
A predictive control scheme
based on neural networks

Alejandro M. Suárez
Electronics Engineering Department,

Federico Santa Marı́a Technical University, Valparaı́so, Chile

Manuel A. Duarte-Mermoud
Electrical Engineering Department, University of Chile, Santiago, Chile, and

Danilo F. Bassi
Computer Science Department, University of Santiago, Santiago, Chile

Abstract

Purpose – To develop a new predictive control scheme based on neural networks for linear and
non-linear dynamical systems.

Design/methodology/approach – The approach relies on three different multilayer neural
networks using input-output information with delays. One NN is used to identify the process under
control, the other is used to predict the future values of the control error and finally the third one is
used to compute the magnitude of the control input to be applied to the plant.

Findings – This scheme has been tested by controlling discrete-time SISO and MIMO processes
already known in the control literature and the results have been compared with other control
approaches with no predictive effects. Transient behavior of the new algorithm, as well as the steady
state one, are observed and analyzed in each case studied. Also, online and offline neural network
training are compared for the proposed scheme.

Research limitations/implications – The theoretical proof of stability of the proposed scheme
still remains to be studied. Conditions under which non-linear plants together with the proposed
controller present a stable behavior have to be derived.

Practical implications – The main advantage of the proposed method is that the predictive effect
allows to suitable control complex non-linear process, eliminating oscillations during the transient
response. This will be useful for control engineers to control complex industrial plants.

Originality/value – This general approach is based on predicting the future control errors through a
predictive neural network, taking advantage of the NN characteristics to approximate any kind of
relationship. The advantage of this predictive scheme is that the knowledge of the future reference
values is not needed, since the information used to train the predictive NN is based on present and past
values of the control error. Since the plant parameters are unknown, the identification NN is used to
back-propagate the control error from the output of the plant to the output of the controller. The weights
of the controller NN are adjusted so that the present and future values of the control error are minimized.

Keywords Cybernetics, Control systems, Neural nets

Paper type Research paper

1. Introduction
Nowadays, the quality requirements for automatic controllers has been increasing due
to the greater complexity of industrial plants and because of the necessity of meeting

The research contained in this paper was partially supported by CONICYT under grants FONDECYT
1970351 and FONDECYT 1980361, and by Universidade Santiago, grant DICYT 06961BA.

A predictive
control scheme

increasingly high quality standards for goods and services. At the same time, the
availability of computing resources has dramatically increased. This has resulted that
approaches that are computationally expensive can now be used to control complex
processes. There have been important developments of controllers based on more exact
models, particularly those using predictive models that have been successfully applied
in many industrial plants (Peterson et al., 1989; Lundstrom et al., 1995; Draeger et al.,
1995). One important advantage of this kind of approach is its ability to deal with
restrictions on control and internal variables. In many applications of predictive
modeling, a linear model is used for predicting the process behavior within the horizon
of interest (Cutler and Ramaker, 1980; Garcı́a et al., 1989). However, since the majority
of real processes have some non-linear behavior, there have been several efforts in
order to extend the predictive control techniques to incorporate non-linear models
(Peterson et al., 1989; Brengel and Seider, 1989).

The most difficult part in the achievement of a non-linear predictive control is the
derivation of the mathematical model. In many cases it is still impossible to obtain an
acceptable model of the process based on physical principles, due to its inherent
complexity. A more promissory way to face these problems is to use a neural network
as a black-box non-linear model of the behavior of the processes (Thibaut and
Grandjean, 1992; MacMurray and Himmelblau, 1992). Such a neural network models
can be adjusted (trained) from plant input/output data. This data, required for the
neural network training, can be obtained straightforward from special open loop
experiments performed on the plant. However, in many cases and for practical reasons,
the plant is driven by conventional PID controllers providing stability and basic
control. In Draeger et al. (1995), it is shown that the measures of input/output variables
of a plant, handled by a linear controller, can provide very fine data for training neural
networks. This procedure is quite practical since the plant is always under control.
Also, this method is more effective, since the input excitation is much more similar to
what is expected from a non-linear controller than the one obtained by doing
experiments in open loop with no control.

Lately, several authors have used prediction of some signals based on neural
networks as a part of control schemes (Ydstie, 1990; Saint-Donald et al., 1991) for
nonlinear systems, and even some stability results have been informed (Eaton et al.,
1995). Predictive effects have also been used to compensate time-delays in nonlinear
systems (Tan and de Kayser, 1994a, b, c; Wan, 1990).

In this paper, a new control scheme that uses predictive effects for adjusting the
controller is proposed, considering the results developed in Suárez (1998). The main
idea consists in training a neural controller, taking into account the future errors
between the process output and the desired reference, using a predictive network.

In Section 2, the control approach is explained indicating the main features. Section
3 contains the mathematical description of the weight adjustments in the controller
network. Section 4 describes the procedures for training and using the predictive
neural network. Finally, in Section 6 the main conclusion of the mathematical analysis
performed are presented.

2. Description of the new control approach
The adaptive systems have the advantage to adapt it selves to environmental changes.
For this reason it is believed that the direct model control scheme, as presented in

K
35,10

Suárez (1998), suitably modify is a promising control scheme for complex pants. It is
important also to mention that the PID approach is very robust for most applications.
This is explained by the fact that the control signal is synthesized from information
about present, past and future errors. Using this idea, it is attempted to improve the
direct control approach with model, by optimizing the neural network controller with
respect to the present as well as to the past and future errors. In order to obtain future
errors, a predictive network with d step ahead or predictive horizon is proposed.

In this section, the proposed neural network control scheme is described,
considering its general structure and the control error predictive effects. Since in this
study a comparison is made between the multivariable neural control configurations
with and without predictive effects, both schemes are described in what follows. The
reader can found a more detailed presentation of the control method in Suárez (1998).

Figure 1(a) shows the MIMO neural control scheme without predictive effects for a
plant, where u(t)Rp and y(t) [Rm are the input and output variables, respectively. The
NN denoted as I correspond to the identifier which give us an estimation ŷðtÞ of output
variables y(t), based on input/output information collected online. The identifier
parameters are adjusted using static backpropagation of the identification error
eiðtÞ ¼ yðtÞ2 ŷðtÞ [Rm; with the aim of minimizing some criteria function of
the identification error. The NN denoted as C represents the controller and supply the
control variable u(t) [Rm to be applied to the plant. The controller parameters are

Figure 1.
Neural control schemes

using a model of the plant

A predictive
control scheme

adjusted using dynamic backpropagation of the control error ec(t) ¼ y(t) 2 r(t) [Rm,
through the identified model (since the plant is unknown) and with the objective of
minimizing some criteria function of the control error. (Figure 1(a)).

Figure 1(b) shows the MIMO neural control scheme with predictive effects for a plant,
where u(t)Rp and y(t) [Rm are the input and output variables, respectively. The scheme
is similar to that presented previously but with a predictive effect introduced by another
NN denoted by P which supply an estimation of the future control error (prediction error).
The controller parameters are adjusted using dynamic backpropagation of the control
errors up tod step ahead, ecðtÞ; ecðt þ 1Þ; . . . ; ecðt þ d Þ; through the identified model since
the plant is unknown, such that the following criterion function is minimized:

J ðtÞ ¼
1

2

Xi¼d

i¼0

lie
2
c ðt þ i Þ; with li ¼

1

1 þ d

In Figure 1(b), it is shown the direct control with model approach and with a predictive
network.

3. Algorithm for error propagation
The aim of the control configuration shown in Figure 1(b) is that the control error ecðkÞ
be minimum or zero after a certain time. For training the control network C it is
required a cost function associated to this error, that should be minimized. In what
follows this cost function is described and it is shown how to generate the errors
needed for this adjustment.

3.1 Generation of the error
The cost function used in this study is defined as:

f ð:Þ ¼
1

2
�eð:Þ ð1Þ

where

�eð:Þ ¼ l0eðkÞ
2 þ l1eðkþ 1Þ2 þ · · · þ ldeðkþ d Þ2 ð2Þ

with

li ¼
1

d þ 1
for i ¼ 0; 1; 2; . . . ; d

The error �eð:Þ is a weighted mean of the present and future errors and can be modified
by choosing suitable li.

3.2 Spatial-temporal model of a neuron
In the classical neuron model a single synaptic weight is associated to each input.
For temporal processing, this simple weight structure has to be modified accordingly
(Haykin, 1994). A general approach for representing the temporal behavior is to model
each synapse as a FIR filter, like the one shown in Figure 2(a), where wij denotes the
weight vector of ith synapse associated to jth neuron, where i ¼ 1,2, . . . ,p. The weight
wjo, which is connected to a dummy fixed input x0 ¼ 21 representing the threshold uj.

K
35,10

Figure 2(b) shows the flow diagram of the FIR, where z 21 represents the unit delay
operator.

According to this model, the signal sji(n) at the output of the ith synapse of the jth
neuron is represented as a linear combination of the delayed input values xi(n), as
shown by the following discrete convolution:

sjiðnÞ ¼
Xq
l¼0

wjiðl Þxiðn2 l Þ ð3Þ

where n is the discrete-time variable. Thus, by adding up the contributions of the whole
set of p synapses, the output yi(n) of jth neuron can be depicted by the following
equations:

vjðnÞ ¼
Xp
i¼0

sjiðnÞ ð4Þ

Figure 2.

A predictive
control scheme

yjðnÞ ¼ FðvjðnÞÞ ð5Þ

where vj(n) is the activation potential of the jth neuron, and F(.) is the non-linear
activation function of such neuron. It can be shown that if the weight vector wji and
state vector xi(n) are replaced by scalars wji and xi, respectively, and the inner-product
operation is replaced by the ordinary product, the dynamic model depicted by
equations (4) and (5) is reduced to the static model.

3.3 Relationship between networks
In the backpropagation of the error, there are components from both the identifier
network and the controller network (Figure 3). One crucial step in the backpropagation
is when both networks are joined. For that reason we shall analyze separately each
situation.

In Figure 3 the following parameters are considered: nu, number of plant inputs; ns,
number of plant outputs.

Between the output neurons of the controller network and each neuron in the first
hidden layer of the identifier network we use dynamical synapse, as shown in
Figure 2(a), where: xi[u1; . . . ; unu

� �
; output of output layer salida of controller

network, r[{0; . . .q}; delays associated to the xi; F[.], activation function; yj, output of j
ith neuron of input layer of identifier network. Formulae relating yj with all the inputs
of the identifier network which come from the outputs of the controller network are as
follows:

yjðnÞ ¼ FðvjðnÞÞ ð6Þ

vjðnÞ ¼
Xp
i¼0

Xq
r¼0

wjiðrÞxiðn2 rÞ ð7Þ

Figure 3.
Block diagram of
controller network and
identifier network

K
35,10

3.4 Backpropagation of the error
In order to observe how the error is backpropagated through the network, when a
weight in the controller network is updated (Haykin, 1994; Wan, 1990), we use
the signal flow diagram of Figure 4, where yd(k) is the desired value of the output,
at time k.

The equations that are involved in wil(n) weight adjustment are the following:
Cost criterion:

jðnÞ ¼
Xn0

k¼1

�ekðnÞ ð8Þ

where n0 is the number of neurons in the output layer of the identifier network.
Since there are also delayed inputs entering to the identifier network, the minimized

cost function is considered as j(n) computed over all the time indexes involved in the
backpropagation path. Then the global cost index, which is minimized over every time
index in the present and the past, is:

jtotal ¼
Xn

m¼n2delays

jðmÞ =
n

X
jðnÞ ð9Þ

Each weight adjustment is performed as:

wilðnþ 1Þ ¼ wilðnÞ þ DwilðnÞ ð10Þ

where

DwilðnÞ ¼ 2h
›jtotal

›wilðnÞ
ð11Þ

rearranging equations (1) and (2) associated with the error, we have:

�ekðnÞ ¼
1

2ðd þ 1Þ

Xnþd

m¼n

ð ydðmÞ2 ykðmÞÞ2 ð12Þ

and observing the output layer in the flow diagram of Figure 4 we obtain:

Figure 4.
Flow diagram of neuron

signals

A predictive
control scheme

ykðnÞ ¼ FðvkðnÞÞ ð13Þ

and

vkðnÞ ¼
Xn1

j¼0

wkjyjðnÞ ð14Þ

where n1 is the number of neurons in the first hidden layer of the identifier network.
Following with the analysis of the hidden layer of the identifier network, as shown

in Figure 4, it yields:

yjðnÞ ¼ FðvjðnÞÞ ð15Þ

Using the equation (7), but replacing p by n2 we obtain:

vjðnÞ ¼
Xn2

i¼0

Xq
r¼0

wjiðrÞyiðn2 rÞ ð16Þ

where n2 is the number of neurons in the output layer of the controller network and q is
the number of delays.

Looking at the output layer of controller network (Figure 4) we can conclude that:

yiðnÞ ¼ FðviðnÞÞ ð17Þ

and

viðnÞ ¼
Xn3

l¼0

wilðnÞylðnÞ ð18Þ

where n3 is the number of neurons in the hidden layer of the controller network.
In order to update the weight of equation (10) it is necessary to compute the

variation of the global cost index with respect to that weight. By using the derivative
chain rule, we have that:

›jtotal

›wilðnÞ
¼

›jtotal

›yiðnÞ

›yiðnÞ

›viðnÞ

›viðnÞ

›wilðnÞ
ð19Þ

by differentiating equations (17) and (18), and replacing the result in equation (19) we
obtain:

›jtotal

›wilðnÞ
¼

›jtotal

›yiðnÞ
F 0ðviðnÞÞylðnÞ ð20Þ

Defining as local gradient the following term:

d
v

i
ðnÞ ¼ 2

›jtotal

›yiðnÞ
F 0ðviðnÞÞ ð21Þ

and replacing into equation (20), it yields:

K
35,10

›jtotal

›wilðnÞ
¼ 2 d

v

i
ðnÞylðnÞ ð22Þ

In equation (21), the undefined partial derivative can be computed again, using the
chain rule for all the past n values, since at this stage, the delayed inputs of the
dynamic neuron are now involved. That is:

›jtotal

›yiðnÞ
¼

Xn1

j¼0 n

X ›jðnÞ

›yjðnÞ

›yjðnÞ

›vjðnÞ

›vjðnÞ

›yiðnÞ
ð23Þ

By differentiating the equation (15) and replacing in equation (23) we obtain:

›jtotal

›yiðnÞ
¼

Xn1

j¼0 n

X ›jðnÞ

›yjðnÞ
F 0ðvjðnÞÞ

›vjðnÞ

›yiðnÞ
ð24Þ

Defining as new local gradient the following term:

�djðnÞ ¼ 2
›jðnÞ

›yjðnÞ
F 0ðvjðnÞÞ ð25Þ

replacing into equation (24) yields:

›jtotal

›yiðnÞ
¼ 2

Xn1

j¼0 n

X
�djðnÞ

›vjðnÞ

›yiðnÞ
ð26Þ

Using the result of Appendix (equation (A3)), we obtain:

›jtotal

›yiðnÞ
¼ 2

Xn1

j¼0

Xqþr

n¼r

�djðnÞwjiðn2 rÞ ð27Þ

Defining the following vectors:

DjðnÞ ¼
�djðnÞ �djðnþ 1Þ . . . �djðnþ qÞ

h iT
ð28Þ

w ji ¼ wjið0Þ wjið1Þ . . . wjiðqÞ
h iT

ð29Þ

and replacing into equation (27) we have:

›jtotal

›yiðnÞ
¼ 2

Xn1

j¼0

DT
j ðnÞw ji ð30Þ

As in the previous analysis, the partial undefined derivative of equation (25) can be
decomposed by the chain rule, which yields:

A predictive
control scheme

›jðnÞ

›yjðnÞ
¼

Xn0

k¼1

›jðnÞ

›ykðnÞ

›ykðnÞ

›vkðnÞ

›vkðnÞ

›yjðnÞ
ð31Þ

Differentiating equations (13) and (14) and replacing the results in equation (31)
yields:

›jðnÞ

›yjðnÞ
¼ 2

Xn0

k¼1

›jðnÞ

›ykðnÞ
F 0ðvkðnÞÞwkj ð32Þ

Defining as new local gradient the following term:

dkðnÞ ¼ 2
›jðnÞ

›yk
F 0ðvkðnÞÞ ð33Þ

and replacing in equation (32), we have:

›jðnÞ

›yjðnÞ
¼

Xn0

k¼1

dkðnÞwkjðnÞ ð34Þ

In equation (32) the undefined partial derivative can be computed, using again the
chain rule, yielding as result:

›jðnÞ

›ykðnÞ
¼

›jðnÞ

›ekðnÞ

›ekðnÞ

›ykðnÞ
ð35Þ

with equations (8) and (12) we obtain:

›jðnÞ

›ykðnÞ
¼

21

d þ 1

Xnþd

t¼n

ekðtÞ ð36Þ

By means of this set of equations, it is possible to adjust any weight of the
controller network. It can be noted that the future errors are involved in the local
gradient of equation (33) by means of equation (36). Furthermore, in equation (30)
it is observed that the local gradient vector is composed by local scalar future
gradients associated with yi.

Clearly the exact time frame used for the weights adjustment is not important.
A possible solution for the causality problem would be to adjust weight based only
in past and present values of local scalar gradients. Therefore, by using Djðn2 qÞ in
equation (30) and replacing in equation (21), we get:

d
v

i
ðn2 qÞ ¼ 2F 0ðviðn2 qÞÞ

Xn1

j¼0

DT
j ðn2 qÞwji ð37Þ

It is noted that the state ylðn2 qÞ must be stored in order to facilitate the computation
of the product d

v

i ðn2 qÞylðn2 qÞ for adapting the weight associated with the
connection of the jth neuron with the jth neuron.

K
35,10

As a summary we have the following procedure:
. In order to obtain the value of the output yk(n), the following equations must be

evaluated in the following order: equations (18), (17), (16), (15), (14) and (13).
. To update a weight in the controller network, for example wil(n), the following

equations must be evaluated, keeping the right order: equations (36), (33), (34),
(25), (30), (21), (22), (11) and (10).

4. Description of the predictive network
In the proposed scheme, an error signal from the plant output to the output of controller
network is propagated through the plant identifier network. The propagated error
signal is the average of actual error and future errors of the plant: this is the predictive
effect. The control error is computed from the difference between the plant output and
the corresponding reference signal. In order to obtain the future errors a predictive
neural network is used. It is important to note that the future reference input needs not
to be know in advance.

4.1 Definition of vectors and matrices
The matrices used for training and running the predictive error neural network are
shown in what follows. Furthermore, other parameters involved in the prediction
process are also defined:

N ¼ number of predictions.

q ¼ number of delay taps at the process input.

p ¼ number of delay taps at the process output and reference.

ne ¼ number of inputs.

ns ¼ number of outputs.

DE ¼ matrix of plant input data of dimension ne £ (N þ q þ 1).

DS ¼ matrix of plant output data of dimension ns £ (N þ p þ 1).

DR ¼ matrix of reference data of dimension ns £ (N þ p þ 1).

DSv ¼ matrix of known output data of dimension ns £ N.

DRv ¼ matrix of known reference data of dimension ns £ N.

DEE ¼ matrix of plant input data for network training of dimension
ne £ (q þ 1).

DSE ¼ matrix of plant output data for network training of dimension
ns £ (p þ 1).

DRE ¼ matrix of reference data for network training of dimension ns £ (p þ 1).

DEJ ¼ matrix of plant input data for evaluating the network of dimension
ne £ (q þ 1).

DSJ ¼ matrix of plant output data for evaluating the network of dimension
ns £ (p þ 1).

DRJ ¼ matrix of reference data for evaluating the network of dimension
ns £ (p þ 1).

A predictive
control scheme

The known error prediction matrix used for training the network is generated by:

E ¼ DRv 2 DSv ð38Þ

The pattern matrix for training the network at each iteration is:

P E ¼

DEE

DSE

DRE

2
664

3
775 ð39Þ

The pattern matrix for evaluating the network at each iteration is:

P J ¼

DEJ

DSJ

DRJ

2
664

3
775 ð40Þ

and the vector of prediction errors produced by the network is given by:

�E ¼ e1ðkþ 1Þ· · ·ensðkþ 1Þe1ðkþ 2Þ · ensðkþ 2Þ· · ·e1ðkþ N Þ· · ·ensðkþ N Þ
� �T

ð41Þ

4.2 Data usage
During the training phase, the last N process data is used as known values for the
predictive network and at each iteration this data is updated. While evaluating, this
last N data is used as the input vector network, producing at the output of the network
the future N process errors. The procedure of training and evaluating the network is
performed at each iteration.

5. Simulations results
In this section, the proposed control scheme, direct neural predictive control using a
model of the plant, is tested over several mathematical simulated processes. This
setting allows us to get open loop training data.

5.1 Simulation tests
SISO and MIMO linear and nonlinear processes have been selected for testing the
performance of the proposed control configuration. The models of the processes used in
the simulations are defined by equations (42)-(47) in terms of either their transfer
functions or their input-output representations. In order to facilitate the result
comparisons, the nonlinear cases chosen are standard processes found in literature
(Narendra and Parthasarathy, 1990, 1991).

Linear SISO processes:

First order H ðzÞ ¼
0:00995

z2 0:99
ð42Þ

Second order H ðzÞ ¼
0:00487zþ 0:00474

z2 2 1:91zþ 0:923
ð43Þ

Nonlinear SISO processes:

K
35,10

First order ypðkþ 1Þ ¼
ypðkÞ

1 þ ypðkÞ
2
þ u 3ðkÞ ð44Þ

Second order ypðkþ 1Þ ¼
ypðkÞypðk2 1Þ½ypðkÞ þ 2:5�

1 þ y2
pðkÞ þ y2

pðk2 1Þ
þ uðkÞ ð45Þ

Linear MIMO process:

H ðzÞ ¼

0:00995
z20:99

0:00995
z20:99

0:00995
z20:99

0:00995
z20:99

2
4

3
5 ð46Þ

Nonlinear MIMO process:

yp1ðkþ 1Þ

yp2ðkþ 1Þ

" #
¼

yp1ðkÞ

1þy2
p2
ðkÞ

yp1ðkÞyp2ðkÞ

1þy2
p2
ðkÞ

2
664

3
775þ

u1ðkÞ

u2ðkÞ

" #
ð47Þ

5.2 Neural networks characteristics
In all simulations feedforward neural networks are used for control, identification and
prediction, with linear activation functions in the output layer and hyperbolic tangent
(tanh) activation functions in the hidden layers. This class of neural networks is
standard and easy to implement to achieve real time performance.

It is know that feedforward neural networks, with at least one hidden layer having
sufficient neurons, are able to approximate any nonlinear function with arbitrary
accuracy (Hornik et al., 1990). For the nonlinear cases to be studied we consider
networks with one input layer, two hidden layers and one output layer. While it may be
sufficient to have one hidden layer, with two it is possible to get lesser error in the
training process.

In describing the feedforward neural networks we use the following definitions:

N N
i 1;i 2; ... ;iNþ1

where: N is the number of layers (with synaptic weights); i1 is the number of inputs;
iNþ1 is the number of outputs; i2,i3, . . . ,iN number of neurons at each hidden layer
(N 2 1).

For example, N 3
5;20;10;1 represents a networks with 3 layer of synaptic weights,

5 inputs, 20 neurons in the first hidden layer, 10 neurons in the second layer and
1 output neuron.

Representing the process input by u(k) and the process output by y(k), with n and m
as delays, the neural network function description has the following form:

yðkþ 1Þ ¼ N ½yðkÞ; yðk2 1Þ; . . . ; yðk2mþ 1Þ;uðkÞ;uðk2 1Þ; . . . ;uðk2 nþ 1Þ� ð48Þ

The controller and predictor networks were trained online, while the identifier network
was adjusted offline. For training the identifier network at every case, we used

A predictive
control scheme

a random variable, uniformly distributed in the interval [22, 2], assuming that control
signal will be in that interval. In addition, for non-linear SISO processes, training was
done with the following signal: sin(t) þ sin(5t) þ sin(10t). This allows to adapt the
networks to similar signals that will be found in future reference, decreasing
the training time with respect to random signal. The reference signal used for testing
the performance is always the same sin(2t).

5.3 Control configuration
For controlling the output of the different processes (equations (42)-(47)), two control
schemes were considered (Figure 1). Both schemes use a dynamic actualization method
and a single controller network. The main difference between both methods is the type
of error signal used for training the controller network.

In the schemes studied in this work (Figure 1), the error signal ec(k) is propagated
from plant output to controller network output, through a plant identifier network
(Murray-Smith et al., 1992). The difference between scheme (a) and (b) shown in
Figure 1, is in its back propagated error, since in the scheme (a), the actual error
between the plant output and the reference is propagated, while in scheme (b) the
actual error and future errors of plants (predictive effect) are back propagated. In order
to determine the future errors, a predictive network is used. The implementation of
these control schemes was done under Simulink of Matlab environment, and the neural
networks were developed as a S-function of Simulink.

5.4 Tests and results
Each process was tested with both schemes, already described. The transient as well as
the steady state phase were observed and compared, changing the learning gain of the
controller network and the prediction horizon of the predictive network.

5.4.1 Linear first-order process. The parameters of the networks used for controlling
the first-order system defined by equation (42) are given in Table I.

The off-line training of the identifier network had 5,000 epochs, where each epoch
consisted of 300 pairs of data.

Controller network: Structure: N 1
5;1

Inputs: [r(k), r(k 2 1), r(k 2 2), y(k), y(k 2 1)]
Sampling time: 0.01
Learning gain: 0.5
Training: 5,000 online iterations

Identifier network: Structure: N 1
5;1

Inputs: [u(k), u(k 2 1), u(k 2 2), y(k), y(k 2 1)]
Sampling time: 0.01
Learning gain: 0.1

Predictive network: Structure: N 1
9;1

Inputs:
[u(k), u(k 2 1), u(k 2 2), y(k), y(k 2 1), y(k 2 2), r(k),
r(k 2 1), r(k 2 2)]

Sampling time: 0.01
Learning gain: 0.01
Prediction steps: 3
Training: 5,000 online iterationsTable I.

K
35,10

For the scheme without predictive network, in Figure 5 are shown the initial part and
ending part of the process output, during training phase of controller network. The
results of the scheme with predictive network are shown in Figure 6.

From Figures 5 and 6 it is observed that the predictive effect does not significantly
improve the controlled system behavior. This is because the plant is a simple linear system.

Several other simulations were performed when the learning gain of the controller
network was changed. From there it was observed that for both, transient and steady
stages, the convergence speed increases when the learning gain is augmented. It was
also studied in the case when the prediction horizon of the predictive network is
changed, keeping fixed the learning gain of controller network. It was observed that
increasing the prediction horizon only affects the transient stage, making it slower.

5.4.2 Linear second-order process. The parameters of the networks used for
controlling the second-order plant described by equation (43) are the same that those
used for the linear first-order process shown in the previous section.

Figure 5.
Output of first-order linear
process, with no predictive

network

A predictive
control scheme

For the control scheme without predictive network, Figure 7 displays the initial and
final stages of the process output, while training the controlling network. For the
scheme with predictive network, the results are displayed in Figure 8.

From Figures 7 and 8, when adding the predictive action, no significant changes are
observed. Again this is due to that fact that the plant is a simple linear system.

From other extensive simulations done, it can be shown that the results obtained for
the first-order linear system are also obtained for the linear second-order case. This
means that the convergence speed increases when the learning rate does, and
increasing the prediction horizon, while keeping fixed the learning rate of controller
network, modify only the transient stage, making it slower.

5.4.3 Non linear first-order process. The parameters of networks used for controlling
the nonlinear process defined by equation (44) are given in Table II.

Figure 6.
Output of first-order linear
process, with use of
predictive network

K
35,10

The training phase of the identifier network took 10,000 epochs, where each epoch had
300 pairs of data. The first 5,000 epochs had random inputs while the last 5,000 epochs
had sums of sinusoid signals as inputs.

For the control scheme without predictive network, Figure 9 shows the initial and
final stages of the process output, during the training phase of controlling network.
The results for the control scheme with predictive network are shown in Figure 10.

Extensive simulations done but not shown here for space reasons, show that when
the learning rate of controller network increased, the system becomes less stable. With
the predictive effect, it becomes more stable. When the number of predictions or the
predictive horizon increase, while keeping fixed the learning rate of the controller
network, the system become more stable in both transient and steady state stages.

Observing Figures 9 and 10 we can conclude that the predictive effect noticeably
diminish the oscillations in the system response.

Figure 7.
Output of second-order
linear process, without

predictive network

A predictive
control scheme

5.4.4 Non-linear second-order process. The parameters of the networks used for
controlling and identifying the nonlinear second-order plant defined by equation (45) are
identical to those used for the nonlinear first-order process presented in the previous
section. However, the predictive network is different, and its parameters are given in
Table III

The control scheme without predictive network produces an oscillatory behavior of
the process, during the training phase of controller network, as shows Figure 11, for the
initial stage. The steady state response is not shown since it is awful. The results for
the control scheme with predictive network are much better as shown in Figure 12.

The advantage of using a control scheme with predictive affects is clearly
appreciated from Figures 11 and 12, for a nonlinear second-order plant. This advantage
is more evident as long as the non-linearities and order of the plant increase.

Other simulations performed when the learning rate of the controller network is
changed, show similar results to those obtained for the first-order non-linear system.

Figure 8.
Output of second-order
linear process, with use of
predictive network

K
35,10

Controller network: Structure: N 3
5;20;10;1

Inputs: [r(k), r(k 2 1), r(k 2 2), y(k), y(k 2 1)]
Sampling time: 0.01
Learning rate: 0.1
Training: 10,000 online iterations

Identifier network: Structure: N 3
5;20;10;1

Inputs: [u(k), u(k 2 1), u(k 2 2), y(k), y(k 2 1)]
Sampling time: 0.01
Learning rate: 0.01

Predictive network: Structure: N 3
5;20;10;1

Inputs: [u(k), u(k 2 1), u(k 2 2), y(k), y(k 2 1), y(k 2 2), r(k), r(k 2 1),
r(k 2 2)]

Sampling time: 0.01
Learning rate: 0.01
Prediction steps: 3
Training: 10,000 online iterations Table II.

Figure 9.
Output of first-order

nonlinear process, without
predictive network

A predictive
control scheme

Again, when the number of predictions are increased, while keeping fixed the learning
rate of the controller network, the system becomes more stable.

5.4.5 Linear MIMO process. The parameters of networks used for controlling the
linear MIMO process defined by equation (46) are given in Table IV.

Figure 10.
Output of first-order
nonlinear process, with
use of predictive network

Predictive network: Structure: N 3
9;20;10;1

Inputs: [u(k), u(k 2 1), u(k 2 2), y(k), y(k 2 1), y(k 2 2), r(k),
r(k 2 1), r(k 2 2)]

Sampling time: 0.01
Learning rate: 0.01
Prediction steps: 3
Training: 5,000 online iterationsTable III.

K
35,10

Figure 11.
Output of second-order

nonlinear process, without
predictive network. Initial

stage only

Figure 12.
Output of second-order
nonlinear process, with

use of predictive network

A predictive
control scheme

The off-line training of the identifier network had 5,000 epochs and each epoch was
composed by 600 pairs of data. Those 600 vectors were generated by exciting the plant
with white noise, uniformly distributed between [22, þ 2], using different seeds for
each input.

For the control scheme without predictive network, the results are shown in
Figure 13, which shows the initial and final stages of the process output, during the
training phase of the controller network. For the scheme with the predictive network,
the results are shown in Figure14.

From Figures 13 and 14, it is observed that the transient stage response is less
oscillatory when using the proposed scheme. For the steady state output they are both
very similar. However, the control scheme without predictive network was trained five
times more than the scheme with predictive network.

5.4.6 Non-linear MIMO process. The parameters of network used for controlling the
MIMO non-linear plant, defined in equation (47) are given in Table V.

The off-line training of the identifier network had 5,000 epochs, and each epoch was
composed by 600 pairs of data. Those 600 vectors were generated by exciting the plant
with white noise, uniformly distributed between [22, þ 2], using different seeds for
each input.

For the control scheme without predictive network, Figure 15 shows only the initial
stage of the process output, during the training phase of the controller network, since
the steady output was very oscillatory. For the scheme using the predictive network,
the results are shown in Figure16, for the initial and final stages.

A significant improvement it is observed in the system response when the proposed
scheme is used, with respect to the scheme without prediction. This advantage was
also present when we applied the proposed scheme to control a phenomenological
(non-linear) model of CODELCO-Andina grinding plant. For the control strategy a
2 £ 2 multivariable model of the grinding plant was chosen, where the output
variables are the sump level (L), the pulp density to hydrocyclones (D), and the input
variables are the pump speed (V) and the sump water flow (F). A less oscillatory

Controller network: Structure: N 1
8;1

Inputs: [r1(k), r1(k 2 1), r2(k), r2(k 2 1), y1(k), y1(k 2 1), y2(k),
y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.5
Training: 5,000 online iterations

Identifier network: Structure: N 1
8;1

Inputs: [u1(k), u1(k 2 1), u2(k), u2(k 2 1), y1(k), y1(k 2 1), y2(k),
y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.01

Predictive network: Structure: N 1
12;1

Inputs: [r1(k), r1(k 2 1), r2(k), r2(k 2 1), u1(k), u1(k 2 1), u2(k),
u2(k 2 1), y1(k), y1(k 2 1), y2(k), y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.01
Prediction steps: 3
Training: 5,000 online iterationsTable IV.

K
35,10

response variables L and D was obtained using predictive effects if compared with the
scheme without prediction (Duarte et al., 2001)

6. Conclusions
In this paper, a new predictive controller scheme has been presented. This general
approach is based on predicting the future errors through a predictive neural network,
taking advantage of the NN characteristics to approximate any kind of relationship.
The advantage of this predictive scheme is that the knowledge of the future reference
values is not needed, since the information used to train the predictive NN (used to
estimate the future values of the control error) is based on present and past values of
the control error. Changes in the reference signal have to be smooth enough to achieve
good results.

The controller parameters are simply obtained from a global optimization process,
by minimizing the prediction error (control error at present and future instants of time).

Figure 13.
Output of MIMO linear

process, without
predictive network

A predictive
control scheme

This was rendered feasible since only present and past data were used for predictions,
not being required to know beforehand the plant reference. This is very convenient if
the process is part of a bigger system, where the reference may not be known a priori.

Conversely to this new scheme we have a simpler scheme with no predictive
network, where the controller parameters are computed using optimization in the
traditional sense: to minimize the current value of the control error.

In performing the network optimization we use an appropriate back propagation
error through the time. We observe that the error local gradient, which is propagated
from the identifier network to the controller network, depends on the local future
gradients of the input layer of the identifier network. This problem is overcome by
using present and past values of the scalar local gradients, to avoid non causality.

In linear SISO processes, both control schemes, with and without error prediction,
behave similarly, not finding significant differences. When the learning rate of the

Figure 14.
Output of MIMO linear
process, with use of
predictive network

K
35,10

controller network is increased, the system converges more rapidly. On the other hand,
increasing the number of predicting steps makes the transient slower. For linear
(MIMO) process we have a more stable transient stage, i.e. with fewer oscillations,
when prediction NN is used.

For non-linear SISO processes, we observed that increasing the learning rate of
controller network makes the system less stable. When using a relatively high learning
rate (i.e. 0.5), the predictive effect makes more stable the processes, in the transient and
steady state stages. Also, the system is stabilized by augmenting the number of
prediction steps. In the MIMO case when a predictive network scheme is used, we

Controller network: Structure: N 3
8;20;10;1

Inputs: [r1(k), r1(k 2 1), r2(k), r2(k 2 1), y1(k), y1(k 2 1),
y2(k), y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.01
Training: 10,000 online iterations

Identifier network: Structure: N 3
8;20;10;1

Inputs: [u1(k), u1(k 2 1), u2(k), u2(k 2 1), y1(k), y1(k 2 1),
y2(k), y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.01

Predictive network Structure: N 3
12;20;10;1

Inputs: [r1(k), r1(k 2 1), r2(k), r2(k 2 1), u1(k), u1(k 2 1),
u2(k), u2(k 2 1), y1(k), y1(k 2 1), y2(k), y2(k 2 1)]

Sampling time: 0.01
Learning rate: 0.01
Prediction steps: 3
Training 10,000 online iterations Table V.

Figure 15.
Output of nonlinear MIMO

process, without
predictive network. Initial

stage only

A predictive
control scheme

observe a significant improvement, for both transient and steady stage, with respect to
the non predictive approach.

In summary, both schemes, with a without predictive effects, can suitably control
linear systems, but only the approach with predictive effects can satisfactorily control
non-linear systems.

Finally, it is important to point out that the architecture of the proposed control
scheme, using a NN as a plant model, a NN for the controller and another NN for the
identifier, facilitates their integration in one larger network.

References

Brengel, D.D. and Seider, W.D. (1989), “Multistep nonlinear predictive control”, Ind. Chem. Eng.
Res., Vol. 28, pp. 1812-22.

Cutler, C. and Ramaker, B. (1980), “Dynamic matrix control: a computer control algorithm”,
Proceedings of Joint Automatic Control Conference, CA, Paper WP5-B.

Figure 16.
Output of nonlinear MIMO
process, with use of
predictive network

K
35,10

Draeger, A., Engell, S. and Ranke, H. (1995), “Model predictive control using neural networks”,
IEEE Control Systems Magazine, October, pp. 61-6.

Duarte, M., Suárez, A. and Bassi, D. (2001), “Control of grinding plants using predictive
multivariable neuronal control”, Powder Technology, Vol. 115 No. 2, pp. 193-206.

Eaton, J.W., Rawling, J.B. and Ungar, L.H. (1995), “Stability of neural net based model predictive
control”, Proceedings of the American Control Conference, Baltimore, USA, pp. 2481-5.

Garcı́a, C.E., Prett, D.M. and Morari, M. (1989), “Model predictive control: theory and practice – a
survey”, Automatica, Vol. 25, pp. 335-48.

Haykin, S. (1994), Neural Networks. A Comprehensive Foundation, Maxwell Macmillan
International, New York, NY.

Hornik, K., Stincombe, M. and White, H. (1990), “Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks”, Neural Networks,
Vol. 3, pp. 211-23.

Lundstrom, P., Lee, J.H., Morari, M. and Skogestad, S. (1995), “Limitations of dynamic matrix
control”, Computer Chem. Eng., Vol. 19 No. 4, pp. 409-21.

MacMurray, J. and Himmelblau, D. (1992), “Identification of a packed distillation column for
control via artificial neural networks”, Proceedings of the American Control Conference,
San Francisco, CA, pp. 1455-9.

Murray-Smith, R., Sbarbaro, D. and Neumerkel, D. (1992), “Neural networks for modeling and
control of a nonlinear dynamic system”, paper presented at IEEE Symposium on
Intelligent Control, Glasgow, Scotland, pp. 122-7.

Narendra, K.S. and Parthasarathy, K. (1990), “Identification and control of dynamical systems
using neural networks”, IEEE Trans. Neural Net., Vol. 1 No. 1, pp. 4-27.

Narendra, K.S. and Parthasarathy, K. (1991), “Gradient methods for optimization of
dynamical systems containing neural networks”, IEEE Trans. Neural Net., Vol. 2 No. 2,
pp. 252-62.

Peterson, T., Hernandez, E., Arkun, Y. and Schork, F.J. (1989), “Nonlinear predictive control of a
semi batch polymerisation reactor by an extended DMC”, Proceedings of American Control
Conference, pp. 1534-9.

Saint-Donald, J., Bath, N. and McAvoy, T.J. (1991), “Neural net based model predictive control”,
International Journal of Control, Vol. 54 No. 6, pp. 1453-68.

Suárez, A. (1998), “New architecture of predictive control for nonlinear systems using neural
networks”, PhD thesis, Department of Electrical Engineering, University of Chile, Santiago
(in Spanish).

Tan, Y. and de Kayser, R. (1994a), “Adaptive neural control for nonlinear processes with large
deadtime”, Proceedings of the 3 IFAC Symposium on Artificial Intelligence in Real-Time
Control, Valencia, Spain, pp. 219-24.

Tan, Y. and de Kayser, R. (1994b), “Neural network based predictive control for nonlinear
processes with time-delay”, Proceedings of the IEEE Conference on System Man and
Cybernetics, San Antonio, TX, October 2-5, USA.

Tan, Y. and de Kayser, R. (1994c), “Neural networks based adaptive predictive control”,
in Clarke, D. (Ed.), Advanced in Model Predictive Control, Oxford University Press, London,
pp. 77-88.

Thibaut, J. and Grandjean, B.P.A. (1992), “Neural networks in process control: a survey”,
in Najim, K. and Dufour, E. (Eds), Advanced Control of Chemical Processes, IFAC
Symposium Series No. 8, pp. 251-60.

A predictive
control scheme

Wan, E.A. (1990), “Temporal backpropagation for FIR neural networks”, Proceedings of the
IEEE Joint Conference on Neural Networks, San Diego, CA,Vol. 1, pp. 575-80.

Ydstie, E. (1990), “Forecasting and control using adaptive connectionist networks”, Computers
Chem. Eng., Vol. 4, pp. 583-99.

Appendix
In equation (26), for analyzing the partial derivative inside the sum we consider the equation (16).
The index q, which defines the upper limit in the inner sum of equation (16), corresponds to the
total number of time delays in each synaptic filter between jth neuron and all other neuron in
hidden layer. The index n2, that defines the upper limit of the outer sum, corresponds to the total
number of synapses arriving to jth neuron.

Recalling that the discrete convolution is commutative with respect to r, we can rewrite
equation (16) in the following equivalent form:

vjðnÞ ¼
Xn2

i¼0

Xq
r¼0

wjiðn2 rÞyiðrÞ ðA1Þ

Differentiating equation (A1) with respect to yi, we obtain:

›vjðnÞ

›yiðnÞ
¼

wjiðn2 rÞ; 0 # n2 r # q

0; otherwise

(
ðA2Þ

According to equation (A2), the partial derivative of equation (26), inside the sum, for each n that
is outside the range r # n # q þ r, is exactly zero. Therefore, for the case of ith hidden neuron,
applying equation (A2) into equation (26) yields:

Xn1

j¼0

Xqþr

n¼r

�djðnÞwjiðn2 rÞ ¼
Xn1

j¼0

Xq
n¼0

�djðnþ rÞwjiðnÞ ðA3Þ

Corresponding author
Manuel A. Duarte-Mermoud can be contacted at: mduartem@ing.uchile.cl

K
35,10

