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Abstract

We investigate the asymptotic separation of the optical model potential for nucleon-nucleus

scattering in momentum space, where the potential is split into a medium-independent term and

another depending exclusively on the gradient of the density-dependent g matrix. This decomposi-

tion confines the medium sensitivity of the nucleon-nucleus coupling to the surface of the nucleus.

We examine this feature in the context of proton-nucleus scattering at beam energies between 30

and 100 MeV and find that the pn coupling accounts for most of this sensitivity. Additionally,

based on this general structure of the optical potential we are able to treat both, the medium de-

pendence of the effective interaction and the full mixed density as described by single-particle shell

models. The calculated scattering observables agree within 10% with those obtained by Arellano,

Brieva and Love in their momentum-space g-folding approach.
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I. INTRODUCTION

Microscopic optical model potentials for nucleon-nucleus (NA) scattering are usually ex-

pressed as the convolution of a two-body effective interaction with the target ground-state

mixed density. Their realization becomes feasible with the use of Brueckner-Bethe-Goldstone

g matrices and resorting to simplifying assumptions in their coordinate and/or momentum

dependence. Thus, nuclear medium effects are disclosed by means of volume integrals of

density-dependent interactions throughout the nucleus[1, 2].

In this article we explore in more detail a recent finding suggesting that intrinsic nu-

clear medium effects, namely those arising from the dependence of the g matrix on the

density, are dominantly localized in the nuclear surface, i.e. regions where the gradient of

g is strongest [3]. This result is a consequence of a close examination of the momentum-

and coordinate-space structure of a two-body effective interaction spherically symmetric in

its mean coordinate. It is demonstrated quite generally that two-body interactions can be

expressed as a non-trivial sum of a medium-independent term and another which is function-

ally –and exclusively– proportional to the gradient of the reduced in-medium interaction.

As a result, the optical potential in momentum space becomes the sum of medium-free (free

t matrix) and medium-dependent (g matrix) contributions, the latter depending exclusively

on the variations of the effective interaction with respect to the mean coordinate. This

feature yields an enhancement of the intrinsic medium effects in the nuclear surface and

suppression in the saturated volume. We have investigated the manifestation of this selec-

tivity in NA scattering at proton energies below 100 MeV, identifying major sensitivity in

the pn couplings.

Current trends in nuclear research and applications have resulted in the development and

construction of novel research facilities around the world. Such is the case of radioactive ion

beam accelerators in the US, Europe and Japan [4, 5, 6, 7, 8], where intense rare isotope

beams are produced and collided against selected targets. As the energy of these beams are

projected to reach 500A MeV, their scattering from hydrogen targets would result equivalent

to intermediate-energy proton collisions from an exotic nucleus. At energies below 60A MeV

the collision would correspond to low-energy proton-nucleus scattering, a regime where the

inclusion of medium effects in the effective interaction is known to be important. These

unique facilities will expand our access to the neutron drip line from the region roughly



below carbon isotopes to nuclei as heavy as 52S, the most neutron-rich nucleus. Just before

the neutron drip line is reached, neutrons occupy weakly bound states spread well away

from the bulk of the nucleus. Hence, from the NA scattering point of view, counting on an

approach capable of tracking more selectively the various contributions to the optical model

potential –particularly its surface structure– could prove useful for studying and interpreting

data from rare isotope beam facilities. In this article we present and investigate a simplified

form of the unabridged optical model potential discussed in Ref. [3], paying attention to

the surface structure which emerges from the intrinsic medium effects as implied by the

theory. Additionally, this form allows us to treat explicitly the off-shell mixed density, a

long standing limitation of the microscopic in-medium folding approach of Arellano, Brieva

and Love (ABL) [9], where the Slater approximation is used.

This article is organized as follows. In Section II we outline the general framework, discuss

the general structure of the optical model potential in the single scattering approximation,

introduce the ‘δg-folding’ approach and make contact with known approximations. Addi-

tionally, we examine more closely the various contributions to the optical potential, their

energy and density dependence. In Section III we present and discuss results from selected

applications of proton elastic scattering at energies between 30 and 100 MeV. In Section IV

we summarize this work and present its main conclusions.

II. THEORETICAL FRAMEWORK

From a broad perspective diverse formal expressions of the optical model potential for

NA scattering can be found in the literature [10, 11, 12, 13, 14]. Although they may differ in

the way contact is made with the bare NN potential, they all take the form of a ground-state

expectation value of a generalized two-body interaction. Thus, a general representation of

the optical model potential for collisions of nucleons with kinetic energy E off a composite

target is given by

U(k′, k; E) =

∫

dp′ dp 〈k′p′ | T̂ (E) | k p 〉A ρ̂(p′, p) , (1)

where the subscript A indicates antisymmetrization. In general, T̂ contains information

about the discrete spectrum of the many-body system. In this expression ρ̂(p′, p) represents

the one-body mixed density corresponding to the ground-state of the target. A compre-



hensive evaluation of the optical potential considering the full T̂ matrix would require the

solution of the (A + 1)-body system, a formidable challenge. This difficulty is circumvented

by decoupling the two-body effective interaction from the ground-state structure, a suitable

strategy at intermediate and high energies when the discrete spectrum of the many-body

Green’s function is away from the projectile energy in the continuum. This allows the

use of single-particle models to describe the target ground state and the Brueckner-Bethe-

Goldstone reaction matrix to represent the effective interaction.

A. Structure of the optical potential

As expressed in Eq. (1), a central element in the evaluation of the optical potential

is the representation of the two-body effective interaction. Quite generally, regardless of

the physics content or particular structure conceived for the NN interaction, the two-body

operator T̂ in coordinate space requires the specification of four vectors. This leads to matrix

elements of the form 〈r′s′ | T̂ | r s〉, where r and s denote the ‘prior’ coordinates of the

projectile and target nucleon, respectively. The primed vectors refer to ‘post’ coordinates.

With these definitions, the so called local coordinate Z (hereafter referred as the mean

coordinate) becomes

Z = 1
4
(r′ + r + s′ + s) ,

corresponding to the simple average of the prior and post coordinates of the interacting pair.

As demonstrated in Ref. [3], the momentum-space representation of the T̂ matrix can be

cast in terms of a reduced interaction, gZ, in the form

〈k′p′ | T̂ | k p〉 =

∫

dZ

(2π)3
eiZ·(Q−q) gZ(K‖; κ

′, κ) . (2)

In Eq. (2) Q = p′ − p, the recoil of the target nucleon; q = k − k′, the momentum transfer

of the projectile; K = (k + k′)/2, the mean momentum of the projectile; P = (p′ + p)/2,

the mean momentum of the struck nucleon; and

κ′ = 1
2
(k′ − p′) = 1

2
[K − P − 1

2
(q + Q)] , (3a)

κ = 1
2
(k − p) = 1

2
[K − P + 1

2
(q + Q)] , (3b)

the post and prior relative momenta, respectively. Furthermore,

K‖ = K + P = 1
2
(k + k′ + p + p′) , (4)



interpreted as a longitudinal momentum of the interacting nucleons [3]. With these defini-

tions the integrals on (p, p′) in Eq. (1) are accounted for by (P , Q), with dp′dp = dQ dP .

What is interesting about the above representation for T̂ is that it prescribes naturally

the way the medium dependence of the two-body interaction is mapped through the mean

coordinate Z in the reduced interaction. To model this dependence we have resorted to

infinite nuclear matter, a reasonable starting point to incorporate leading-order correlations

in the nuclear medium. In this approach, to each coordinate Z we associate its nuclear

isoscalar density ρ(Z) = [ρn(Z)+ρp(Z)]/2, therefore a symmetric nuclear matter Brueckner-

Bethe-Goldstone reaction matrix gZ (g matrix) satisfying

ĝ(Ω) = v̂ + v̂
Q̂

Ω + i0 − ĥ1 − ĥ2

ĝ(Ω) . (5)

Here v̂ is the bare NN potential, ĥ1 and ĥ2 the quasi-particle energies at density ρ, and Q̂

the Pauli blocking operator to suppress occupied intermediate states. The corresponding

Fermi momentum is given by

kF = (3π2ρ)1/3 . (6)

In a finite system, namely a system with confined matter distribution, we demand that

limZ→∞ ρ(Z) = 0, so that

lim
Z→∞

ĝZ(Ω) = t̂(Ω) , (7)

the free-space t matrix.

In the context of a spherically symmetric matter distribution, the Z integral in Eq. (2) can

be split in such a way that its asymptotic structure becomes isolated from the Z-dependent

term [3]. Accordingly

〈k′p′ | T̂ | k p〉 = δ(Q − q) t(K‖; κ
′, κ) −

1

2π2

∫ ∞

0

Z3dZ Φ1(Z | Q − q |)
∂gZ

∂Z
, (8)

where the momentum dependence of ∂gZ/∂Z on K‖, κ′ and κ is implicit. Here Φ1(t) =

j1(t)/t, with j1 the spherical Bessel function of order 1. This profile function favors the

recoil of the struck nucleon around Q ≈ q, namely k + p ≈ k′ + p′. We observe that

total momentum conservation can only be possible when the system exhibits translational

invariance, as expressed when ∂gZ/∂Z = 0.

Upon substitution of T̂ from Eq. (8) into Eq. (1) for the optical potential we obtain

U = U0 + U1 , (9)



with

U0(k
′, k; E) =

∫

dP ρ̂(q; P ) t(K‖; κ
′, κ) ; (10a)

U1(k
′, k; E) =

1

2π2

∫

dQ dP ρ̂(Q; P ) ×

∫ ∞

0

Z3dZ Φ1(Z|Q − q|)

(

−
∂gZ

∂Z

)

. (10b)

The first term, U0, depends exclusively on the medium-free reduced matrix, whereas the

second depends on the gradient of the g matrix. In these expressions ρ̂ denotes the full

mixed-density, which in terms of occupied single-particle states φα is given by

ρ̂(Q; P ) ≡
∑

α

ρ̂α(Q; P ) =
∑

α

φ†
α(p′) φα(p) .

Eq. (9) for U represents the most general expression to be given to the optical model

potential when the two-body effective interaction exhibits spherical symmetry in the mean

coordinate Z. It summarizes the medium dependence of a general two-body effective inter-

action, accounting for all phase-space configurations allowed by the one-body mixed density.

The interaction is evaluated off-shell, with no assumptions regarding its local/nonlocal struc-

ture. Furthermore, it involves a sevenfold integral, sixfold in momentum space and an ad-

ditional integration in coordinate space. Thus, its evaluation constitutes a very challenging

task even for nowadays computational capabilities. In this work we circumvent this difficulty

by introducing a simplifying assumption, within the momentum-conserving approximation,

to be explained in the following subsection. A thorough assessment of this assumption and

its implications in actual scattering processes may require the evaluation of the sevenfold

optical potential itself.

B. Limit cases and the δg-folding

The general form of the optical potential expressed above leads naturally to the free t

matrix and ABL folding approaches. For instance, if the effective interaction is taken as

the (transitionally invariant) free t matrix, then U1 vanishes and U becomes U0, the free

t-matrix full-folding optical model potential applied to intermediate-energy NA scattering

[15, 16]. In this case the medium effects do not come from the effective interaction but from

the Fermi motion of the struck nucleons, as allowed by the spread of the one-body mixed

density.



The evaluation of the optical potential for a spherically symmetric system involves a

7-fold integral. In order to simplify this, we neglect the dependence of ∂gZ/∂Z on Q by

setting Q → q in the interaction. This change is designated as gZ → g
(0)
Z , so that

U1 ≈
1

2π2

∑

α

∫ ∞

0

Z3dZ

∫

dP Ωα(q, P ; Z)

(

−
∂g

(0)
Z

∂Z

)

, (11)

with

Ωα(q, P ; Z) =

∫

dQ ρ̂α(Q; P ) Φ1(Z|Q − q|) .

Noting that Q → q expresses momentum conservation of the interacting pair in the g matrix

(k+p = k′+p′), we find appropriate to refer to this as momentum-conserving approximation

(MCA). The appealing feature of this result is that it enables a detailed treatment of the

full-mixed density as obtained from single-particle shell models while accounting for the

medium dependence in the g matrix. The following discussions are mainly focused on this

structure of the optical potential, referred hereafter as ‘δg-folding’.

As demonstrated in Ref. [3], the use of the Slater approximation within the MCA leads

to the ABL potential

UABL = 4π

∫ ∞

0

Z2dZ j0(qZ) ρ(Z) 〈g
(0)
Z 〉 , (12)

where 〈g
(0)
Z 〉 denotes the Fermi-motion integral

〈g
(0)
Z 〉 =

∫

dP SF (P ; Z) gZ[K‖;
1
2
(K − P − q), 1

2
(K − P + q)] ,

with

SF (P ; Z) =
1

4
3
πk̂3(Z)

Θ[k̂(Z) − P ] .

This step-function sets bounds for the off-shell sampling of the g matrix at a distance Z

from the center of the nucleus, | P |≤ k̂(Z), with k̂(Z) = [3π2ρ(Z)]1/3. The above result for

UABL can also be obtained by replacing directly the two-body effective interaction [c.f. Eq.

(2)] into Eq. (1) for U , applying the MCA and representing the mixed density by its Slater

form.

All the above forms of the optical potential are nonlocal, as a consequence of the momen-

tum structure of the g matrix –solution of the Brueckner-Bethe-Goldstone integral equation–

expressed in terms of the relative momenta κ′ and κ [c.f. Eqs. (3a,3b)]. The antisymmetriza-

tion of the interaction accounts for additional nonlocalities. These features have not been



duly explained in previous works, leaving room for misconceptions. So it may be worth

to sketch them here for clarity. To make the illustration simple let us consider the rank-0

(scalar) antisymmetrized reduced g matrix for total spin S and isospin T ,

〈κ′ | gST | κ〉A = gST (κ′, κ) − (−)S+T gST (κ′,−κ) .

Expanding in partial waves

gST (κ′, κ) =
∑

L=0

gST
L (κ′, κ) PL(κ̂′ · κ̂) ,

and using the property PL(−u) = (−)LPL(u), we can arrange the antisymmetrized g in a

single sum,

〈κ′ | gST | κ〉A =
∑

L=0

gST
L (κ′, κ) [1 − (−)L+S+T ] PL(κ̂′ · κ̂) .

Therefore

〈κ′ | gST | κ〉A = 2
∑

Allowed

gST
L (κ′, κ) PL(κ̂′ · κ̂) , (13)

where the summation considers only those NN states allowed by the Pauli exclusion prin-

ciple and the off-shell matrix elements gST
L (κ′, κ), direct solutions to the Brueckner-Bethe-

Goldstone equation for the corresponding partial wave. In this fashion we naturally account

for the knock-out exchange term.

In the case of local effective interactions [1, 17, 18], the off-shell matrix elements gST (κ′, κ)

are obtained via the Fourier transform ṽ of the local function vST (r), hence

gST (κ′, κ) = ṽST (κ′ − κ) .

Therefore, the antisymmetrized matrix element reads

〈κ′ | gST | κ〉A = ṽST (κ′ − κ) − (−)S+T ṽST (κ′ + κ) ,

a well known result. Here the knock-out exchange term makes the antisymmetrized inter-

action non local. If one uses multipole expansions to these Fourier transforms, then the

antisymmetrized 〈gST 〉A takes the same form as that expressed by Eq. (13). In this case,

however, gST
L (κ′, κ) =

∫∞

0
r2jL(κ′r)vST (r) jL(κr) dr.



C. The medium-dependent term

We examine more closely the structure of U1, particularly the shape of its integrands.

Since the dependence of g matrix elements on Z is set via the isoscalar density ρ, with

ρ = k3
F/3π2, then we can write

∂gZ

∂Z
=

(

∂g

∂kF

)
∣

∣

∣

∣

kF =k̂(Z)

k̂′(Z) ,

with

k̂′(Z) =
k̂(Z)

3

∂ ln ρ

∂Z
.

In Fig. (1) we plot the radial dependence of the density ρ(Z) (upper frame), its cor-

responding local Fermi momentum k̂(Z) (middle frame) and the negative radial derivative

−k̂′(Z) (lower frame), for 16O (solid curves) and 90Zr (dashed curves), respectively. These

figures exhibit clear peaks of −k̂′(Z) near 3 fm and 6 fm, corresponding in both cases to k̂ ≈

0.6 fm−1, i.e. the surface of the nucleus. We estimate in ∼3 fm the width of both peaks,

limiting the region where the main contributions to U1 should come from. The strength

of these contributions are dictated by the derivative δg ≡ ∂g/∂kF , which depends on the

energy E of the projectile.

In Fig. (2) we show the partial derivative of the on-shell g amplitude with respect to

the Fermi momentum, symbolized with δg. The real and imaginary components are shown

in the upper and lower frames, respectively. The left frames correspond to the pp channel,

whereas the right frames correspond to the pn channel. The curves represent different

projectile energies, starting at E =30 MeV (solid curves) up to 100 MeV in steps of 10 MeV

(dashed curves). To facilitate their comparison, the same scale is used in all graphs. By

forward (on shell) we mean k′ = k, with E = k2/2m, the nonrelativistic nucleon energy.

Hence, δg = ∂g(k; 1
2
k, 1

2
k)/∂kF . The striking feature of this figure is the asymmetry of δg,

significantly more pronounced in the pn than in the pp channel, suggesting more sensitivity

to neutron densities when protons are used as projectiles. Looking at the real part of the pn

coupling, the attraction is more pronounced in the region 0.2 fm−1 . kF . 0.6 fm−1, i.e. the

nuclear surface, a feature which diminishes with increasing energy. Regarding the imaginary

contribution, the nuclear surface contributes with more absorption, whereas in the nuclear

interior (kF & 0.6 fm−1) it is weakened. It is important in this analysis to keep in mind

that δg contributes to U1. Instead, the leading-order contribution to the optical potential



stems from U0, which depends directly on the t matrix. To keep this observations in better

perspective, in Fig. (3) we plot the forward (on shell) t matrix as function of the nucleon

energy E. Here the solid and dashed curves correspond to the real and imaginary amplitude,

respectively. In this figure the right-hand-side axis scales to (2π)3 t, to facilitate comparison

with other conventional normalizations. We notice here that the absorptive component of

the pn coupling exhibits a stronger energy dependence, becoming dominant as the energy

decreases from . 80 MeV. Instead, the real components are relatively constant throughout

the energy range considered.

In order to trace the sources of the contributions to U1 and also estimate their importance

relative to U0, we find useful to introduce the density function uα defined by

uα(Z) = −
Z3

2π2

∫

dP Ωα(q = 0, P ; Z)
∂g

(0)
Z

∂Z
, (14)

to be evaluated on-shell at q = 0 for the single-particle shell α. Its radial integral accounts

for the partial contributioin Uα,

Uα =

∫ ∞

0

uα(Z) dZ ,

with U1 =
∑

α Uα. In Fig. (4) we plot the real (upper frames) and imaginary (lower frames)

components of uα(Z) for 16O(p,p) at 30 MeV. The curves correspond to contributions from

the 1p3/2 (dotted curves), 1p1/2 (dashed curves) and 1s1/2 (long-dashed curves) shells, while

the solid curves represent the sum
∑

α u
(p,n)
α . The (p) and (n) labels symbolize contribu-

tions of the form 〈ρ̂p δgpp〉, arising from proton densities, and 〈ρ̂n δgpn〉 due to neutrons,

respectively. Notice that the scale of Im uα doubles that of Re uα.

This figure evidences quite neatly surface-peaked structure stemming from δg, confined in

the region 3-5.5 fm, with clear dominance of neutron over proton distributions. Considering

U0 the leading-order contribution, Re u
(n)
α enhances the attraction to the projectile (proton).

This can be readily estimated considering its width ∼1.5 fm and depth ∼15 MeV fm2.

Hence, the area between the curve and the Z axis yields Re U
(n)
1 ∼ -23 MeV fm3. This

is to be compared to U
(n)
0 ≈ 8×Re tpn ∼ -10 MeV fm3, as extracted from Fig. (3). In

contrast, neutron density contributions to Im U1 becomes considerably weaker due to its

near-canceling up-and-down structure observed in the lower-right frame, while Im U
(n)
0 ≈

8×Im tpn ∼ -24 MeV fm3. The extent to which these features become important in collision

processes needs to be assessed by examining scattering observables. In any case, the pocket



shape of Re u
(n)
α near the surface indicates a preference to couple the projectile (proton)

with the ν1p1/2 and ν1p3/2 shells, favoring (p, d) pickup reactions. This feature is consistent

with recent findings on pickup effects in p+10Be elastic scattering near 40A MeV [19].

III. APPLICATIONS

We investigate proton elastic scattering from 16O and 90Zr, two relatively well known

doubly closed-shell nuclei. In each case we consider three forms of the optical potential. First,

the δg-folding approach [c.f. Eq. (11)], providing arguably the most complete momentum-

space description of the optical potential to date. Here, single-particle wavefunctions are

used to represent the one-body full mixed density while a thorough account of the medium

dependence of the antisymmetrized off shell g matrix is given. Second, the ABL folding

approach, corresponding to a simplified representation of the mixed density in terms of its

Slater approximation. This approach has been extensively discussed in Refs. [9, 20]. Lastly,

the free t-matrix full-folding optical potentials (t-folding), where the full mixed density is

used as in the early calculations [15, 16].

The calculations presented here are based on the Paris NN potential [21]. We have inves-

tigated other NN potentials and found no significant differences with the results reported

here. The corresponding g matrix was calculated off shell (J ≤ 7) at 30 values of the Fermi

momentum, ranging from 0 up to 1.6 fm−1. This thin mesh is no longer necessary after

various tests of convergence were performed; the use of 16 Fermi momenta yields equally

reliable results. The needed selfconsistent nuclear-matter fields were computed prior to all

runs.

To evaluate U1 given by Eq. (11) we carry out the P and Q integrals using Gauss-

Laguerre quadrature at 25 radial mesh points. The Z integration is performed using a

uniform mesh with steps of 0.1 fm. As stated earlier, the calculated optical model potentials

reported here are nonlocal operators, treated as such throughout. The scattering observables

are obtained solving the Schrödinger equation with the nonlocal coupling in the presence of

the Coulomb term. See Ref. [22] for more details.



A. p+90Zr scattering

In Fig. (5) we present the measured and calculated differential cross section, as a function

of the center-of-mass scattering angle θc.m., for 90Zr(p,p) at 30.4 and 40 MeV. The data are

from Refs. [23] and [24], respectively. The solid curves correspond to δg-folding, the dashed

curves to the ABL approach and the dotted curves to the t-folding. The one-body mixed

density is constructed using single-particle wavefunctions based on Hartree-Fock calculations

[27].

The calculated cross sections based on the δg-folding follow reasonably well the diffractive

pattern exhibited by the measurements. The maxima are in phase with the data, although

the diffractive minima tend to be more pronounced. Additionally, we find that the ABL

approach (dashed curves) follows very closely the δg-folding (solid curves). So, within the

MCA, the ABL folding approach represents reasonably well the δg-folding. The difference

lies in the computational time needed for their evaluation, being the δg-folding more time

demanding (by nearly a factor 150) than its ABL counterpart.

Considering the results based on the free t matrix (dotted curves), they clearly lack the

structure exhibited by the data. In particular, at the two energies considered here, the

first diffractive minima occur at greater angles than those shown by the data, suggesting a

smaller size nucleus. Thus, the medium effects accounted for by U1, and located mainly in

the nuclear surface, do account for some of the hadronic size of the nucleus.

As the energy increases it is expected that the medium effects become less relevant in the

scattering process. This feature is clearly observed in Fig. (6), where we plot the measured

and calculated differential cross section for 90Zr(p,p) at 80 and 100 MeV. The data are from

Refs. [25] and [26], respectively. The curves follow the same convention as in Fig, (5).

The agreement of the δg-folding with the data is remarkable throughout the whole range of

the measurements. Additionally, we verify that the difference between the t-folding results

and those from δg- or ABL-approach have diminished considerably relative the previous

applications.



B. p+16O scattering

In Fig. (7) we show the measured and calculated differential cross section (upper frames)

and analyzing power (lower frames), as a functions of the center-of-mass scattering angle,

for 16O(p,p) at 30.4 and 49.48 MeV. The cross section data are from Refs. [28] and [29],

respectively. Here again we observe that the δg-folding and ABL approach follow very close

each other. Also, the free t matrix results agree poorly with the data, as expected. This

lighter target evidences a deviation of the calculated cross sections with the data, particularly

the depth of the diffractive minima in the cross section. Indeed, both δg- and ABL-folding

approaches fail to account for the shallow first minima near 40◦. In turn, both yield non

existing minima near 90◦ and 80◦, respectively.

We have performed various tests of sensitivity to assess the consistency of the results

presented here. For instance, using harmonic-oscillator wavefunctions for 16O –with the

same root-mean-squared radii– we obtain practically the same results for the scattering

observables. To keep this work focused on the structure of the δg-folding, we have not

explored the sensitivity of the calculated scattering to alternative representations of the

target ground state, leaving such study for future works.

In Fig. (8) we examine how the differential cross section is affected upon changes on

U1. The case is 16O(p,p) at 30.4 MeV. Here the solid curve represents results from the

δg-folding, U0 + U1, while the dotted curve is based on U0 alone, namely the t-folding.

What is interesting to note is the effect of suppressing selectively the proton density (dash-

dotted curve) and neutron density contributions to U1 (dashed curve). We note that the

role of U
(n)
1 is considerably more significant than that of U

(p)
1 . Indeed, by neglecting U

(n)
1 the

cross section ends up being very similar to the one obtained with the t-folding, in contrast

with the moderate change on the δg-folding result when U
(p)
1 is suppressed. These results

are consistent with our analysis of uα(Z) discussed in the previous section, confirming the

importance of neutron distributions in the optical model potential at these low energies.

IV. SUMMARY AND CONCLUSIONS

We have investigated the structure of the optical model potential as inferred from its

general form, once the MCA is applied to the vector structure of the NN couplings. The



resulting (δg-folding) potential becomes expressed as the sum of two components, U0 +

U1, where U0 corresponds to the free t matrix full-folding potential and U1 folds the full

mixed density with the gradient of the medium-dependent effective interaction. This feature

implies that the intrinsic medium effects are localized mainly in the nuclear surface. When

comparing the relative strength of these contributions, we find that the pn coupling is

considerably stronger than its pp counterpart, a feature that fades out as the energy of

the projectile is increased. This asymmetry leads to stronger medium-sensitivity of proton

scattering to neutron matter distributions of the nucleus.

As a by product of this study, with the introduction of the δg-folding we have been able to

provide a thorough account of the full mixed density in the evaluation of momentum-space

optical potentials within the g matrix. With this we mend a long standing limitation of the

ABL folding approach to NA scattering, where the mixed density has been approximated

by its Slater form. When comparing the differential cross section, the δg-folding and ABL

approach are close to one another within 10% in the diffractive maxima.

We have assessed the predicting power of the δg-folding approach to proton elastic scat-

tering from 16O and 90Zr at energies between 30 and 100 MeV. In the case of 90Zr(p,p)

we are able to provide reasonably good descriptions of the data. For 16O(p,p), in turn,

the differential cross section is underestimated significantly. At this point we are not clear

whether these shortcomings stem from missing contributions implied when the dependence

of ∂g/∂Z on Q is neglected, the existence of exotic neutron structures in the surface, or from

higher-order effects in the in-medium effective interaction. One has to keep in mind that the

low-energy interaction of the projectile with target nucleons becomes more sensitive to the

shell structure of the nucleus, in addition to the presence of collective excitations or other

reaction channels. Investigations along these lines have recently been reported [19, 30].

The present work constitutes a step forward toward a comprehensive momentum-space

description of the optical model potential for NA scattering, in the form of a unified descrip-

tion, for elastic and inelastic processes from few tens of MeV up to GeV energies. The only

microscopic inputs to achieve this goal are the bare NN potential and the target ground-state

mixed density, although high-energy applications may also require NN phase-shift analyzes

accounting for loss of flux above pion-production threshold [20]. The introduction of the

δg-folding optical potential has allowed us to visualize very simply the interplay among dif-

ferent elements in the interaction of a single nucleon with finite nuclei, particularly the role



of the in medium interaction in the nuclear surface. With the application reported here we

have been able to set narrower margins of uncertainty in the evaluation of the first-order

optical model potential, an important consideration for high-precision analyzes of upcoming

scattering data involving unstable nuclei.
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FIG. 1: Radial dependence of the density (upper frame), local Fermi momentum (middle frame)

and its negative gradient (lower frame) for 16O and 90Zr.



pnpp

R
e

δg
[
M

eV
fm

4
] 10

5

0

−5

pn

kF [ fm−1 ]

1.21.00.80.60.40.2

pp

kF [ fm−1 ]

Im
δg

[
M

eV
fm

4
]

1.21.00.80.60.40.2

10

5

0

−5
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FIG. 5: The measured and calculated differential cross section for 90Zr(p,p) at 30.4 and 40 MeV.

The data are from Refs. [23] and [24], respectively. See text for reference to the curves.
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FIG. 6: The measured and calculated differential cross section for 90Zr(p,p) at 80 and 100 MeV.

The data are from Refs. [25] and [26], respectively. See text for reference to the curves.
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FIG. 7: Measured and calculated differential cross section for 16O(p,p) at 30.4 and 49.48 MeV

(upper frames), and calculated analyzing power (lower frames). The data are from Refs. [28] and

[29], respectively. See text for reference to the curves.
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FIG. 8: The calculated differential cross section based on the δg-folding (solid curve) and t-folding

(dotted curve) for 16O(p,p) scattering at 30.4 MeV. The data are from [28]. See text for reference

to the dashed curves.
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