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Abstract

Granular media, fluidized by a vibrating wall, is studied in the high frequency ðo!1Þ small amplitude ðA! 0Þ limit.

It is shown that there exists an asymptotic regime such that if the product Ao5=4 is kept constant, then the behavior of the

fluid in the bulk remains independent of the actual value of the amplitude with the corresponding value of the frequency.

Furthermore, we show that in this asymptotic regime the boundary condition associated to the vibrating wall can be

replaced by a stationary heat source. The value of this heat flux proves to be proportional to A2o5=2 and depends on the

fluid transport coefficients and on the wall oscillation waveform. Numerical solutions of the full hydrodynamic equations

confirm these predictions.
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1. Introduction

Granular matter is usually kept fluidized by means of vibrating walls. Commonly a hydrodynamic approach is
used to describe the bulk of the granular fluid (see for example Refs. [1–4]). However, a detailed consideration of
the boundary condition is difficult because of its explicit time dependence. In the case of high frequency and
small amplitude oscillations, successive collisions of the grains with the wall are uncorrelated. For this reason, in
this limiting case the wall has been usually modeled as an stochastic boundary condition. It has been argued that
the wall can be replaced by a thermal wall at a fixed granular temperature, that scales as Twall�mðAoÞ2, where m

is the particle mass, and A and o are the oscillation amplitude and frequency, respectively [5]. Also, kinetic
approaches have been used to characterize the vibrating boundary condition [6,7].

In previous articles [8,9], we have shown that, at high vibration frequencies, instead of a fixed temperature,
the wall imposes a permanent energy influx. If the vibration frequency exceeds the collision rate, then kinetic
theory must be used, predicting an energy influx depending to ðAoÞ2 [9]. A hydrodynamic approach is
expected to be applicable for vibration frequencies smaller than the collision rate and predicts an energy influx
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proportional to A2o5=2. A succinct account of this last prediction has already been published in a short
proceeding of a conference [8]. Here we give detailed analytical evidences of its validity and derive an explicit
expression of the injected energy for a sinusoidal oscillation as well as a generic waveform. For the sake of
clarity, we shall limit ourselves to the analysis of a two-dimensional fluid, but the results are trivially extended
to the case of a three-dimensional system. In order to check the validity of our predictions, we finally present
some numerical results obtained from the simulation of the full compressible granular hydrodynamic
equations.

2. The hydrodynamic model

We consider a granular fluid confined in a rectangular box Lx � Ly oriented along the main axes, that is
f0pxoLx; yppyoLyg. The wall at y ¼ yp acts as a ‘‘piston’’ which perpetuate an sinusoidal oscillatory
motion of amplitude A and frequency o along the Y direction

ypðtÞ ¼ A sinðotÞ, (1)

so that the average (over a period) of the piston coordinate, yp, is zero: hypi ¼ 0.
If the oscillation frequency is significantly smaller than the collision frequency, the wall motion does not

produce non-hydrodynamic behavior near it. It is then reasonable to assume that the granular fluid can be
described by appropriate two-dimensional hydrodynamic equations, like those used in Refs. [1–4], namely
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where f x and f y are the components of the body forces acting on the granular fluid (e.g. gravity), and
G ¼ Gðr;TÞ represents the energy dissipation rate (due to inelastic collisions). In what follows, we shall limit
ourselves to the study of quasi-elastic granular fluids allowing us to use the elastic Enskog expressions for the
transport coefficients. In particular, the heat flux is simply given by the Fourier law Q ¼ �k=T . We remark
that the evolution of the system is governed by the usual hydrodynamic equations for compressible Newtonian
fluids [10,11], with the addition of an energy sink term Gðr;TÞ [4,13].

Initially, the fluid is assume to be uniform and at rest. The boundary conditions are those of thermally
isolated stress free rigid walls. In particular, the Y component of the fluid velocity at y ¼ yp must be equal to
the piston velocity

vyðy ¼ ypÞ ¼ vp ¼ Ao cosðotÞ. (6)

The other boundary conditions in the Y direction read

qvx

qy

����
y¼yp;Ly

¼
qT

qy
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¼ vyðy ¼ LyÞ ¼ 0. (7)

3. High frequency limit

Solving the complete hydrodynamic equations with the presence of an oscillating wall and the energy sink
term can only be done numerically, the more so since transport coefficients are state dependent. However, in
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the limit of high frequency oscillations, the properties of the fluid in the close vicinity of the piston can be
studied separately. In fact, in this limit the motion induced by the oscillating wall is rapidly damped (viscous
dissipation). The mechanical energy is then transformed into heat, leading to a thermal energy source at some
short distance from the wall. Beyond this boundary layer one thus expect that no oscillations will be observed.

The above hand waving arguments can be written down on a precise mathematical basis by means of a
multiple scaling analysis [12]. The first step is to consider the limit o!1 while the amplitude A! 0. For this
we introduce a small dimensionless positive parameter �,

o ¼ o0�
�1; A ¼ A0�

a, (8)

where A0�Oð1Þ, o0�Oð1Þ and the exponent a is a positive parameter. The mathematical analysis is simplified
significantly if the amplitude A decreases sufficiently fast so that the piston velocity vp ¼ Ao cosðotÞ vanishes
in the limit o!1, since otherwise the system develops shock waves leading to extremely complex patterns.
Therefore, we assume that the exponent a41, which indeed insures that the piston velocity jvpj ¼ A0o0�a�1

vanishes in the limit �! 0.
Next, since the piston motion (forcing term) involves the product ot ¼ ��1o0t, the system will evolve in two

separate time scales: a fast ‘‘microscopic’’ time scale t0, and a slow ‘‘macroscopic’’ time scale t1, defined as

t0 ¼ �
�1t; t1 ¼ �t0, (9)

with t0�Oð1Þ. With this scaling t0 fully captures the oscillatory motion of the wall while t1 describes the
phenomena taking place at slower time-scales. Similarly, we introduce a short and long space length scale, y0

and y1, respectively associated to t0 and t1

y0 ¼ �
�by; y1 ¼ �

by0, (10)

where b is a positive parameter whose value have to be fixed by consistency arguments. We may thus write any
hydrodynamical quantity hðr; tÞ as h ¼ hðx; y0; y1; t0; t1Þ. Noticing that t1 ¼ �t0 ¼ t and y1 ¼ �

by0 ¼ y, one gets
the following space–time transformations:
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Inserting these transformations into Eq. (4), we obtain to the dominant order in �
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which directly implies that

b ¼ 1
2
. (14)

Noticing that the original coordinate y 2 ½yp;Ly� and yp ¼ �
aA0 sinðo0t0Þ, we find that

y0 2 ½A0�a�1=2 cosðo0t0Þ; ��1=2Ly�. Given that we have assumed that a41, we conclude that, to dominant
order in �, y0 2 ½0;1�. The boundary conditions associated to Eq. (13) thus read

vyðy0 ¼ 0; t0Þ ¼ �
a�1A0o0 cosðo0t0Þ,

vyðy0!1; t0Þ ¼ 0. (15)

Since the transport coefficients are state dependent, i.e., they are function of r and T, we cannot solve Eq. (13)
for now. Nevertheless, it is important to recall that this equation describes the behavior of vy in the boundary
layer, i.e., in the closed vicinity of the piston. Therefore, vy should contain a part that scales as the piston
velocity amplitude jvpj ¼ o0�a�1. But it should also contains a part that describes the behavior of the fluid
away from the boundary layer, at the macroscopic scales ðy1; t1Þ. We thus scale vy as

vy ¼ v0ðx; y1; t1Þ þ vðx; y0; y1; t0; t1Þ�
a�1; a41. (16)
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We note that the function v0ðx; y1; t1Þ trivially satisfies Eq. (13) so that the structure of this latter equation is
not modified by the scaling (16).

Let us now consider the continuity equation (2). Using the transformations (11) and (12) one readily finds
that

qr
qt0
�Oð�1=2Þ, (17)

which implies that to dominant order in � the density is constant in the boundary layer. Furthermore, the
relation (17) suggests an expansion of the form:
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Consistency arguments lead to the very same type of expansions for all the other hydrodynamical field
variables, i.e.,
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with the exception of the Y component of the velocity (cf. Eq. (16)), which should be expanded as
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To obtain the value of the exponent a, we observe that the transport coefficients being function of r and T,
they can also be expanded in powers of �1=2 in a similar way as the expansions (18)–(20). For instance,
k ¼ k0ðx; y1; t1Þ þ �

1=2 k1 þ � � �. In consequence, the temperature equation, Eq. (5), reduces to
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Requiring that the generated heat through the viscous heating term and its subsequent transfer beyond the
boundary layer must be of the same order in �, one directly finds that

a ¼ 5
4
. (23)

We note that the above value of a is consistent with our main assumption, a41. In particular, the piston
velocity now reads

vpðtÞ ¼ �
1=4A0o0 cosðo0t0Þ. (24)

We now come back to Eq. (13) which takes, to dominant order in �, the following simple form:
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The associate initial and boundary conditions are (cf. Eq. (15)):

v1ðy0; 0Þ ¼ 0,

v1ð0; t0Þ ¼ A0o0 cosðo0t0Þ; v1ðy0!1; t0Þ ¼ 0. (27)

The general solution of Eq. (25) reads [15]:
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In the ‘‘stationary regime’’ (i.e., after a transient time) the solution (28) reduces to

v1ðy0; t0Þ ¼ A0o0 expð�y0=‘Þ cosðy0=‘ � o0t0Þ, (30)

which clearly shows that the size of the boundary layer scales as o�1=2. The same scaling exponent was
obtained first by Stokes in the case of horizontal wall oscillations [11]. This scaling can be found by
dimensional analysis when linear hydrodynamics describes the boundary layer, hypothesis that is fulfilled in
our case because a41 and is also satisfied in the case studied by Stokes.

Let us now consider again Eq. (22) which describes the behavior of the energy in the boundary layer. The
velocity profile v1ðy0; t0Þ contributes with a positive energy source (viscous heating). It represents the energy
injected by the oscillatory motion of the piston into the boundary layer which is just transported by heat flux
and released to the main fluid core, but no volumetric dissipation takes place. These two processes must be
balanced correctly, otherwise the total energy at the boundary layer, defined as Y ¼ r0cv

R1
0 dy0T1, will

diverge as time increases. Using the explicit form of v1, Eq. (30), and the fact that qT1=qy0 must vanish at
infinity, one obtains
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The right-hand side has a constant contribution plus an oscillatory term in t0. In order that Y remains finite in
the limit t0 !1, the constant contribution must vanish identically, i.e.,
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This result seems to be in contradiction with the boundary conditions of vanishing heat flux, Eq. (7). However,
according to the multiple-scaling expansion, the heat flux has to be computed as Qy ¼ �k0qT1=qy0 � k0qT0=qy1,
and it is the sum of these two terms that must vanish at the lower boundary. The second term can be interpreted as
the macroscopic heat flux Qmacro

y , i.e., the one that is observed in the slow scale ðt1; y1Þ. Eq. (32) thus implies that
the macroscopic boundary condition for the heat flux at y1 ¼ 0 is
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Note that the viscosity coefficient appears in (33) because the mechanism responsible for the generation of the heat
source is the viscous dissipation of the density waves. In three dimensions, the expression (33) remains valid with
the change l ¼ 4

3
Zþ z.

It is now a matter of simple algebra to show that at the next non-trivial order in � (Oð�Þ) the ‘‘macroscopic’’
field variables fr0ðx; y1; t1Þ; v0ðx; y1; t1Þ;T0ðx; y1; t1Þg obey the original hydrodynamic equations with fixed
(non-vibrating) boundary conditions. The other major difference is that the heat flux at the lower boundary is
not zero, but given by Eq. (33).

This result can be generalized to an arbitrarily wall oscillation periodic waveform. Consider for instance a
wall oscillating periodically with frequency o0. Instead of the simple sinusoidal form (24), the wall velocity vp

now reads

vp ¼ �
1=4A0o0

X
n

½an cosðno0t0Þ þ bn sinðno0t0Þ�. (34)

With this boundary condition, the ‘‘stationary solution’’ of the velocity equation (25) takes the following form:
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Repeating the same procedure as before, one can then show straightforwardly that the boundary condition for
the heat flux at y1 ¼ 0 is now given by

Qmacro
y ¼ FA2
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with

F ¼
X

n

ffiffiffi
n
p
½a2

n þ b2
n�. (37)

This prefactor F can be easily computed (at least numerically) for an arbitrary waveform. For example, if the
wall moves up and down with constant velocity �A0o0, then F ¼ 2:73772. Another waveform used in
computer simulations consists in a bi-parabolic oscillation, where the wall moves with piecewise constant
acceleration �2V0o0=p, reaching a maximum velocity �A0o0 [9]. In this case, F ¼ 0:674857.

Finally, it is interesting to note that the granular dissipative mechanism Gðr;TÞ and the body forces appear
only in the slow (hydrodynamic) scale, i.e., they do not play any role in the fast scale ðt1; y1Þ where the only
hydrodynamic mechanism that is involved is the viscosity. The origin of this difference is pertained to the fact
that the effects of both granular dissipation and body forces are independent of length or time scales. This is
obviously not the case for viscous effects which get enhanced at short scales.

4. Simulations

To check the validity of our results, we have solved numerically the hydrodynamic equations (2)–(5), using
the quasi-elastic expressions of transport coefficients for dense granular systems and the Enskog expression of
the dissipation coefficient G [4,13]. More precisely, we have considered a two-dimensional square box of size L

filled with a granular fluid of global density r0, a constant restitution coefficient a, and subjected to a
gravitational field g pointing downward (opposite to Y direction). The boundary conditions correspond to
thermally insulated static stress free rigid walls, except for the bottom one which oscillates periodically with
amplitude A and frequency o. It can be shown that this system develops a vertical temperature gradient, due
to the energy dissipation, that may be large enough to trigger a convective instability [14]. The convection is
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Fig. 1. Time evolution of the total circulation F for different simulations described in the text. The dotted, dashed and dot-dashed lines

correspond to simulations S1, S2, and S3, with a vibrating wall such that Ao5=4 ¼ 4:22949 in the three cases, while o1 ¼ 20, o2 ¼ 40, and

o3 ¼ 60. The solid upper line correspond to simulation S4 with a fixed wall that injects energy give by Eq. (33). Finally, the bottom solid

line corresponds to simulation S5, with a vibrating wall such that the product Ao is the same as in S1.



ARTICLE IN PRESS
R. Soto, M.M. Mansour 
characterized by an order parameter F, defined as the sum of integrals of the velocity field along concentric
paths centered about the geometric center of the box (total circulation): F ¼

PR
v � dl. This order parameter

proves to be vanishingly small if there is no convection and distinctly nonzero (positive or negative) in the
presence of convective rolls.

We have considered a variety of different situations. In all cases we have started with a same homogeneous
mass density r0 ¼ 0:4 and global granular temperature T0 ¼ 1. The other parameters are L ¼ 50, a ¼ 0:96,
and g ¼ 0:03. The first simulation, S1, has been performed with a reference frequency o1 ¼ 20 and an
amplitude A1 ¼ 0:1. For the next two other simulations, S2 and S3, we have chosen o2 ¼ 40 and o3 ¼ 60, and
set the amplitudes such that Ao5=4 takes the same value as in S1 (about 4:23). We observe that these
simulations give the same time evolution and asymptotic value of F (see Fig. 1). A fourth simulation S4 has
been done with a static non-insulating wall that continuously injects into the system an energy flux as given by
Eq. (33). Remarkably, the evolution of F coincides with the values obtained in the vibrated cases. Finally, a
fifth simulation S5 has been performed with a vibrating wall such that the product A5o5 ¼ A1o1, that would
give the same results as in S1 if the scaling were A�o�1. The results show a complete disagreement of the
evolution of F, confirming that the correct scaling is A�o�5=4.
5. Conclusion

In conclusion, we have shown that if wall oscillations are of high frequency and small amplitude, a finite
limiting case is obtained if the amplitude scales as A ¼ A0o�5=4. If two experiments were performed with
different oscillation frequencies and amplitudes such that the value of Ao5=4 is preserved, they would produce
the same macroscopic flows.

Furthermore, in the high frequency limit, we have shown that the time dependent boundary condition can
be replaced by a simple stationary boundary that injects heat. The value of the injected heat depends on the
local density and temperature at the wall, and is proportional to A2o5=2. This result greatly simplifies the
theoretical analysis of fluids subjected to a vibrating wall constraint. Finally, our predictions are fully
supported be numerical simulations of the corresponding hydrodynamical equations.

Note that although we have made the analysis for two-dimensional systems, the results are easily extended
to three dimensions. The same scaling and a similar expression for the injected heat were obtained compared
to the two-dimensional case.
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