
Aspects of Composition
in the Reflex AOP Kernel

Éric Tanter�

DCC – University of Chile
Avenida Blanco Encalada 2120 – Santiago, Chile

etanter@dcc.uchile.cl

Abstract. Aspect composition is a challenging and multi-faceted issue,
generally under-supported by current AOP languages and frameworks.
This paper presents the composition support provided in Reflex, a versa-
tile kernel for multi-language AOP in Java. The core of Reflex is based on
a model of partial reflection whose central abstractions are links: bind-
ings between a (point)cut and an action. Reflex supports the definition of
aspect languages through the mapping of aspects to links. We overview
the wide range of features for link composition in Reflex—which includes
extensible operators for ordering and nesting of links, and control over
the visibility of changes made by structural aspects—, illustrating how
they can be used to implement various scenarios of aspect composition.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for proper modularization
of crosscutting concerns [17]. As a matter of fact, in a typical application, many
crosscutting concerns can be identified and modularized as aspects. This raises
the issue of aspect composition, which includes questions such as: how to ensure
that aspects are properly composed? Furthermore, since the points where an
aspect applies (the cut of the aspect) are usually specified intensionally, how can
programmers know that two aspects are affecting the same program point?

The issue of aspect composition was first analyzed in [6], where a classifi-
cation of conflicts between aspects is proposed. Three classes of conflicts are
identified: (a) inherent conflicts, related to the incompatibility of two aspects,
(b) accidental conflicts, when two aspects happen to apply at the same program
point or have semantical conflicts, and (c) spurious conflicts, which are conflicts
that are detected whereas they are not actual conflicts. All in all, a number
of approaches to aspect composition have been proposed, usually focusing on a
particular dimension of aspect composition.

First of all, two aspects that apply to the same program points (text or ex-
ecution) are said to interact; in other words, the intersection of their cut is not
empty. When two aspects interact, there are two possibilities: either they are in-
compatible, and hence a mutual exclusion has to be specified [5, 10, 21], so as to

� É. Tanter is partially financed by the Milenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile.

Aspects of Composition in the Reflex AOP Kernel

retract one of the aspects, or to raise an error. Otherwise, if both aspects should
be applied, their order of application must be specified [5, 10, 31]. If aspects can
act around an execution point of a program, then the notion of nesting appears,
typically associated with a proceed-like mechanism [20, 31].

Furthermore, one may need to define that an aspect should apply whenever
another applies [5, 10] (aka. implicit cut), or that an aspect applies onto another
aspect [10, 5], for instance using a logging aspect to monitor the effectiveness
of a caching aspect (aka. aspects of aspects). Finally, in AOP approaches where
structural modifications can be done to a base program (e.g. adding members to
a class), the visibility of these changes to other aspects should be controllable [8].

Finally, the aspect composition problem can be divided in two parts: that of
the detection of aspect interactions, and that of their resolution. SOUL/Aop [5],
as well as AspectJ, only address means to specify composition, while Klaeren
et al. [21] focus on means to detect interactions. Concrete approaches to detec-
tion all deal with conflicts of aspects over a shared program point; being able
to detect semantic interactions between two aspects that do not interact from
a weaving point of view is to our knowledge not addressed by any proposal, as
in the general case it is undecidable. If aspects are expressed using limited ac-
tion languages, static analysis may be able to detect most semantic interactions
(see [15] for an effort in this direction). Using static analysis in presence of
Turing-complete aspect languages (at least for the part specifying the actions of
aspects) is an open issue. It is also generally admitted that automatic resolution
is not feasible; an exception to this is the approach of [15], where the limited
expressiveness of the aspect language is used to automatically determine and
resolve interactions between aspects. Nevertheless, in a general setting, unless it
can be proven that the aspects commute, the resolution of their interaction has
to be specified explicitly [10].

We are not aware of any proposal addressing all these dimensions. For in-
stance, AspectJ [20] does not provide any support for mutual exclusion and
visibility of aspectual changes, and is limited in terms of aspects of aspects and
ordering/nesting of aspects. Furthermore aspect interactions are not detected.
Other proposals are thoroughly discussed in Section 7. This paper presents the
different mechanisms for aspect composition in Reflex1, a versatile kernel for
multi-language AOP [29]2. Reflex supports:

– automatic detection of aspect interactions limiting spurious conflicts;
– aspect dependencies, such as implicit cut and mutual exclusion;
– extensible composition operators for ordering and nesting of aspects;
– control over the visibility of structural changes made by aspects;
– aspects of aspects.

1 http://reflex.dcc.uchile.cl/
2 In [29], we only discuss the issue of ordering/nesting of aspects, not the other dimen-

sions. Furthermore, the part on ordering/nesting of this paper includes a number of
corrections and improvements over the previously-presented work.

É. Tanter

The major contributions of this work are a very flexible solution for ordering
and nesting of aspects, and an initial solution for the under-explored issue of
how structural changes made by aspects affect other aspects.

In Section 2, we briefly explain the idea of multi-language AOP, and its
incarnation in the Reflex AOP kernel for Java. We then discuss the different
aspects of composition in Reflex: aspects of aspects (Sect. 3), aspect dependen-
cies (Sect. 4), ordering/nesting of aspects (Sect. 5), and visibility of structural
changes (Sect. 6). We then review in Section 7 the literature in the area of aspect
composition, highlighting the differences with our work. Section 8 concludes.

2 Multi-language AOP and Reflex

This section briefly introduces the necessary background concepts on multi-
language AOP and the Reflex AOP kernel.

2.1 Multi-language AOP

In previous work [28, 29], we have motivated the interest of being able to define
and use different aspect languages, including domain-specific ones, to modularize
the different concerns of a software system. We have proposed the architecture
of a so-called versatile kernel for multi-language AOP, and our current Java
implementation, Reflex.

An AOP kernel supports the core semantics of various AO languages through
proper structural and behavioral models. Designers of aspect languages can
experiment comfortably and rapidly with an AOP kernel as a back-end, as it
provides a higher abstraction level for transformation than low-level transforma-
tion toolkits. The abstraction level provided by our kernel is a flexible model of
partial behavioral reflection [30], extended with structural abilities. Furthermore,
a crucial role of an AOP kernel is that of a mediator between different coexist-
ing AO approaches: detecting interactions between aspects, possibly written in
different languages, and providing expressive means for their resolution.

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Fig. 1. Architecture of a versatile kernel
for multi-language AOP

activation
condition

hookset

metaobject advice

pointcut

shadow

residue

Fig. 2. The link model and correspon-
dence to AOP concepts

The architecture of an AOP kernel consists of three layers (Fig. 1): a trans-
formation layer in charge of basic weaving, supporting both structural and be-
havioral modifications of the base program; a composition layer, for detection

Aspects of Composition in the Reflex AOP Kernel

and resolution of aspect interactions; a language layer, for modular definition of
aspect languages (as plugins). It has to be noted that the transformation layer
is not necessarily implemented by a (byte)code transformation system: it can
very well be integrated directly in the language interpreter (VM). As a matter
of fact, the role of a versatile AOP kernel is to complement traditional proces-
sors of object-oriented languages. Therefore, the fact that our implementation
in Java, Reflex, is based on code transformation should be seen as an implemen-
tation detail, not as a defining characteristic of the kernel approach.

2.2 Reflex in a Nutshell

Reflex is a portable library that extends Java with structural and behavioral
reflective facilities. Behavioral reflection follows a model of partial behavioral
reflection presented in [30]: the central notion is that of explicit links binding a
set of program points (a hookset) to a metaobject. A link is characterized by a
number of attributes, among which the control at which metaobjects act (before,
after, around), and a dynamically-evaluated activation condition. Fig. 2 depicts
two links, one of which is not subject to activation, along with the correspon-
dence to the AOP concepts of the pointcut/advice model. Note that our view of
AOP is inherently related to metaprogramming: an aspect cut is realized by in-
trospection of a program (both structure and execution), and its action consists
of behavioral/structural modifications (intercession). Reflex does not impose a
specific metaobject protocol (MOP), but rather makes it easy to specify tailored
MOPs, which can coexist in a given application. This means that one can spec-
ify, on a per-link basis, the exact communication protocol (which method to call
with which arguments) with the metaobject. A detailed case study of supporting
the dynamic crosscutting of AspectJ in Reflex can be found in [25].

The aforementioned links are called behavioral links to distinguish them from
structural links, which are used to perform structural reflection. A structural link
binds a set of classes to a metaobject, which can both introspect and modify class
definitions via a class-object structural model similar to that of Javassist [7]: an
RPool object gives access to RClass objects, which in turn give access to their
members as RMember objects (either RField, RMethod, or RConstructor), which
in turn give access to their bodies as RExpr objects (with a specific type for each
kind of expression). These objects are causally-connected representations of the
underlying bytecode, offering a source-level abstraction over bytecode.

Reflex is implemented as Java 5 instrumentation agent operating on bytecode,
typically at load time. The transformation process consists, for each class being
loaded, of (1) determining the set of structural links that apply to it, and applying
them, and (2) determining the set of behavioral links and installing them. The
reason of this ordering is discussed in Section 6. During installation of behavioral
links, hooks are inserted in class definitions at the appropriate places in order
to provoke reification at runtime, following the metaobject protocol specified for
each link.

É. Tanter

2.3 From Aspects to Links

As said above, Reflex relies on the notion of an explicit link binding a cut to an
action. Links are a mid-level abstraction, in between high-level aspects and low-
level code transformation. How aspect languages are defined and implemented
over the kernel is out of the scope of this paper (preliminary elements can be
found in [29]). Composition of aspects at the kernel level is expressed in terms
of link composition, which is the central matter of this paper.

A simple AspectJ aspect, comprising of a single advice associated to a simple
pointcut (with no higher-order pointcut designator), is straightforwardly im-
plemented in Reflex with a link (as in Fig. 2). However, most practical AOP
languages, like AspectJ, make it possible to define aspects as modular units
comprising more than one cut-action pair. In Reflex this corresponds to differ-
ent links, with one action bound to each cut. Furthermore, AspectJ supports
higher-order pointcut designators, like cflow. In Reflex, the implementation of
such an aspect requires an extra link to expose the control flow information.
There is therefore an abstraction gap between aspects and links: a single aspect
may be implemented by several links. This abstraction gap is the matter of the
language layer, as discussed in [29].

3 Aspects of Aspects

Defining aspects of aspects, i.e. aspects that apply to the execution of other
aspects, is a feature that can be useful to handle crosscutting in aspects them-
selves [5, 13, 10]. For instance, a profiling aspect monitoring the efficiency of
a caching aspect. Another example is an aspect resolving an accidental se-
mantical conflict between two aspects [6]. Unsurprisingly, Reflex supports as-
pects of aspects, a feature supported by almost every AOP proposal (e.g. the
adviceexecution pointcut descriptor of AspectJ). A link A can apply to the
action of another link B by having the cut of A matching operations that oc-
cur in the metaobject associated to B. Since metaobjects are standard objects,
a link can apply not only on the execution of the metaobject methods (simi-
larly to adviceexecution in AspectJ), but also to all other operations occuring
within the metaobject: field accesses, created objects, messages sent, etc. There
is indeed no difference between controlling the execution of a base application
object and that of a metaobject.

A distinguishing feature of aspects of aspects in Reflex comes if we con-
sider aspects acting around an execution point, for instance a caching aspect.
Typically, a caching aspect holds cached values, and when a cache fault occurs,
the aspect invokes the original operation via proceed. Such a proceed is done
in Reflex via calling the proceed method of an execution point closure (EPC)
object, which a metaobject can request. If we want to profile the caching aspect
to determine the ratio of cache hits/faults, we can define a profiling aspect that
matches execution of the caching method, and separately, that of the proceed
method on the EPC object. This definition is not feasible in AspectJ, because
proceed is a special expression that is not visible to other aspects.

Aspects of Composition in the Reflex AOP Kernel

4 Aspect Dependencies

Aspect dependencies can be of two kinds: implicit cut (“apply A whenever B
applies”) and mutual exclusion (“never apply A if B applies”). These dependen-
cies between aspects are mentioned in [5, 10, 21]. In addition, we also consider
the case of forbidden interactions, an error mechanism to forbid two aspects to
interact [6].

4.1 Implicit Cut

An implicit cut is obtained by sharing the cut specification between two aspects:
In AspectJ, this is done by sharing pointcuts; in Reflex, by sharing hooksets
(pointcut shadows) and activations (pointcut residues). Consider an e-commerce
application on which we apply a discount aspect that applies to frequent cus-
tomers, implemented by link discount, and a tracing aspect implemented by
the link trace. The following ensures that trace applies whenever discount
does (BLink stands for behavioral link):

BLink trace = Links.get(discount.getHookset(), <mo>);
trace.addActivation(new SharedActivation(discount));

The first line states that trace has the same hookset than discount (<mo>
stands for the metaobject specification, not relevant here). The second line adds
an activation condition, SharedActivation, which ensures that the activation of
trace is that of discount: even if the activation condition of discount evolves
dynamically, the dependency of trace to discount is ensured.

BLink trace = Links.getSameCut(discount, <mo>);

The above getSameCut method is a convenience method equivalent to the pre-
vious version. It just hides to programmers the way the implicit cut is realized.
Finally, note that an implicit cut by definition implies that both aspects apply
at the same points, therefore raising the issue of their ordering/nesting. This is
addressed in Section 5.

4.2 Mutual Exclusion

Mutual exclusion between two aspects is obtained in Reflex by declaring that
a link should not apply if another one does. As an example, consider a bingo
aspect (implemented by a bingo link) that is used in the same application as the
discounting aspect: every 1000 buyings, a big discount is offered. If a frequent
customer happens to be the winner of the bingo, then the standard discount
granted to frequent customers should not apply3. The following statement spec-
ifies that discount should not apply if bingo does:

Rules.declareMutex(discount, bingo);

3 This example is taken from an EAOP illustration [16, 14].

É. Tanter

Following this declaration, Reflex acts differently depending on whether the de-
pendent links are subject to dynamic activation or not. If both links are not
activatable (i.e. no pointcut residue), the mutual exclusion dependency can be
resolved at weaving time, when hooks are inserted in the code. If one of them
is indeed subject to dynamic activation, then Reflex postpones the resolution
of the dependency to runtime: when control flow reaches a hook shared be-
tween mutually-exclusive links, the activation condition of the dominant link
(here, bingo) is evaluated, and consequently, only one of the two links is applied
(bingo, or discount if bingo is not active).

In the face of multiple mutual exclusion dependencies, the current algorithm
first sorts out all links which are only dominant and then eliminates dominated
links if their dominant is always active, or adds a dynamic condition to the
dominated links if their dominant is subject to dynamic activation. At each
step, the set of rules that apply is reduced.

For instance, if links A, B and C are interacting and the mutex relations are
mutex(A, B) and mutex(B, C), the algorithm first puts A in the remaining links
set, and removes B from the links to consider (supposing A is always active).
Then, only C and A remain, and since no mutex is declared between both, C
is added to the remaining links. The final solution is therefore A-C. Now, if A
is subject to an activation condition, B is not removed: rather, it is put in the
remaining links, but subject to a dynamic condition on the activation of A. At
the next step, mutex(B, C) applies. Since the application of B depends on that of
A, C would be kept and subject to the activation of B. Consequently, at runtime,
either A-C or B result, depending on whether A is active or not.

Forbidden Interactions. A particular case of mutual exclusion is when in-
teraction between two aspects should be considered an error (aka. an inherent
conflict [6]). In this case, one does not want to specify which link to apply or not,
but rather to raise an exception. This is done in Reflex using declareError:

Rules.declareError(discount, bingo);

Similarly to declareMutex, the effect of declareError can occur at weaving
time if both links are not activatable, or at runtime otherwise. In both cases, a
ForbiddenInteraction exception is thrown.

5 Ordering and Nesting of Aspects

As previously mentioned, the Reflex AOP kernel follows the general approach
advocated by Douence et al., of automatic detection and explicit resolution of
aspect interactions [10]:

– The kernel ensures that interactions are detected, and reported to users upon
under-specification (Sect. 5.1).

– The kernel provides expressive and extensible means to specify the resolution
of aspect interactions (Sect. 5.2).

– From such specifications, it composes links appropriately (Sect. 5.3).

Aspects of Composition in the Reflex AOP Kernel

5.1 Interaction Detection

An aspect interaction occurs when several aspects affect the same program point
(execution or structure). Two behavioral links interact statically if the intersec-
tion of their hooksets is not empty. Still, the cut of an aspect may include a
dynamically-evaluated condition (recall Fig. 2): we say that two behavioral links
interact dynamically if they interact statically and they are both active at the
same time. Since link ordering is resolved statically (when introducing hooks)
and activation conditions can be changed dynamically, Reflex adopts a defen-
sive approach: any static interaction is reported, and must be considered by the
developer, so that a dynamic interaction is never under-specified. Our approach
limits the number of spurious conflicts because it is based on the weaving process,
which occurs on a by-need basis. In the presence of open systems with dynamic
class laoding, two aspects that may theoretically interact for a given program (as
in the formal approach of [10]) but do not in a particular run of that program
do not raise detected conflicts.

Two structural links interact if the intersection of their class sets is not
empty. We do not discriminate between static and dynamic interaction, because
structural links are applied directly at load time. At present our approach for
structural link interactions may report spurious conflicts because two links may
affect the same class orthogonally. Finer-grained detection of interactions among
structural links is left as future work.

Upon interactions, Reflex notifies an interaction listener. The default inter-
action listener simply issues warnings upon under-specification (see [29] for an
example), informing the user that specification should be completed. It is possi-
ble to use other listeners, e.g. for on-the-fly resolution.

5.2 Ordering and Nesting

At interaction points, resolution must be specified. If links are mutually exclusive,
specifying their ordering is not necessary4. Otherwise, ordering must be specified;
this section explains how this is done for behavioral links5.

The interaction between two before-after aspects can be resolved in two ways:
either one always applies prior to the other (both before and after), or one
“surrounds” the other [5, 10], although AspectJ only supports wrapping. These
alternatives can be expressed using composition operators dealing with sequenc-
ing and wrapping. Considering aspects that can act around an execution point
(such as a caching aspect), the notion of nesting as in AspectJ appears: a nested

4 We deliberately separate the issue of dependencies from ordering/nesting, although
mutual exclusion and forbidden interactions could be expressed with the operators
explained in this section. The reason is two-fold: first, it is easier and higher-level for
the user to declare dependencies as presented in Sect. 4.2; second, it is more efficient
for the weaver to “sort out” interacting links before trying to order them.

5 The case of structural links is simpler because they are always applied sequentially
at the time a class is about to be loaded; no nesting is involved.

É. Tanter

b1
b2

a1
a2

opr1
r2 op

b1
b2

a2
a1

op

b1

a1

r1

b2

a2

opr2

seq(l1,l2) wrap(l1,l2)
no around

wrap(l1,l2)
with around

(a) (b) (c)

proceed

op original
operation

weaving
point

Fig. 3. Ordering and nesting scenarios

advice is only executed if its parent around advice invokes proceed. Around
advices cannot be simply sequenced in AspectJ: they always imply nesting, and
hence their execution always depends on the upper-level around advice [31].

In Reflex, link composition rules are specified using composition operators.
The rule seq(l1, l2) uses the seq operator to state that l1 must be applied be-
fore l2, both before and after the considered operation occurrence. The rule
wrap(l1, l2) means that l2 must be applied within l1, as clarified hereafter.

Kernel operators. User composition operators are defined in terms of lower-
level kernel operators not dealing with links but with link elements. A link ele-
ment is a pair (link, control), where control is one of the control attributes: for
instance, b1 (resp. a1) is the link element of l1 for before (resp. after) control.
There are two kernel operators, ord and nest which express respectively ordering
and nesting of link elements. nest only applies to around link elements: the rule
nest(r, e) means that the application of the around element r nests that of the
link element e. The place of the nesting is defined by the occurrences of proceed
within r. Sequencing and wrapping can hence be defined as follows:

seq(l1, l2) = ord(b1, b2), ord(r1, r2), ord(a1, a2)
wrap(l1, l2) = ord(b1, b2), ord(a2, a1), nest(r1, b1), nest(r1, r2), nest(r1, a2)

Fig. 3 illustrates sequencing and wrapping, showing seq(l1, l2) with all link ele-
ments (a), and the result of wrap(l1, l2) first without around link elements (b),
and then with around link elements (c). Weaving points are explained later on.

Composition operators. Reflex makes it possible to define a handful of user
operators for composition on top of the kernel operators. For instance, Seq and
Wrap are binary operators that implement the seq and wrap operators as defined
above:

class Seq extends CompositionOperator {
void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(r(l1), r(l2)); ord(a(l1), a(l2));
}}

Aspects of Composition in the Reflex AOP Kernel

class Wrap extends CompositionOperator {
void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(a(l2), a(l1));
nest(r(l1), b(l2)); nest(r(l1), r(l2)); nest(r(l1), a(l2));

} }

The methods b (before), r (around), a (after), ord, and nest are provided by
CompositionOperator. The expand method, evaluated whenever an interaction
between two links occurs, defines a user operator in terms of kernel operators.

Below is an example of a composition rule declared between two interacting
aspects: a timing aspect measuring method execution time, and a synchroniza-
tion aspect ensuring mutual exclusion of methods. Both aspects act before and
after method executions. The declared composition implies that the timing as-
pect measures execution time of methods, including the synchronization cost:

BLink timer = ...; BLink synchro = ...;
Rules.declare(new Wrap(timer, synchro));

Another example of composition operator is Any: this operator simply states
that the order of composition of two given links does not matter (similarly to
commute in [10]); the kernel is free to compose them arbitrarily. Currently, the
Any operator is implemented as a Seq operator, but this is not something users
should rely upon:

class Any extends Seq {}

Higher-level operators. Users can define higher-level operators based on the
building blocks of Reflex. For instance, we can define a variant of Wrap that, in
addition to the Wrap semantics, specifies that the nested link does not apply if the
wrapping link is not active. We call this operator DWrap (D for “dependency”):

class DWrap extends Wrap {
void expand(Link l1, Link l2){

super.expand(l1, l2); // wrap semantics
l2.addActivation(new SharedActivation(l1)); // active dependency

} }

5.3 Hook Generation

When detecting link interactions, Reflex generates a hook skeleton based on the
specified composition rules, similarly to Fig. 3. The hook skeleton is then used for
driving the hook generation process: taking into account how link elements have
to be inserted, with the appropriate calls to metaobjects. In order to support
nesting of aspects with proceed, Reflex adopts a strategy similar to that of
AspectJ described in [19], based on the generation of closures.

As mentioned earlier, in order to be able to do proceed, a metaobject is
given an execution point closure (EPC) object, which has a proceed method, as
well as methods for changing the actual arguments and receiver of the replaced

É. Tanter

operation. Hence, for each interaction scenario with nesting, Reflex generates
closures embedding the composition resolution of the following nesting level, so
that calling proceed on the EPC object results in the execution of the links at
the nesting level below. This is done down to the deepest level where proceed
results in the execution of the replaced operation. The top-level weaving points
on Fig. 3 represent hooks, while nested weaving points represent closures.

Since previous benchmarks [25] highlighted that executing the replaced oper-
ation reflectively implies important performance penalties, we have now adopted
the generated stub solution used in AspectJ [19].

6 Visibility of Structural Changes

In the general case, aspects may change both the structure and behavior of a
program as a consequence of their actions. Although several AOP proposals –
such as EAOP [13, 14, 10, 11], trace-based aspects [12], AOLMP [9, 5, 18], and
several others– do not consider structural aspects, languages like AspectJ do
(via inter-type declarations). Reflex, as a versatile kernel for AOP, also supports
structural changes, as mentioned earlier, via structural links.

As explained previously, aspects rely on introspecting the structure of a pro-
gram to define their cut. Since structural aspects modify this structure, the issue
of whether structural changes made by aspects are visible to others or not ap-
pears. This is a composition issue because if there is only one aspect, there is
no problem: the issue arises when considering the integration of several aspects
over the same application. This issue is still under-explored in the community.

Consider an aspect adding history to fields, and another aspect making fields
persistent: the issue of whether the field added by the first aspect in order to
record history should be made persistent appears. In Reflex, the persistence
aspect is implemented by a behavioral link, monitoring field accesses; the history
aspect, in addition to using a behavioral link for capturing history, makes use
of a structural link to introduce a new field in appropriate classes. Therefore,
the history field will only be made persistent if the cut of the persistence link
actually “sees” that field. For some applications it can make sense to have history
fields being persistent as well, but still, those fields may need to be hidden from
other aspects.

Default visibility. Reflex applies all structural links before behavioral links
are setup. This makes it possible for a behavioral link to affect operations re-
lated to a member added by a structural link, if so desired. But by default, all
structural changes are hidden. This makes it possible to avoid unwanted confla-
tion of extended and non-extended functionalities, as discussed in the meta-helix
architecture [8].

Furthermore, changes done to the program when introducing hooks (for set-
ting up behavioral links) are always hidden. This is motivated by the fact
that behavioral changes are conceptually runtime changes: the fact that Reflex
operates at load time, by introducing hooks, should be transparent; hence hooks

Aspects of Composition in the Reflex AOP Kernel

should be hidden. Similarly, infrastructure members introduced by Reflex –such
as metaobject references and initialization methods– cannot be observed. This
is implemented thanks to a mirror-based structural API [3, 27], which exposes
only interface types to users, rather than implementation types as in Javassist:
hence Reflex can coordinate visibility of structural elements “behind the scene”
(ensuring structural correspondence [3, 27]).

Declarative visibility. When introspecting a class for determing matching or
not of its cut, a link only sees what has been declared to be its view of the
program. By default, as we said, a link only sees the original program definition.
But it is possible to declare that a link has an augmented view of the program,
i.e. including changes made by other links:

(1) Rules.augmentViewOf(persistency, history);
(2) Rules.addToDefaultView(history);

Line (1) above declares that persistency sees all changes made by history.
Several links can be given to augmentViewOf. Line (2) adopts a different focus,
by promoting all changes made by history as part of the default view.

To support the subjectivity introduced above, Reflex automatically records
the identity of the link affecting a given structural element as a metadata of
the element. Metadata are stored in a general-purpose key-value property map
attached to each structural element, and can be used for many purposes. In
particular, it is possible for a link to force a new structural element to be always
visible (resp. always hidden) by setting a particular property forceVisible
(resp. forceHidden).

The proposed mechanism for controlling the visibility of structural changes
already goes beyond existing AOP proposals, in particular AspectJ. However,
our approach can still be refined and enhanced, to address more specific and
fine-grained conflicts between structural changes.

7 Related Work

Our work on aspect composition in the Reflex AOP kernel is inspired by the
work of Douence et al. in the EAOP model. It can be seen as an effort to project
over a concrete and efficient implementation their formal approach to aspect
composition [10, 11]. Among the notable differences is the fact that EAOP does
not contemplate structural changes to programs, nor the possibilities of aspects
to act around a given execution point.

Klaeren et al. have focused on the issue of validating combinations of as-
pects [21]. They use assertions to ensure the correctness of the dependencies be-
tween aspects with respect to the specification, focusing on mutually-exclusive
aspects. However they do not address means to resolve interactions between
aspects. Reflex also covers mutual exclusion, as explained in Section 4.2.

JAsCo [26] provides two mechanisms for aspect composition: precedence
strategies and combination strategies. In JAsCo, an aspect is deployed by speci-
fying a connector that determines which hooks should be enabled (the cut of an

É. Tanter

aspect) and which advice should be triggered when the cut is matched. Within a
connector that instantiates several hooks, it is possible to specify explicitly the
order in which associated advices are executed, leading to fine-grained control on
precedence strategies. This is similar to what can be expressed declaratively in
Reflex using the composition operators. However, this mechanism works fine only
for interacting aspects that are deployed by one connector. Also, with respect
to around advice however, JAsCo forces the nesting relation, while Reflex lets,
at the kernel level, the possibility of having a sequence of around advices. For
other interaction problems that are not solved by means of precedence strate-
gies, JAsCo provides combination strategies: such a strategy is like a filter on
the list of hooks that are applicable at a certain point in the execution. With
combination strategies, one can programmatically exclude certain hooks from
the current interaction. Again, this is similar to what can be achieved in Reflex;
actually the low-level interface in the Reflex kernel is equivalent, except that it
works on hook trees rather than flat lists, in order to reflect the nesting relation.
However, Reflex provides a declarative layer on top of this low-level, program-
matic interface, which JAsCo does not. Finally, JAsCo does not automatically
report on interactions, and does not address structural aspects.

Nagy et al. present a declarative approach to aspect composition [23], consid-
ering two types of constraints: ordering and control. The approach for ordering
constraints is similar to our kernel-level predicates: the pre constraint ressem-
bles our ord predicate for indicating precedence. But the issue of aspect nesting
(as addressed by nest) is not discussed. Control constraints are used to make an
aspect depend on the “return value” of the action of another aspect. Although
only boolean return values are considered, the approach is interesting. In Reflex,
it is expressable in a more flexible manner through activation conditions. Also,
Nagyet al. introduce two types of constraints, soft ones and hard ones, to be able
to express a strong dependency between two aspects, such that one can apply
only if the other one did. Mutual exclusion is however not considered. Further-
more, in our proposal, dependencies are a separate notion, although they can be
embedded within user-defined composition operators (e.g. the DWrap operator,
Sect. 5.2). Our approach is therefore more flexible in this sense. Finally, they do
not address the issue of structural changes to base code.

Brichau et al. proposed the use of logic metaprogramming [32, 9] to build com-
posable domain-specific aspect languages [5]. A logic language is used to reason
about object-oriented base programs, whose description at the metalevel is done
with logic facts and rules. The logic language also serves as the medium in which
both aspects and aspect languages are implemented and coordinated, through
logic rules in logic modules. Although no aspect-specific syntax is provided, the
use of a common logic medium is extremely expressive and allows for the spec-
ification of advanced composition strategies. The proposal, called SOUL/Aop,
however only considers a static joinpoint model; the more recent AOLMP sys-
tem Carma [18] is based on a dynamic joinpoint model, but has not gotten to
aspect composition issues yet. SOUL/Aop only deals with before/after advices,
hence issues related to acting around an execution point are not considered; nor

Aspects of Composition in the Reflex AOP Kernel

are structural aspects addressed. Also, advice weaving in SOUL/Aop is done
by inlining advice code at appropriate places, complexifying the support for as-
pects of aspects. Note that Reflex, as of now, does not offer any real support
for composing languages, but just aspects. Conversely, Brichau et al. do support
composition of languages exactly in the same way as aspects are composed: by
combining parameterized logic modules. We are currently exploring language
composition alternatives for Reflex, in particular with the MetaBorg approach
for unrestricted embedding and assimiation of domain-specific languages [4].

8 Conclusion

We have exposed different dimensions of the multi-faceted issue of aspect com-
position, and explained the support that the Reflex AOP kernel provides for the
same. Reflex supports automatic detection of aspect interactions limiting spu-
rious conflicts; possibilities to express aspect dependencies, such as implicit cut
and mutual exclusion; extensible composition operators for ordering and nesting
of aspects; the definition of aspects of aspects; and the possibility to control the
visibility of structural changes made by aspects. Since Reflex is used as an exper-
imental platform for multi-language AOP, its composition features can be used
to handle composition of aspects defined in different aspect languages. The open-
ness of the platform also makes it possible to experiment with new composition
operators.

Our experience with supporting declarative aspect composition suggests that
an imperative implementation in plain Java may not be the appropriate way to
go, as we are facing difficulties in the implementation of some deductions, which
would be straightforward using a logic engine. This remains to be explored.
Furthermore, our initial solution to composition of structural aspects needs to
be extended further, to deal with finer-grained conflicts and resolution schemes.

Acknowledgements. The author would like to thank Jacques Noyé for his
detailed comments on a draft of this paper, as well as for his contribution on the
body of work on Reflex. Guillaume Pothier, Leonardo Rodŕıguez and Rodolfo
Toledo contributed to the implementation of the features described in this paper.
The anonymous reviewers of SC’06 provided very valuable feedback that allowed
us to enhance both the presentation and the work hereby presented.

References

[1] M. Akşit, editor. Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD 2003), Boston, MA, USA, Mar. 2003.
ACM Press.

[2] D. Batory, C. Consel, and W. Taha, editors. Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering (GPCE 2002), volume 2487 of Lecture Notes in Computer Science, Pitts-
burgh, PA, USA, Oct. 2002. Springer-Verlag.

É. Tanter

[3] G. Bracha and D. Ungar. Mirrors: Design principles for meta-level facilities of
object-oriented programming languages. In OOPSLA 2004 [24], pages 331–344.
ACM SIGPLAN Notices, 39(11).

[4] M. Bravenboer and E. Visser. Concrete syntax for objects. In OOPSLA 2004
[24]. ACM SIGPLAN Notices, 39(11).

[5] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages with logic metaprogramming. In Batory et al. [2], pages 110–127.

[6] L. Bussard, L. Carver, E. Ernst, M. Jung, M. Robillard, and A. Speck. Safe
aspect composition. In J. Malenfant, S. Moisan, and A. Moreira, editors, Object-
Oriented Technology: ECOOP 2000 Workshop Reader, volume 1964 of Lecture
Notes in Computer Science, pages 205–210. Springer-Verlag, 2000.

[7] S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor, Proceed-
ings of the 14th European Conference on Object-Oriented Programming (ECOOP
2000), number 1850 in Lecture Notes in Computer Science, pages 313–336, Sophia
Antipolis and Cannes, France, June 2000. Springer-Verlag.

[8] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in metacircularity:
The meta-helix. In Proceedings of the 2nd International Symposium on Object
Technologies for Advanced Software (ISOTAS’96), volume 1049 of Lecture Notes
in Computer Science, pages 157–172. Springer-Verlag, 1996.

[9] K. De Volder and T. D’Hondt. Aspect-oriented logic meta-programming. In
P. Cointe, editor, Proceedings of the 2nd International Conference on Metalevel
Architectures and Reflection (Reflection 99), volume 1616 of Lecture Notes in
Computer Science, pages 250–272, Saint-Malo, France, July 1999. Springer-Verlag.

[10] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and
resolution of aspect interactions. In Batory et al. [2], pages 173–188.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analy-
sis of stateful aspects. In Lieberherr [22], pages 141–150.

[12] R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In R. E. Filman,
T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Development,
pages 201–217. Addison-Wesley, Boston, 2005.

[13] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In
A. Yonezawa and S. Matsuoka, editors, Proceedings of the 3rd International Con-
ference on Metalevel Architectures and Advanced Separation of Concerns (Reflec-
tion 2001), volume 2192 of Lecture Notes in Computer Science, pages 170–186,
Kyoto, Japan, Sept. 2001. Springer-Verlag.

[14] R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented
programming (EAOP). Technical Report 02/11/INFO, École des mines de Nantes,
Dec. 2002. 2nd edition, French version published in the Proceedings of ”Langages
et Modèles à Objets” (LMO’03).

[15] P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic con-
flicts between aspects. In 2nd European Interactive Workshop on Aspects in Soft-
ware (EIWAS 2005), Brussels, Belgium, Sept. 2005.

[16] The EAOP tool homepage, 2001. http://www.emn.fr/x-info/eaop/tool.html.
[17] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Commu-

nications of the ACM, 44(10), Oct. 2001.
[18] K. Gybels and J. Brichau. Arranging language features for more robust pattern-

based crosscuts. In Akşit [1], pages 60–69.
[19] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Lieberherr [22], pages

26–35.

Aspects of Composition in the Reflex AOP Kernel

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In J. L. Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), number 2072 in
Lecture Notes in Computer Science, pages 327–353, Budapest, Hungary, June
2001. Springer-Verlag.

[21] H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck. Aspect composition ap-
plying the design by contract principle. In Proceedings of the 2nd International
Symposium on Generative and Component-Based Software Engineering (GCSE
2000), volume 2177 of Lecture Notes in Computer Science, pages 57–69. Springer-
Verlag, 2000.

[22] K. Lieberherr, editor. Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), Lancaster, UK, Mar. 2004. ACM
Press.

[23] I. Nagy, L. Bergmans, and M. Aksit. Declarative aspect composition. In 2nd
Software-Engineering Properties of Languages and Aspect Technologies Workshop,
Mar 2004.

[24] Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 2004), Vancouver, British
Columbia, Canada, Oct. 2004. ACM Press. ACM SIGPLAN Notices, 39(11).

[25] L. Rodŕıguez, É. Tanter, and J. Noyé. Supporting dynamic crosscutting with par-
tial behavioral reflection: a case study. In Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), Arica, Chile,
Nov. 2004. IEEE Computer Society Press.

[26] D. Suvee, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented approach
tailored for component based software development. In Akşit [1], pages 21–29.

[27] É. Tanter. Metalevel facilities for multi-language AOP. In 2nd European Inter-
active Workshop on Aspects in Software (EIWAS 2005), Brussels, Belgium, Sept.
2005.

[28] É. Tanter and J. Noyé. Motivation and requirements for a versatile AOP kernel.
In 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, Sept. 2004.

[29] É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Glück
and M. Lowry, editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE 2005),
volume 3676 of Lecture Notes in Computer Science, pages 173–188, Tallinn, Es-
tonia, Sept./Oct. 2005. Springer-Verlag.

[30] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection:
Spatial and temporal selection of reification. In R. Crocker and G. L. Steele, Jr.,
editors, Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), pages 27–
46, Anaheim, CA, USA, Oct. 2003. ACM Press. ACM SIGPLAN Notices, 38(11).

[31] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic
join points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems, 26(5):890–910, Sept. 2004.

[32] R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA 98, page 112, 1998.

	Introduction
	Multi-language AOP and Reflex
	Multi-language AOP
	Reflex in a Nutshell
	From Aspects to Links

	Aspects of Aspects
	Aspect Dependencies
	Implicit Cut
	Mutual Exclusion

	Ordering and Nesting of Aspects
	Interaction Detection
	Ordering and Nesting
	Hook Generation

	Visibility of Structural Changes
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

