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Abstract

This work deals with a method to find the number of required tests so that the failure stress of a material belongs to a given rank of
tolerance of cumulative probability. The method is based on the estimation of the dispersion of the Weibull’s parameters (the inferior
limit tension rL, below which there is no failure, the superior limit tension rS, over which there is always failure, and the fabrication
parameters m and K) by means of the optimization of a linear correlation between the cumulative probability and the failure tension.
Using a property of the Fischer’s matrix and the dispersion of parameters estimated by the simulation method, the number of samples
compatible with fixed values of cumulative probability of failure Fc and tolerance dF can be found and, consequently, its control. This
methodology is applied to the case of a steel SAE 1020, in relation to the yield stress.
1. Introduction

In most materials, the appearance of a failure, the rup-
ture stress in the case of fragile material or the yield stress
in a ductile material, is described by the Weibull’s theory
[1–3]. The cumulative probability of failure F is represented
by the expression:

F ðrÞ ¼ 1� exp � V
V 0

uðrÞ
� �

ð1Þ

where r is the tension at which the failure takes place, (in
this case the stress distribution has a cylindrical symmetry),
V is the volume of the sample,V0 is the unit of volume and
u(r) is the specific-risk function or Weibull’s function. In
this work, the risk function proposed by Kittl et al. [3] is
considered

uðrÞ ¼
0 if 0 6 r\rL;

K r�rL

rS�r

� �m
if rL 6 r 6 rS;

1 if rS < r 6 1;
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>: ð2Þ
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where rL is the inferior limit tension (below which there is
no failure), rS is the superior limit tension (over which al-
ways there is failure) and m and K are the fabrication
parameters. Replacing (2) in (1) one obtains:

F ðrÞ ¼ 1� exp � V
V 0

K
r� rL

rS � r

� �m� �
if rL 6 r 6 rS

ð3Þ
As it is shown in [2], the determination of rL and rS, in

the case of fragile materials allows to know the size the
maximal crack to have a null probability of failure (rL)
and the size of the minimum crack for which the failure
probability is 100% (rS). The precision whereupon these
two tensions can be determined is very important to know
those sizes crack. Nevertheless, the procedure to obtain the
dispersion by some optimization method and through the
Fischer’s matrix [2], implies very troublesome calculations
which may be avoided using a simulation method.
2. Simulation method

This method allows to obtain the dispersion of Weibull’s
parameters carrying out only one set of experimental
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Fig. 1. Simulation ri () F i and its lineal regression.

M. Elgueta, P. Kittl
measures. On the basis of these measurements, other sets of
them can be simulated and be put under a very simple opti-
mization procedure. This allows to find the average value
and the dispersion of the Weibull’s parameters.

According to the expression (3), F(V,r) represents the
cumulative probability of failure of a sample of volume V
put under a tension r. Evidently, one assumes that all the
specimens have the same volume and are made according
to a same fabrication procedure. Supposing by simplicity
V = V0, F only depends on r. So, to a fixed ri corresponds
a cumulative probability F(ri) ” Fi. The simulation method
can be summarized by the following steps:

(a) Take a set of N random occurrence numbers ki with
0 6 ki 6 1, ordered in increasing order.

(b) Like the cumulative probability has a random charac-
ter and verifies 0 6 F(ri) 6 1, one can establish a
direct correspondence between the N numbers ki

and the values taken by F(ri) since both have equal
probability. So, one can write

0 6 ki � F ðriÞ 6 1

(c) Calculate ri from Eq. (3). One obtains:

ri ¼
rS

K ln 1
1�ki

� �h i1=m
þ rL

1
K ln 1

1�ki

� �h i1=m
þ 1

ð4Þ

In this expression, the values of rL, rS, m and K con-
stitute data collected experimentally.

(d) Consider N values (number of tests) of cumulative
probability given by:

F i ¼
i� 1=2

N
with i ¼ 1; 2; 3 . . . N ð5Þ

Notice that these N values of Fi are placed in increas-
ing order.

(e) The correlation

ri () F i ð6Þ
constitutes precisely the simulation. Fi is calculated
by expression (5) and ri by expression (4) and both
are ranged in increasing order. In a plot Fi vs. ri,
one obtains a discrete representation (points) of
expression (3).

To obtain the Weibull’s parameters using the simula-
tion, formula (3) is rearranged to obtain a straight line in
a plot ln(ln(1/(1 � F))) vs. ln((r � rL/rS � r)) as it is
shown in Fig. 1. It is obtained (analytic expression)

ln ln
1

1� F ðrÞ

� 	� �
¼ m � ln r� rL

rS � r

� �
þ m � ln K ð7Þ

or (discrete expression),

ln ln
1

1� F i

� 	� �
¼ m � ln ri � rL

rS � ri

� �
þ m � ln K ð8Þ
When the expression (7) is fitted to the points given by
(8), for a given pair of values of rL and rS, it is possible
to determine m and K and the respective correlation
coefficient.

Considering a set of inferior and superior tensions

rLp < rLp�1 < rLp�2 . . . . . . : < rL0 and rS0 < rS1 . . . . . . :

< rSp�1 < rSp

the Weibull’ parameters are those that give to the best lin-
ear correlation.

Making a series of M simulations by means of N ran-
dom numbers ki each time, the mean values of rL, rS, m

and DK of dispersions DrL, DrS, Dm and DK are deter-
mined from only one experimental procedure with N spec-
imens. This one is not the first attempt to determine the
four Weibull’s parameters and their dispersions; a different
method has been proposed in [4], but it has not been tested
experimentally.
3. Number of specimens

By means of the Fisher’s matrix [2], the dispersions of
parameters can be expressed in the form:

DrL ¼
1ffiffiffiffi
N
p frL

; DrS ¼
1ffiffiffiffi
N
p frS

;

Dm ¼ 1ffiffiffiffi
N
p fm; DK ¼ 1ffiffiffiffi

N
p fK ð9Þ

where N is the number of essays to obtain Dm, DK, DrL,
DrS. Functions fm, fK, frL

, frS
depend only on m, K, rL,

rS and can be calculated from relationships (9), because
the parameters dispersions are known from simulations.

On the other hand, if in a design the level of failure Fc,
with a design tension rc, and the tolerance dF are
adopted, the values of dm, dK, drL and drS can be derived
from Eq. (3); this fact is outlined in Fig. 2. Explicitly, one
obtains:



Table 1
Experimental results

Parameter Experimental values

rL (MPa) 400
rS (MPa) 460
m 14
K 8.68

Table 2
Results obtained by simulation

Parameter Simulated average values Dispersion

rL (MPa) 403 1.5
rS (MPa) 461 1.4
m 13.2 4.5
K 9.1 3.9
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Fig. 2. Diagram of the cumulative probability of failure and its tolerance
in relation with the design stress.
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and for rc,

rc ¼
rS ln 1

1�F c

� �1
m þ KrL

ln 1
1�F c

� �1
m þ K

ð11Þ

with dm, dK, drL and drS obtained from Eq. (10), it is pos-
sible to determine the number of specimens required to get
a fixed cumulative probability of failure Fc, corresponding
to a given design tension rc, within a fixed tolerance dF.
The relationships are as follow:

NrL
¼ frL

drL

� �2

; NrS
¼ frS

drS

� �2

;

Nm ¼
fm

dm

� �2

; NK ¼
fK

dK

� �2

ð12Þ
Table 3
Functions fi

frL ðMPaÞ 8.22
frS
ðMPaÞ 7.67

fm 24.65
fK 21.36
4. Experimental application

To apply the methodology exposed above, 30 specimens
of wiredrawing steel SAE 1020 of 0.006 m diameter were
tested on an Instron machine [5,6] and 30 values of the
yield stress ri were determined. In this case, the failure is
the plastic deformation. The Weibull’s parameters were
found using relation (8), that means

ln ln
1

1� F i

� 	� �
¼ m � ln ri � rL

rS � r

� �
þ m � ln K

where the values ri are the yield stresses measured experi-
mentally. To obtain the Weibull’s parameter, the same
methodology explained above was used with N = 30. Ta-
ble 1 shows the results obtained for rL, rS, m and K and
constitute the experimental values to be used in the
simulations.

This method was applied to 100 simulations of 30
tests each one. The values of rL and rS giving the best
correlation were calculated with module Solver of Micro-
soft Excel. The results of this simulation are shown in
Table 2. It is important outline that the average values
of the parameters are practically the same as the ones
used for the simulation and, in order to determine the
dispersions, the values of the parameters with a cumula-
tive probability smaller than 0.5% and greater than 95%
were erased with the aim of eliminating possible compu-
tational errors.

With the values of Table 2 and N = 30, the functions frL
,

frS
, fm and fK,are evaluated from relations (9). The results

are shown in Table 3.
The number of essays required to obtain a cumulative

probability of failure compatible between given values of
Fc and Fc + dF, can now be found. For example, to the
material used in the experiments, Table 4 shows the results
obtained for several cases of Fc and Fc + dF. These results
are calculated from relationships (9)–(12). Note that in this
example, the design stress is the yield stress.



Table 4
Number of tests

Fc; Fc + dF rc (MPa) drL (MPa) drS (MPa) dm dK NrL NrS Nm NK

10�7–10�6 402.11 �0.38 �8.78 �2 1.55 475 1 152 190
10�6–10�5 402.47 �0.44 �8.72 �2.3 1.55 347 1 112 190
10�5–10�4 402.89 �0.52 �8.66 �2.8 1.55 253 1 78 190
10�4–10�3 403.38 �0.60 �8.59 �3.5 1.55 185 1 50 190
10�3–10�2 403.94 �0.71 �8.52 �4.67 1.58 136 1 28 189
10�2–10�1 404.59 �0.84 �8.56 �7.15 1.59 96 1 12 182
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5. Conclusions

In this work, a simulation method has been imple-
mented to obtain the dispersion and control of the four
Weibull’s parameters. The method is based on the optimi-
zation of the linear correlation of the cumulative probabil-
ity of failure and constitutes a simple way to estimate these
dispersions, avoiding an excessive number of experimental
measurements and troublesome calculations involved when
using the Fisher’s matrix. Moreover, using a property of
this matrix, the number of samples can be estimated to
get fixed values of the cumulative probability of failure
and its tolerance.

Eqs. (9)–(12) provide a criterion to expect that approxi-
mately 70% of the values of rc are within a range of accep-
tance; taking 2dF instead of dF, one gets 90%. For the
experimental case studied, from the results shown in Table
4, one concludes that the number of essays must be 475 to
have a cumulative probability of failure between 10�6 and
10�7 and 182 to have a cumulative probability between
10�2 and 10�1 (greater cumulative probability of failure
requires minor number of samples). The larger value of
Ni must be chosen. When a batch of material to be used
is available, N samples are assayed and the criterion v2

may be used to test whether the batch belongs to the type
of material specified.
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