondary structure preferences, codon numbers, etc. The pre-
dictors were constructed using a linear model on the statistics.
The predictive capacity of these models was characterised by
means of the determination of the Jack Knife cross validation
mean square error (MSEJK) on the set of 15 proteins. The results
from these experiments are shown inTables 4 and 5.

The performance of the statistics in ascending order with
respect to the MSEJK is shown inTable 4. This table indi-

T
P ediction of the experimental DRT of 15 proteins

S ˚ 3 3

A
A index
A acid

aper
A index
A efere

llel)

T tors (
v ), th n. MSE
v

as two surface amino acids interchanged, altering, in this
he distribution of hydrophobic amino acids without chang
he average surface hydrophobicity. Additionally, the correla
oefficients between DRT and LH or HCA reported by M
t al.[6] and amongst the DRT and the hydrophobic imbala
eported by Salgado et al.[8] are also shown inTable 3. The

able 4
erformance indices of the linear model based on the statistics on the pr

tatistic APV Description

SPstd Zimmerman[14] Polarity
SPmax-avg Bhaskaran and Ponnuswamy[17] Average flexibility
SPmax Aboderin[15] Mobilities of amino

chromatography p
SPmax-min Bhaskaran and Ponnuswamy[17] Average flexibility
SPavg Lifson and Sander[18] Conformational pr

total � strand
(antiparallel + para

he best model for each feature along with the aminoacidic property vec
alidation mean square error (MSEJK). The correlation coefficient (Pearson
alues have been highlighted in bold.
Radius (A) MSE× 10 Pearson MSEJK × 10

18 8.118 0.919 12.337
19 15.045 0.844 21.822

s on 19 16.530 0.827 22.712

11 20.457 0.780 28.945
nce for 11 19.749 0.788 29.061

APV) selected for it are listed in ascending order with respect to the JackKnife cross
e mean square error (MSE) and the neighbourhood radii are also showJK
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Table 5
Performance indices of the linear model based on the statistics on the prediction of the experimental DRT of 15 proteins

Statistic APV Description Radius (Å) MSE× 103 Pearson MSEJK × 103

ASPmax Aboderin[15] Mobilities of amino acids on chromatography paper 19 16.530 0.827 22.712
ASPavg Browne[19] Retention coefficient in TFA 25 22.423 0.755 29.368
ASPmax-min Wertz and Scheraga[20] Fraction of buried amino acid on 20 proteins 11 27.327 0.690 35.113
ASPmax-avg Bull and Breese[21] Hydrophobicity (free energy of transfer to surface in

kcal/mol)
21 26.234 0.705 35.763

ASPstd Guy [22] Hydrophobicity scale based on free energy of
transfer (kcal/mol)

13 28.941 0.668 36.478

Only models with a positive slope and which use an APV related directly to measurements of the amino acids hydrophobicity were included. The best modelfor each
feature along with the aminoacidic property vectors (APV) selected are listed in ascending order with respect to the Jack Knife cross validation meansquare error
(MSEJK). The correlation coefficient (Pearson), the mean square error (MSE) and the neighbourhood radius are also shown. MSEJK values have been highlighted in
bold.

cates that the best parameter for the prediction of DRT was
ASPstd. The linear model associated to that parameter was:
(1.800± 0.319)− (17.276± 4.441)ASPstd and the APV used
was the APV of Zimmerman et al.[14] which quantifies the
amino acid polarity. The ASPstd coefficient in this model was
negative indicating that a protein with a larger ASP standard
deviation on its surface, and hence a higher surface heterogene-
ity, will have a smaller DRT than another homogenous one. This
behaviour was in opposition to that observed in the previous sec-
tion and to that reported in the literature. These facts forced us
to discard the models which use the APV of Zimmerman as a
measurement of the amino acid hydrophobicity. The opposite
behaviour observed in the models that use the APV of Zimmer-
man can be explained by the way in which this vector quantifies
the amino acid polarity. The Zimmerman polarity scale assigns
an extremely high value to the charged amino acids (Arg, Asp,
Glu, His and Lys), being this value, approximately, one order
of magnitude greater than the rest of the hydrophilic or amphi-
pathic amino acids. This fact has the consequence that the value
of the polarity index of a substantial part of the hydrophilic or
amphipathic amino acids is very similar to the ones assigned to
the hydrophobic amino acids.

In agreement with the previous discussion,Table 5was con-
structed. Only models with a positive slope and which use
an APV related directly to measurements of the amino acid
hydrophobicity were included in the table. Clearly, this oper-
a rved
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APV of Meek [16] which quantifies retention coefficients in
HPLC at pH 2.1. These results confirm only a part of the obser-
vations made in the previous section. The difference between
the predictive capacity obtained by ASPavg and the one by ASP
is similar to those obtained in the previous section. Neverthe-
less, in this case the radius selected by the model is almost four
times larger. A neighbourhood of 39̊A contains an average of
158.1± 74.2 amino acids on the surface (ASA > 0). So, the large
number of amino acids included in this neighbourhood indicates
that for medium sized proteins in the database (length≈ 150 aa)
the ASPavg will be almost equal to the ASP. In fact, 9 of 15
proteins in the database have an average of 99% of their amino
acids inside this neighbourhood. Consequently, in the case of
this model the ASPavg will be different from ASP only in the
case of bigger proteins, such as: 1BLI, 1OVA, 1OVT, 1THV,
2CHA and 4CHA. This behaviour can be explained by the fact
that in bigger proteins, and therefore with larger surfaces, there
is a higher probability of finding a larger hydrophobic hetero-
geneity on the protein surface. In those cases, the ASPavg would
be useful.

A significant amount of difference between the radii selected
by the models was observed. The ASPmax model selected a
radius of 19Å, whereas the ASPavg model a radius of 39̊A.
A neighbourhood of 19̊A contains an average of 63.7± 11.4
amino acids on the surface. The neighbourhood size difference
c s. For
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a otein
s

3
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t here
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tion of selection modified the order of the variables obse
n Table 4. In this case, the best model is based on the var
SPmax followed by the models constructed on the basis o
ariables ASPavg and ASPmax-min. The ASPmax model selecte
he APV of Aboderin[15] which is an index of the mobilities o
mino acids in chromatography. The model based on ASmax
resented an MSEJK 26.9% better than the one obtained by
est ASP model and 19.5% better than the model based o
ydrophobic imbalance, both values reported in[8].

In addition, the ASPavg probed to be slightly better than
lobal counterpart ASP improving the MSEJK in only 5.4%.
he radius selected by this model was the upper limit o
eighbourhood sizes (25̊A). When relaxing this upper limi
minimum MSEJK at the radius of 39̊A was found. In thes

onditions the predictive capacity was improved by 10.8%
espect to the one obtained by the ASP. This model use
e

e

an be explained on the basis of the nature of the variable
nstance, the ASPmax needs a medium size neighbourhood to
ble to detect a hydrophobic hotspot or cluster on the pr
urface.

.3. Calculation of the statistics using the collection of
minoacidic property vectors (APVs) in the hydrophobic
emisphere

The effect in the predictive capacity of linear models w
he statistics were calculated in the hydrophobic hemisp
as investigated. The hydrophobic hemisphere was defin

he subset of amino acids located in the protein hemisp
ointed out by the hydrophobic imbalance vector[8]. Briefly,

he HI vector obtained from the characteristics of the pro
urface, represents the displacement of the surface geo
entre of the protein when the effect of a certain amino
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Table 6
Performance indices of the linear multivariable models based on the prediction of the experimental DRT of 15 proteins

No. Statistics APV Description Radius (Å) MSE× 103 Pearson MSEJK × 103 DF R2
adj (%)

1 HI, ASPmax Aboderin[15] Mobilities of amino acids on
chromatography paper

19 12.606 0.871 19.329 12 0.718

2 HI, ASPmax Grantham[23] Polarity 16 14.454 0.850 22.682 12 0.677
3 HI, ASPmax Meek[16] Retention coefficient in HPLC,

pH 7.4
11 13.920 0.856 23.313 12 0.689

4 ASPavg, ASPmax Aboderin[15] Mobilities of amino acids on
chromatography paper

19 15.983 0.833 23.650 12 0.643

Only models with a positive slope and which use an APV related directly to measurements of the amino acid hydrophobicity were included. The four best models
in ascending order with respect to the Jack Knife cross validation mean square error (MSEJK) are listed. The correlation coefficient (Pearson), the mean square error
(MSE), the neighbourhood radii, the degrees of freedom (DF) and the adjusted determination coefficient (R2

adj) are also shown. MSEJK values have been highlighted
in bold.

hydrophobicity scale is considered. The results show that the
restriction of the amino acids to only those considered inside the
hydrophobic hemisphere has a negative effect on the predictive
capacity of these variables. In fact, the performance of the
models based on ASPmax and ASPmax-min was worse. In the
case of ASPmax its MSEJK increased by 30% with respect to the
value found in the previous section. For the rest of the variables
the MSEJK decreased, but at the cost of selecting a very small
radius (5Å) indicating that these improvements correspond to
model artifacts.

The results obtained in this section indicate that the perfor-
mance of the statistics as DRT predictors is related directly to the
amount of information used for their calculation. These statistics
require all of the available information for their determination.

3.4. Multivariable models based on the statistics

In this section the results obtained using linear combinations
of the hydrophobic imbalance, average surface properties and
the statistics to predict the DRT are described. The objective is
to find out whether the linear combination of these variables is
able to improve the results obtained in Section3.2by the model
based on ASPmax.

All the combinations of these variables were systematically
tested. Nevertheless those models which considered APVs not
related directly to hydrophobicity, as well as those whose coeffi-
c gativ
c in
t

tuted
b ii
s pre
d
p ed
i
w phy.
T ase
o dius
s

a in
t
w mos

important variable in the model is ASPmax. Its removal implies
an increase of almost 3.4-fold the original value of MSEJK. On
the other hand, the removal of HI only produces an increase of
the MSEJK of 17.5%. Even though this decrease in the predic-
tive quality of the model cannot be disregarded, it is significantly
smaller than the one observed when removing ASPmax.

The use of linear multivariable models allowed the improve-
ment of the results obtained in the previous section. In fact,
the best multivariable model improve the previous results by
decreasing the MSEJK in 14.9%.

3.5. Final discussion

The best DRT predictive model found in this work was the
linear multivariable model that follows:

DRT = −(1.748± 0.827)− (0.164± 0.185)× HI

+ (5.937± 2.179)× ASPmax (3)

where, DRT is the dimensionless retention time, HI is the
hydrophobic imbalance and ASPmax is the greater ASP value
observed in a neighbourhood of radius equal to 19Å. HI and
ASPmaxwere calculated using the APV of Aboderin[15], which
is shown inTable 7.

F iable
m Knife
c

ients did not present the expected sign (for example, a ne
oefficient for ASPstd), were eliminated. The results obtained
his operation appear inTable 6.

It is interesting to note that the best models were consti
y HI and ASPmax, only differing in the APV and in the rad
elected. These results confirm the importance of HI in the
iction of DRT reported in a previous study[8]. In addition, the
resence of ASPmax in all models confirms the results obtain

n this paper. The best model used the APV of Aboderin[15]
hich quantifies mobilities of amino acids in chromatogra
his APV was the same selected by the best linear model b
n ASPmax determined in the previous section. Also the ra
elected by the model was kept.

The relative importance of HI and ASPmax in the multivari-
ble model is shown inFig. 2. This figure shows the changes

he predictive capacity of the model (quantified as its MSEJK)
hen removing each one of the variables. Clearly, the
e

-

d

t

ig. 2. Effect of the removal of each one of the variables of the multivar
odel in its predictive capacity, measured as the observed value of Jack

ross validation mean square error (MSEJK) in the set of 15 proteins.
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Table 7
Amino acidic property vector (APV) of Aboderin[15]

aa Original Scaled to (0; 1)

Ala 5.10 0.51
Arg 2.00 0.20
Asn 0.60 0.06
Asp 0.70 0.07
Cys 0.00 0.00
Gln 1.40 0.14
Glu 1.80 0.18
Gly 4.10 0.41
His 1.60 0.16
Ile 9.30 0.93
Leu 10.00 1.00
Lys 1.30 0.13
Met 8.70 0.87
Phe 9.60 0.96
Pro 4.90 0.49
Ser 3.10 0.31
Thr 3.50 0.35
Trp 9.20 0.92
Tyr 8.00 0.80
Val 8.50 0.85

The confidence intervals at 95% determined for the parame-
ters of the model did not exceed a 50% of their nominal values,
with exception of HI. In fact, the uncertainty in the determination
of the HI coefficient was the highest, reaching 113% in relation
to the nominal value. Nevertheless, thep-value associated to HI
was 0.077, since this value being less than 0.1, that term is sta
tistically significant at a 90% confidence level. Given the data
characteristics, this level of significance is still acceptable. In

addition, it is interesting to highlight that the sign of the coef-
ficient for HI is negative, maintaining therefore the behaviour
observed previously[8].

Fig. 3shows the scatter plots between the experimental DRT
and the predictions carried out by the ASP model, a linear multi-
variable model reported in a previous work (A)[8] and the linear
multivariable model developed in this work (B). This plot shows
that, in general, the difference between the experimental value
and the prediction carried out by the models is smaller in the
case of the linear multivariable model developed in the present
article (B). In fact, model B obtained better predictive capacities
than model A, decreasing the MSEJK by 8.7%. Nevertheless, in
the case of model A, the error is distributed in a more uniform
way than in model B, being observed in that case an outlier with
DRT≈ 0.8. This is clearly indicated by the distribution of the
residual error for the predictive models shown inFig. 4. The
outlier in model B corresponds to the protein RNAse S (1RBC).
The unusual behaviour of this protein was reported previously by
Mahn et al.[5] and attributed to its great flexibility. However, if
we took into consideration only the four ribonucleases reported
by Mahn et al. which show unusual behaviour when modelling
DRT by ASP only, the correlation coefficient for the multivari-
able model B was 0.901, slightly inferior to the one observed in
the model A. On the other hand, this correlation coefficient was
75.4% and 102.3% greater than the correlation coefficients of
the models based on the LH and HCA, respectively.

esid-
u the
D gni-
t

F
m

ig. 3. Scatter plots between the experimental dimensionless retention time (
odel and the multivariable model A were described previously[8] and the multiva
-
Finally, a direct relation was not observed between the r

al magnitude and the protein length or with the value of
RT, in fact, the correlation coefficient between these ma

udes were inferior to 0.300 in both cases.
DRT) and DRT estimated by the ASP model and two multivariable models. The ASP
riable model B was developed in this work.
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Fig. 4. Plot of the residual error between the experimental dimensionless reten-
tion time (DRT) and DRT estimated by the ASP model (�), the multivariable
model A ( ) and the multivariable model B (). The experimental DRT (�),
and the dimensionless length (�) are also shown. The multivariable model A
was described previously[8] and the multivariable model B was developed in
this work. The proteins are arranged in ascending order with respect to their
DRT.

4. Conclusions

In this article the use of a statistical description of the sur-
face amino acid distribution in order to predict the behaviour of
proteins in hydrophobic interaction chromatography was inves
tigated. The statistics obtained from the statistical characterisa
tion of the amino acid surface distribution were used to mode
the DRT of four ribonucleases reported in[5] with similar ASP
and very different DRTs and therefore with a DRT hard to pre-
dict using only the ASP. These calculations were carried ou
using simple hydrophobicity scales. The correlation coefficients
obtained in this way are almost twofold those obtained for the
models based on the local hydrophobicity[6] and the hydropho-
bic contact area[5] and slightly smaller than the one obtained
for the hydrophobic imbalance[8].

The DRT predictive capacity of linear models constructed
on the basis of the statistics was also analysed. In this case th
statistics were calculated using a collection of 74 aminoacidic
property vectors. The results obtained by these models were i
general superior to the ones reported previously. The best linea
model was obtained with ASPmax calculated using the APV of
Aboderin[15] which is an index of the mobilities of amino acids
in chromatography. This model gave an MSEJK 26.9% better
than the one obtained by the best ASP model and 19.5% bette
than the model based on the hydrophobic imbalance, both value
were reported previously[8]. This result is in agreement with
t high
h n of
t
q d.

vari-
a V
o and
t hose

observed in previous models. In fact, this model obtained better
predictive capacities than a previous linear multivariable model
[8] decreasing the MSEJK by 8.7%. In addition, this model
allowed a decrease in the number of variables required from
three to two increasing in this way the degrees of freedom of the
model.

We found that the statistical characterisation of the amino acid
surface distribution allows the prediction of the dimensionless
retention time of proteins with an acceptable level for many
practical applications (correlation coefficients >0.8). The best
predictive model developed in this article was a multivariable
model, such as in our previous work[8]. Although, the reduction
of the degrees of freedom (from 13 to 12) and the increase in the
complexity of the model with respect to the linear model based
on HI is moderate. The improvement of the predictive capacity
is not particularly important.
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