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Un résultat unificateur sur la convergence locale de la

méthode de Newton dans les variétés riemanniennes

Résumé : Etant donné un champ de vecteurs X sur une variété riemannienne, le problème
central de ce papier est de mettre en évidence un procédé algorithmique permettant d’en
détecter une singularité. Dans cette optique, un résultat unificateur concernant la conver-
gence locale de l’algorithme de Newton est proposé. Inspiré par les travaux de Zabrejko
et Nguen sur la méthode des majorants de Kantorovich, l’approche développée repose sur
l’introduction d’une méthode de Newton en dimension un - cette dernière étant obtenue via
une paramétrisation radiale d’un module de Lipschitz adéquat de la dérivée covariante de X.
Le résultat principal qui en découle offre une vue synthétique de quelques résultats célèbres,
à savoir les théorèmes de Kantorovich, Smale et Nesterov-Nemirovskii. Des résultats récents
concernant les champs de vecteurs analytiques sont améliorés.

Mots-clés : champ de vecteurs, méthode de Newton, convergence quadratique, existence
d’une singularité



1 Introduction

In this paper we investigate the existence, local uniqueness and iterative approximation of
solutions to the problem of finding a singularity of a continuously differentiable vector field
X defined on a connected and finite-dimensional manifold M . In fact, we assume that M
is endowed with a Riemannian metric g with (M, g) being complete, and we consider the
iterates generated by a Riemannian version of Newton’s method applied to X. The choice
of this method is based on the following prominent feature: under mild nondegeneracy
conditions, there exists a non-trivial set of initial points sufficiently close to the solution so
that Newton’s method converges with quadratic rate.

A rather unsatisfying aspect of this qualitative property is that “sufficiently close” may
depend explicitly on the solution which one does not know a priori. However, in many
interesting cases, some implicit quantitative criteria have been provided to verify the prox-
imity of the starting point to a solution and thus ensure quadratic convergence of Newton’s
method.

The celebrated Kantorovich theorem [12] on Newton’s method in Banach spaces gives
the first set of quantitative assumptions ensuring existence and uniqueness of a solution
in a prescribed ball around the starting point together with quadratic convergence of the
method. Kantorovich’s result requires the knowledge of a local Lipschitz constant for the
first derivative of X. In a similar spirit, a local analysis of Newton’s method applied to
analytic mappings led Smale to introduce in [18] the so called α-test, a fundamental prox-
imity criterion in point estimation theory which uses information about all the derivatives
of the data only at the initial point. In the specific case of minimization problems, Nes-
terov and Nemirovskii developed in [14] a proximity test for Newton’s method under the
so called self-concordancy condition on the objective function. This local convergence re-
sult is a key piece of their breakthrough in the study of the computational complexity of
central path algorithms in mathematical programming. Together with other facts, these
results of Kantorovich, Smale and Nesterov-Nemirovskii explain the uncontested success of
Newton’s method in the construction of efficient algorithms for the iterative resolution of
several classes of nonlinear equations, and particularly in the designing of polynomial-time
algorithms for optimization problems.

Generalizations of Kantorovich’s result and Smale’s α-theorem to Riemannian manifolds
were recently established by Ferreira and Svaiter in [9] and by Dedieu, Priouret and Mala-
jovich in [5], respectively. To our best knowledge, the theory of self-concordancy has not
been extended to a Riemannian setting yet. The main motivation for enlarging the usual
Euclidean setting to Riemannian manifolds stems essentially from the necessity to be able
to deal with (equality) nonlinear constraints, especially in minimization problems; see, for
instance, the works by Adler et al. [1], da Cruz Neto et al. [6], Edelman et al. [8], Smith
[19] and Udriste [20].

The goal of this paper is to establish a general local convergence theorem based on a
unifying principle which permits to recover, sometimes with certain improvements, all the
above mentioned results. The hypotheses and the proof of our central result (cf. Theorem



3.1) rely on two important features appearing either explicitly or implicitly in most of the
local analysis of Newton’s method.

First, since the singularity-finding problem is indeed a metric-free problem, the choice of
a particular Riemannian structure for implementing Newton’s method is a strategy among
others. The choice of an adequate distance measure is of primary importance, not only
because of its dramatic consequences for obtaining good basic estimations, but also for the
well-posedness of the method. Let us also observe that the sequence generated by Newton’s
method in Riemannian manifold may strongly depend on the metric. This contrasts with
the case of R

n viewed as an Euclidean space, a case for which Newton’s iterates never depend
on the choice of an inner product.

The second and possibly most crucial aspect in setting up a unified theorem for the
local convergence of Newton’s method consists in a radial parametrization of Kantorovich’s
majorant method. This technique was originally developed by Zabrejko and Nguen in [25]
(see also [2, 24]) in order to obtain refinements of the Kantorovich theorem in Banach
spaces. In fact, this approach is based on the construction of a real-valued function, namely
the majorant function, using an adequate local Lipschitz-type radial estimate for the first
derivative of X. The majorant method reduces the problems of the existence and the local
uniqueness of a singularity as well as the quadratic convergence of Newton’s method to the
same issues but within a scalar setting. Independently, similar ideas were used by Cominetti
in [4] and by Wang and Han in [22] for Newton’s method in Banach spaces (see also [21, 23]),
both improving as a special case the Smale α-theorem. Cominetti also showed in [4] how to
recover, at least partially, a basic result of the Nesterov-Nemirovskii self-concordancy theory
but without isolating the role of the majorant function.

The paper is organized as follows. In §2 some basic definitions and results of the theory
of Riemannian manifolds are recalled. In §3 the central result of the paper is stated, and
its proof is given in §4. In §5 it is shown how the classical results of Kantorovich, Nesterov-
Nemirovskii and Smale, as well as some Riemannian counterparts excepting for Nesterov-
Nemirovskii, can be recovered by specialization of our central result.

2 Notation and basic notions of Riemannian geometry

Let us recall some basic definitions and properties of Riemannian geometry. Some general
references on this subject are [7, 13, 15]. Readers who are not familiar with Riemannian
geometry are referred to [8] for a pleasant introduction to some of its main concepts and
their use in optimization.

Let (M, g) be a connected and finite-dimensional Riemannian manifold. The space of C1

vector fields on M is denoted by χ(M). Classically, we denote by TpM the tangent space to

M at p and by | · |p the norm on TpM which is given by |v|p =
√

g(p)(v, v).

Norms and distances. The Riemannian distance d : M ×M → [0,+∞) is defined by

d(p, q) = inf{
∫ b

a
|ċ(t)|c(t)dt | c : [a, b] →M is piecewise smooth, c(a) = p and c(b) = q}. Here,



∫ b

a
|ċ(t)|c(t)dt is called the length of c, and we will write it simply

∫ b

a
|ċ| when no confusion

can arise. We shall often identify the curves c : [0, a] →M on M with their graphs, so that
(t, p) ∈ c simply means that t ∈ [0, a] with c(t) = p. Let B(p0, r) = {p ∈ M | d(p, p0) < r}
and B(p0, r) = {p ∈M | d(p, p0) ≤ r} be respectively the open and closed balls of center p0

and radius r.
Take p ∈ M and some integer k ≥ 1. If T : TpM

k → TpM is a linear mapping its norm is
defined by

||T ||p = sup{|T (u1, . . . , uk)|p | ui ∈ TpM, |ui|p ≤ 1}.
Covariant derivatives and parallel transport. Denote by ∇ the Riemannian (or Levi-
Civita) connection on (M, g). For each pair of continuously differentiable vector fields X,Y ,
the vector field ∇Y X stands for the covariant derivative of X with respect to Y . Given a
vector field X on M and p ∈M , define

X ′(p)v := ∇vX(p) = (∇Y X)(p), v ∈ TpM. (1)

where Y is any vector field on M satisfying v = Y (p). The map X ′(p) : TpM → TpM is
well defined and linear, and we will call it the covariant derivative of X at p.

Let c : [a, b] →M be a smooth curve and V a vector field along c, that is, a differentiable
mapping such that V (t) ∈ Tc(t)M for all t ∈ [a, b]. The covariant derivative of V along c
is denoted by ∇ċV and defines a vector field along c. The vector field V is called parallel
along c when ∇ċV = 0; in particular, as ∇ is Riemannian, |V (t)|c(t) is constant. Given
v ∈ Tc(a)M , there exists a unique vector field V parallel along c such that V (a) = v, and
the parallel transport of v along c from c(a) to c(b) is defined by Pc,a,bv = V (b). The
linear map Pc,a,b : Tc(a)M → Tc(b)M is an isometry. The extension of this definition to

a piecewise smooth curve c is straightforward. It is direct to verify that P−1
c,a,b = Pc,b,a

and Pc,a,b = Pc,t,b ◦ Pc,a,t. Recall that a (1, q)-tensor can be viewed as a linear1 mapping
from χ(M)q in χ(M). Likewise the tensors can be covariantly derivated (e.g. [15]), if T is
(1, q)-tensor its derivative is a (1, q + 1)-tensor denoted T ′ which is given by the following
formula

T ′(X1, . . . , Xq, X) = [T (X1, . . . , Xq)]
′(X) −

q
∑

i=1

T (X1, . . . , X
′
i(X), . . . , Xq),

where the Xi’s and X are vector fields on M . As usual higher order derivatives are defined
recursively by T (k+1) = [T (k)]′, k ∈ N. The parallel transport of vectors can be extended to
tensors as follows. The curve c being chosen as above, take a (1, q)-tensor T on Tc(b)M , the
parallel transport of T along c from c(b) to c(a) is defined by

[Pc,b,aT ](u1, . . . , uq) := Pc,b,a[T (Pc,a,bu1, . . . , Pc,a,buq)],

1The linearity refers here to the structure of C1(M)-module of space of C1 vector fields χ(M).



where u1, . . . , uq ∈ Tc(a)M. Parallel transportation provides tensors with a fundamental
theorem of calculus, namely,

Pc,t,0T (c(t)) = T (c(0)) +

∫ t

0

[Pc,s,0T
′(c(s)) ċ(s)]ds, (2)

which reduces to

Pc,t,0X(c(t)) = X(c(0)) +

∫ t

0

Pc,s,0X
′(c(s)) ċ(s)ds,

if q = 0 (see, for instance, [9]).
Geodesic curves and the exponential map. Recall that a C2 curve γ is a geodesic if γ̇
is parallel along γ so that its speed |γ̇(t)|γ(t) is constant. A curve c : [0, a] →M is said to be
piecewise geodesic if there exists a partition 0 = t0 < t1 . . . < tN = a of [0, a] such that the
restriction of c to each interval of the form [ti, ti+1], i ∈ {0, . . . , N − 1} is a geodesic curve.

From now on, (M,d) is assumed to be a complete metric space. By the Hopf-Rinow
theorem, the latter is equivalent to the geodesic completeness of (M, g), i.e., for any p ∈M
and v ∈ TpM there exists a unique geodesic γ with γ(0) = p and γ̇(0) = v such that γ(t)
is defined for all t ∈ IR. In addition, we have that for any p, q ∈ M there exists a geodesic
γ joining p and q whose length is equal to d(p, q). Such a curve in M is referred to as a
minimizing geodesic, joining p and q.

The exponential map at p, expp : TpM →M is defined by setting expp[v] = γ(1), where
γ : IR →M is the geodesic with γ(0) = p and γ̇(0) = v, and expp[tv] = γ(t) for all t ∈ IR due
to the uniqueness of geodesics under initial conditions. We always have d(p, expp[v]) ≤ |v|p,
and the equality holds if the geodesic γ restricted to [0, 1] is minimizing.

3 Riemannian Newton’s method and local convergence

Let X be a C1 vector field defined on a connected, complete and finite-dimensional Rie-
mannian manifold (M, g). Consider the following problem:

find p∗ ∈M satisfying X(p∗) = 0 ∈ Tp∗M. (3)

Such a point p∗ is referred to as a singularity of X.
First, assume that there exists p0 ∈ M such that the covariant derivative X ′(p0) of X

at p0 (see (1)) is invertible, i.e.,

X ′(p0) ∈ GL(Tp0
M). (4)

Starting at p0, the Riemannian-Newton (or R-Newton) method associated with (3) writes

(N ) pk+1 = exppk
[−X ′(pk)−1X(pk)],



where expp : TpM →M is the exponential map at p and X ′(p) : TpM → TpM is defined by
(1). This natural Riemannian version of Newton’s method for solving systems of nonlinear
equations has been considered by several authors [1, 5, 6, 8, 19, 20].

In order to state a general local convergence result for R-Newton’s method, we will
assume a Lipschitz-type continuity of X ′ on a neighborhood of p0, based on the following
definition.

Definition 3.1 Let G2(p0, r) be the class of all the piecewise geodesic curves c : [0, T ] →M
which satisfy the following conditions:

(a) c(0) = p0 and the length of c is no greater than r.
(b) There exists τ ∈ (0, T ] such that c|[0,τ]

is a minimizing geodesic and c|[τ,T ]
is a

geodesic.

We suppose that for some R > 0 there exists a continuous and nondecreasing function
` : [0, R] → [0,+∞) satisfying the following property: for every r ∈ [0, R] and c ∈ G2(p0, r),

‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0

≤ `(r)

∫ b

a

|ċ|, 0 ≤ a ≤ b, (5)

We call ` a Lipschitz-type radial function for X ′ around p0. Without loss of generality we
may assume that `(r) > 0 for all r ∈ (0, R].

Remark 3.1 It is important to observe that ` can often be estimated in practice. For
instance, assume that X is C2 and consider `(r) ≥ max{||X ′(p0)

−1[Pc,t,0X
′′(c(t))]||p0

},
where the maximum is taken over all piecewise geodesic curves belonging to G2(p0, r). It is
straightforward to see that (2) implies that ` complies with (5).

Condition (5) is a scaled Riemannian analogue of the property used by Zabrejko and Nguen
in [25] (see also [2, 24]) to prove a local convergence result for Newton’s method in Banach
spaces, based on a radial parametrization of the original “majorant method" developed by
Kantorovich [12]. Here, scaling means that the inverse of X ′(p0) is incorporated in the
distance between covariant derivatives of X, an idea that has been already used in the
Banach space context (see [4, 23]).

The striking feature of the majorant method is that the analysis of (3) and (N ) reduces
to the analysis of an appropriate scalar equation together with the corresponding scalar
Newton iteration. Following the idea of [25], we set

β := |X ′(p0)
−1X(p0)|p0

,

and introduce the real function φ : [0, R] → R defined by







φ′′(r) = `(r), ∀r ∈ (0, R),
φ′(0) = −1,
φ(0) = β.



A straightforward integration yields

φ(r) = β − r +

∫ r

0

(r − s)`(s)ds, r ∈ [0, R]. (6)

The following scalar Newton sequence is at the heart of the Zabrejko-Nguen refinement of
Kantorovich’s majorant method (our central result, namely Theorem 3.1, shows indeed that
under mild conditions Newton’s iteration (N ) inherits of most of its properties):

{

r0 = 0,
rk+1 = rk − φ′(rk)−1φ(rk).

(7)

Let us consider the following assumption:

the function φ given by (6) has a unique zero r∗ in [0, R] with φ(R) ≤ 0. (8)

Since r∗ ≥ β, we may suppose that r∗ > 0, otherwise p0 is a singularity of X and there is
nothing to do. Under (8) it is elementary to establish the following result (see, for instance,
[25, Proposition 3] or Lemma 4.1(i)-(ii) below).

Lemma 3.1 Under (8), the scalar sequence {rk} generated by (7) is well defined with
φ′(rk) < 0 for all k ∈ N, hence monotonically increasing and convergent towards r∗.

The central result of this paper may be now stated as follows:

Theorem 3.1 Under (4)-(8) we have the following results.
(i) The vector field X admits a unique singularity p∗ in B(p0, R) which belongs to B(p0, r

∗).
If φ′(r∗) < 0 then X ′(p∗) ∈ GL(Tp∗M).
(ii) The sequence {pk} defined by (N ) is well defined, that is, X ′(pk) ∈ GL(Tpk

M) for every
k ∈ N.
(iii) For every k ∈ N, pk belongs to B(p0, rk) and the following estimate holds

d(pk+1, pk) ≤ |X ′(pk)−1X(pk)|pk
≤ rk+1 − rk. (9)

As a consequence, pk converges to p∗ as k → +∞, and for every k ∈ N,

d(p∗, pk) ≤ r∗ − rk. (10)

(iv) For every k ∈ N,

|X ′(pk+1)
−1X(pk+1)|pk+1

rk+2 − rk+1
≤

( |X ′(pk)−1X(pk)|pk

rk+1 − rk

)2

. (11)

Consequently, for all k ≥ k0 ≥ 0,

d(p∗, pk) ≤ (r∗ − rk)

( |X ′(pk0
)−1X(pk0

)|pk0

rk0+1 − rk0

)2k−k0

. (12)



(v) Setting

q =
1 −

√
1 − 2λ

1 +
√

1 − 2λ
∈ (0, 1] (13)

for

λ =
r∗2φ′′(r∗)2 − 2r∗φ′′(r∗)φ′(r∗)

2[r∗φ′′(r∗) − φ′(r∗)]2
∈ (0,

1

2
], (14)

then for all k ∈ N, rk ≥ r∗(1 − q2
k−1)(1 − q2

k

)−1 if q < 1, and rk ≥ r∗(1 − 2−k) if q = 1.
In particular, if λ < 1/2 then for every k ∈ N,

r∗ − rk ≤ r∗
1 − q

1 − q2k
q2

k−1. (15)

Remark 3.2 By (10) together with Lemma 4.1(iii) below, we have in particular that
d(p∗, p0) ≤ r∗ ≤ 2β. Since r0 = 0 and r1 = β, then the second estimation in (9) is an
equality for k = 0, and we have d(p∗, p1) ≤ r∗ − β ≤ β. If the second inequality in (9) is
strict for some k0 ≥ 1, then (12) gives an a posteriori correction improving, for all k ≥ k0,
the a priori estimate (10).

Remark 3.3 In (v), when r∗ = R then φ′′(r∗) stands the left derivative of φ′ at R. On
the other hand, notice that by Lemma 3.1, φ′(r∗) ≤ 0. It is easy to see that λ = 1/2 iff
φ′(r∗) = 0, which gives the linear rate of convergence d(p∗, pk) ≤ r∗2−k, ∀k ≥ 0. Otherwise,
we obtain the quadratic rate of convergence given by (15). As we will see in the proof, these
are worst-case estimates based on a quadratic approximation of the majorant function φ (see
(23)). Sharper estimates may be obtained by a direct analysis of Newton’s method applied
to φ.

Remark 3.4 The continuity of the Lipschitz-type radial function ` is not necessary for
Theorem 3.1(i)-(iv). However, this is a simplifying assumption that holds in interesting
special cases (see, for instance, Section 5).

Remark 3.5 Theorem 3.1 remains valid for a C1 vector field X : Ω ⊂ M → TM which is
defined only on an open subset Ω of M provided that B(p0, R) ⊂ Ω.

The next section is devoted to the proof of Theorem 3.1.

4 Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into three parts, namely the existence and the conver-
gence of Newton’s sequence, the local uniqueness of the singularity, and the estimates.



4.1 Existence and convergence

4.1.1 Preliminary results

From now on, we assume that the hypothesis of Theorem 3.1 hold, with `(r) > 0 for all
r ∈ (0, R]. We first need to establish a few properties of the function φ to enlighten its links
with Newton’s method in X. This is precisely the purpose of the following lemmas.

Lemma 4.1 Let φ be the function given by (6). Then:
(i) φ is strictly convex hence φ′ is increasing on [0, R], and φ′(r) < 0 for all r ∈ [0, r∗).
(ii) If r ∈ [0, r∗) and r+ = r − φ′(r)−1φ(r) then r+ ∈ (r, r∗).
(iii) For every r ∈ [0, R], β − r ≤ φ(r) ≤ β + r(φ′(r) − 1)/2. Consequently, β ≤ r∗ ≤ 2β.

(iv) For each a ∈ (0, R), the function ϕa(r) = φ′(r + a) − φ′(r) =
∫ r+a

r
`(s)ds > 0 is

nondecreasing on [0, R− a].

Proof. (i) The strict convexity of φ on [0, R] follows directly from φ′′(r) = `(r) > 0 for
r ∈ (0, R). Next, assume that φ′(r̃) = 0 for some r̃ ∈ [0, r∗). By convexity, r̃ is a minimum
for φ on [0, R], hence 0 ≤ φ(r̃) ≤ φ(R) ≤ 0. Therefore, r̃ is a zero of φ, which contradicts
the uniqueness of r∗. Since φ′(0) = −1, this proves φ′ < 0 on [0, r∗).
(ii) By (i), r+ > r. On the other hand, since φ is strictly convex, we have that φ(r) +
φ′(r)(r∗ − r) < φ(r∗) = 0, which amounts to r+ < r∗.
(iii) Of course, φ(r) ≥ β − r. On the other hand, as φ′(r) = −1 +

∫ r

0
`(s)ds, we have that

2φ(r) = 2β+r(φ′(r)−1)+ω(r) for ω(r) =
∫ r

0
(r−2s)`(s)ds. But ω′(r) =

∫ r

0
[`(s)−`(r)]ds ≤ 0,

hence ω(r) ≤ ω(0) = 0 and thus 2φ(r) ≤ 2β + r(φ′(r) − 1). Since φ′(r∗) ≤ 0 by (i), we
deduce that β − r∗ ≤ 0 ≤ β − r∗/2.
(iv) This follows directly from ϕ′

a(r) = `(r + a) − `(r) ≥ 0. �

The first estimate of the next result is an infinitesimal version of (5) which extends [25,
Proposition 1] to the Riemannian setting.

Lemma 4.2 Let c ∈ G2(p0, R). Then for any a ≤ b, we have

‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0

≤ φ′(
∫ b

0
|ċ|) − φ′(

∫ a

0
|ċ|). (16)

As a consequence, if φ′(
∫ t

0
|ċ|) < 0 then X ′(c(t)) ∈ GL(Tc(t)M) and moreover

‖[Pc,t,0X
′(c(t))−1]X ′(p0)‖p0

≤ −φ′(
∫ t

0

|ċ|)−1. (17)

Proof. Set ∆0 = ‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0

. Given N ∈ N with N ≥ 1,
define ti = a+ i

N (b− a) and yi = c(ti) for all i ∈ {0, . . . , N}. By (5), we have

∆0 ≤
N−1
∑

i=0

‖X ′(p0)
−1[Pc,ti+1,0X

′(yi+1) − Pc,ti,0X
′(yi)]‖p0

≤
N−1
∑

i=0

`(

∫ ti+1

0

|ċ|)
∫ ti+1

ti

|ċ|.



Letting N → ∞, we obtain ∆0 ≤
∫ b

a
`(

∫ τ

0
|ċ|)|ċ|dτ =

∫ r(b)

r(a)
`(s)ds with r(t) =

∫ t

0
|ċ|, which

proves (16).

Taking a = 0 and b = t, (16) yields ‖X ′(p0)
−1

Pc,t,0X
′(c(t))− I‖p0

≤ φ′(
∫ t

0
|ċ|)+1, where

I : Tp0
M → Tp0

M is the identity mapping. If φ′(
∫ t

0
|ċ|) < 0 then this estimate is strictly

lower than 1 and so X ′(p0)
−1

Pc,t,0X
′(c(t)) is invertible. Therefore X ′(c(t)) ∈ GL(Tc(t)M)

and moreover ‖[X ′(p0)
−1

Pc,t,0X
′(c(t))]−1‖p0

≤ 1/(−φ′(
∫ t

0
|ċ|)) which amounts to (17). �

The following result about several fundamental properties of Newton’s iteration is a
generalization of [9, Lemma 3.7].

Lemma 4.3 Given r ∈ [0, r∗) and p ∈ B(p0, r) such that |X ′(p)−1X(p)|p ≤ −φ′(r)−1φ(r),
set τ(θ) = r− θφ′(r)−1φ(r) and γ(θ) = expp[−θX ′(p)−1X(p)] for θ ∈ [0, 1]. Then for every
θ ∈ (0, 1],

(i) τ(θ) ∈ (r, r∗) and γ(θ) ∈ B(p0, τ(θ)),
(ii) X ′(γ(θ)) ∈ GL(Tγ(θ)M),
(iii) |X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −φ′(τ(θ))−1φ(τ(θ)).

Proof. (i) Fix θ ∈ (0, 1]. By Lemma 4.1(i)-(ii), r = τ(0) < τ(θ) ≤ τ(1) = r+ <
r∗. On the other hand, as γ is the geodesic with γ(0) = p and γ̇(0) = −X ′(p)−1X(p),
we have d(γ(θ), p) ≤ θ|X ′(p)−1X(p)|p and d(γ(θ), p0) ≤ θ|X ′(p)−1X(p)|p + d(p, p0) ≤
−θφ′(r)−1φ(r) + r = τ(θ), which proves γ(θ) ∈ B(p0, τ(θ)).

In order to prove (ii), let us denote by c : [0, 2] →M the curve obtained by concatenation
of a minimizing geodesic joining p0 and p, defined on [0, 1], and γ. This is a piecewise geodesic
curve with c(0) = p0, c(1 + θ) = γ(θ) for all θ ∈ [0, 1], whose length is lower than r∗ by (i).
To establish the invertibility of X ′(γ(θ)), let us estimate the following norm

‖X ′(p)−1
Pγ,θ,0X

′(γ(θ)) − ITpM‖p

= ‖X ′(p)−1Pc,0,1X
′(p0)X

′(p0)
−1Pc,1,0[Pγ,θ,0X

′(γ(θ)) −X ′(p)]‖p

≤ ‖[Pc,1,0X
′(p)−1]X ′(p0)‖p0

‖X ′(p0)
−1[Pc,1+θ,0X

′(c(1 + θ)) − Pc,1,0X
′(p)]‖p0

.

By Lemma 4.2 and the monotonicity of φ′, it ensues that

‖[Pc,1,0X
′(p)−1]X ′(p0)‖p0

≤ −φ′(d(p0, p))
−1 ≤ −φ′(r)−1,

and
‖X ′(p0)

−1[Pc,1+θ,0X
′(c(1 + θ)) − Pc,1,0X

′(p)]‖p0
≤ φ′(τ(θ)) − φ′(r).

Consequently, ‖X ′(p)−1
Pγ,θ,0X

′(γ(θ)) − ITpM‖p ≤ 1 − φ′(r)−1φ′(τ(θ)) < 1. It follows that
X ′(γ(θ)) is invertible with in addition

|[Pγ,θ,0X
′(γ(θ))−1]X ′(p)||p ≤ φ′(τ(θ))−1φ′(r). (18)

Let us deal with (iii). Recalling (2), we notice that

|X ′(γ(θ))−1X(γ(θ))|γ(θ) = |X ′(γ(θ))−1Pγ,0,θ[X(p) +
∫ θ

0
Pγ,s,0X

′(γ(s))γ̇(s)ds]|γ(θ).



Since γ̇ is parallel along γ, γ̇(s) = −Pγ,0,sX
′(p)−1X(p). Setting Θ = |X ′(γ(θ))−1X(γ(θ))|γ(θ),

it follows

Θ = |X ′(γ(θ))−1Pγ,0,θ[X(p) −
∫ θ

0
Pγ,s,0X

′(γ(s))X ′(p)−1X(p)ds]|γ(θ)

= |X ′(γ(θ))−1Pγ,0,θ[(1 − θ)X(p) +
∫ θ

0
[X ′(p) − Pγ,s,0X

′(γ(s))]X ′(p)−1X(p)ds]|γ(θ)

Therefore

|X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ (1 − θ)|X ′(γ(θ))−1Pγ,0,θX(p)|γ(θ) +R(θ)

with

R(θ) = |X ′(γ(θ))−1Pγ,0,θ

∫ θ

0

[X ′(p) − Pγ,s,0X
′(γ(s))]X ′(p)−1X(p)ds|γ(θ).

By (18), this proves that

|X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −(1 − θ)φ′(τ(θ))−1φ(r) +R(θ). (19)

Let us estimate R(θ). Since, by Lemma 4.2 and recalling that φ′ is increasing, we have
‖[Pc,1+θ,0X

′(γ(θ))−1]X ′(p0)‖p0
≤ −φ′(τ(θ))−1, it follows that

R(θ) ≤ −φ′(τ(θ))−1|X ′(p0)
−1Pc,1,0

∫ θ

0

[X ′(p) − Pγ,s,0X
′(γ(s))]X ′(p)−1X(p)ds|p0

≤ −φ′(τ(θ))−1

∫ θ

0

‖X ′(p0)
−1[Pc,1,0X

′(p) − Pc,1+s,0X
′(c(1 + s))]‖p0

ds|X ′(p)−1X(p)|p

≤ φ′(τ(θ))−1φ′(r)−1φ(r)

∫ θ

0

‖X ′(p0)
−1[Pc,1,0X

′(p) − Pc,1+s,0X
′(c(1 + s))]‖p0

ds.

Again, Lemma 4.2 yields

R(θ) ≤ φ′(τ(θ))−1φ′(r)−1φ(r)

∫ θ

0

[

φ′(

∫ 1+s

0

|ċ|) − φ′(

∫ 1

0

|ċ|)
]

ds,

hence with lemma 4.1(iv)

R(θ) ≤ φ′(τ(θ))−1φ′(r)−1φ(r)

[

∫ θ

0

φ′(r − sφ′(r)−1φ(r))ds− θφ′(r)

]

= −φ′(τ(θ))−1[φ(τ(θ)) − (1 − θ)φ(r)].

It follows from (19) that |X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −φ′(τ(θ))−1φ(τ(θ)), which achieves the
proof. �



4.1.2 Proof of (i)-(iii): existence and convergence

Let us first prove by induction that, for all k ≥ 0, pk ∈ B(p0, rk) and X ′(pk) is invertible
with |X ′(pk)−1X(pk)|pk

≤ rk+1 − rk. The case where k = 0 follows from the assumptions of
Theorem 3.1. Let k ≥ 1 and assume that the result holds for all i ∈ {0, . . . , k− 1}. We have

d(pk, p0) ≤
k−1
∑

i=0

d(pi+1, pi) ≤
k−1
∑

i=0

|X ′(pi)
−1X(pi)|pi

≤ rk,

and since |X ′(pk−1)
−1X(pk−1)|pk−1

≤ rk−rk−1, Lemma 4.3 (for θ = 1) yields the conclusion.
The estimate (9) follows immediately. Since {rk} converges to r∗ by Lemma 3.1, we deduce
that {pk} is a Cauchy sequence in the complete manifold (M,d), hence it has a limit p∗,
which is a singularity of X. Indeed, we have that |X(pk)|pk

≤ ‖X ′(pk)‖pk
(rk+1 − rk) and

letting k → ∞ we obtain X(p∗) = 0. The estimate (10) and the fact that p∗ ∈ B(p0, r
∗) are

elementary consequences of (9). If φ′(r∗) < 0 then, by Lemma 4.2, we deduce that X ′(p∗)
is invertible.

4.2 Uniqueness

We have proved that {pk} is well defined and convergent towards a singularity p∗ of X.
Next, we extend to our more general setting the proof of the local uniqueness of p∗ that is
given in [9, §3.2] for the special case of the Riemannian Kantorovich theorem. It is worth
pointing out that this extension is only technical; the key arguments are the same of [9].

4.2.1 Auxiliary results

The following two results extend [9, Lemma 3.8] and [9, Corollary 3.9] to our framework.

Lemma 4.4 Let 0 ≤ r < r∗ and q ∈ B(p0, r) be such that |X ′(q)−1X(q)|q ≤ −φ′(r)−1φ(r).
Suppose that q∗ ∈ B(p0, r

∗) satisfies X(q∗) = 0 and r + d(q, q∗) = r∗. Then d(p0, q) = r.
Furthermore, defining r+ = r − φ′(r)−1φ(r) and q+ = expq[−X ′(q)−1X(q)], we have

r+ + d(q+, q∗) = r∗.

Proof. Let γ : [0, 1] → M be a minimizing geodesic joining q and q∗. We denote v = γ̇(0),
which satisfies |v|q = d(q, q∗). Thus d(q, q∗) ≤ |X ′(q)−1X(q) + v|q + |X ′(q)−1X(q)|q ≤
|X ′(q)−1X(q) + v|q − φ′(r)−1φ(r). On the other hand, since X(q∗) = 0, by (2) we have

X(q) = −
∫ 1

0
Pγ,s,0X

′(γ(s))vds. Therefore

|X ′(q)−1X(q) + v|q = |X ′(q)−1

∫ 1

0

[Pγ,s,0X
′(γ(s)) −X ′(q)]vds|q.



Let denote by c : [0, 2] → M the concatenation of γ̃, a minimizing geodesic joining p0 and
q, with γ. We have

|X ′(q)−1X(q) + v|q
≤ ‖[Pγ̃,1,0X

′(q)−1]X ′(p0)‖p0
|X ′(p0)

−1Pγ̃,1,0

∫ 1

0
[Pγ,s,0X

′(γ(s)) −X ′(q)]vds|p0

≤ ‖[Pc,1,0X
′(q)−1]X ′(p0)‖p0

∫ 1

0
‖X ′(p0)

−1[Pc,1+s,0X
′(c(s)) − Pc,1,0X

′(q)]‖p0
|v|qds.

It follows from Lemma 4.2 that

|X ′(q)−1X(q) + v|q ≤ −φ′(d(p0, q))
−1

∫ 1

0
[φ′(d(p0, q) + s|v|q) − φ′(d(p0, q))]|v|qds.

As d(p0, q) ≤ r, Lemma 4.1 yields φ′(d(p0, q)) ≤ φ′(r) < 0 and ϕas
(d(p0, q)) ≤ ϕas

(r) for
as = s|v|q, hence

|X ′(q)−1X(q) + v|q ≤ −φ′(r)−1

∫ 1

0

(φ′(r + s|v|q) − φ′(r))|v|qds = |v|q + φ′(r)−1φ(r),

where we have used that r + |v|q = r∗ which implies φ(r + |v|q) = 0. But we have seen
that |v|q ≤ |X ′(q)−1X(q) + v|q − φ′(r)−1φ(r). This proves that all these inequalities are
equalities. In particular, as |v|q 6= 0, it follows that

φ′(d(p0, q)) = φ′(r), (20)

|X ′(q)−1X(q) + v|q = |v|q − |X ′(q)−1X(q)|q, (21)

|X ′(q)−1X(q)|q = −φ′(r)−1φ(r). (22)

By the injectivity of φ′ on [0, r∗) (cf. Lemma 4.1), it follows from (20) that d(p0, q) = r.
From (21), we deduce that X ′(q)−1X(q) = −λv for some 0 < λ < 1. Thus q+ = expq[λv] =
γ(λ), therefore d(q, q+) = |X ′(q)−1X(q)|q and d(q+, q∗) = d(q, q∗) − d(q, q+) = r∗ − r −
|X ′(q)−1X(q)|q = r∗ − r+, where we have used (22). �

Lemma 4.5 Let q∗ ∈ B(p0, r
∗) with X(q∗) = 0. If there exist r̃, q̃ such that 0 ≤ r̃ < r∗,

q̃ ∈ B(p0, r̃), |X ′(q̃)−1X(q̃)|q̃ ≤ −φ′(r̃)−1φ(r̃), r̃ + d(q̃, q∗) = r∗, then d(p0, q
∗) = r∗.

Proof. Let {τk} and {qk} be defined by τ0 = r̃, τk+1 = τk − φ′(τk)−1φ(τk) and q0 = q̃,
qk+1 = expqk

[−X ′(qk)−1X(qk)] respectively. As for {rk} and {pk}, it is possible to prove

that τk is increasing and tends to r∗, qk converges to some q̃∗ ∈ B(p0, r
∗), and for all k,

|X ′(qk)−1X(qk)|qk
≤ −φ′(τk)−1φ(τk). Moreover, by Lemma 4.4, we know that for all k,

τk + d(qk, q
∗) = r∗ and d(p0, qk) = τk. Combining all these informations leads to q∗ = q̃∗

and so d(p0, q
∗) = r∗. �

4.2.2 Proof of the uniqueness of the singularity

Let us now prove the uniqueness of p∗ in the ball B(p0, R). We begin by establishing the
uniqueness of the singularity in B(p0, r

∗). Let q∗ ∈ B(p0, r
∗) be such that X(q∗) = 0. In

order to prove that necessarily q∗ = p∗ we consider two cases.



Case 1 If d(p0, q
∗) < r∗, we show by induction that for all k, d(pk, q

∗) + rk < r∗. Indeed,
the initialization just needs r0 = 0. If the property is true for a fixed k, we set γ(θ) =
exppk

[−θX ′(pk)−1X(pk)] and ψ(θ) = d(γ(θ), q∗)+rk+θ(rk+1−rk). We know that ψ(0) < r∗.

If there exists θ̃ such that ψ(θ̃) = r∗, then Lemma 4.3 ensures that Lemma 4.5 applies with
r̃ = rk − θ̃φ′(rk)−1φ(rk) and q̃ = γ(θ̃). But its conclusion contradicts d(p0, q

∗) < r∗. Thus,
by continuity of ψ, one has ψ(1) < r∗, that is d(pk+1, q

∗) + rk+1 < r∗.

Case 2 If d(p0, q
∗) = r∗, then, arguing by induction, Lemmas 4.3 and 4.4 show that for all

k, d(pk, q
∗) + rk = r∗.

Therefore in any case, the following inequality holds

d(pk, q
∗) + rk ≤ r∗,∀k ≥ 0.

Since rk → r∗ and pk → p∗, we have q∗ = p∗. In other words, p∗ is the unique singularity
of X on B(p0, r

∗).

The proof is complete if R = r∗. Otherwise, φ(R) < 0 and we take q∗ ∈ B(p0, R),
a singularity of X, i.e. X(q∗) = 0. Denote by γ : [0, 1] → M a minimizing geodesic
joining p0 to q∗, and v = γ̇(0). Since Pγ,1,0X(q∗) = 0, we have |X ′(p0)

−1X(p0) + v|p0
=

|X ′(p0)
−1[Pγ,1,0X(q∗)−X(p0)−X ′(p0)v]|p0

. The left hand side term is greater than |v|p0
−

φ(0), and the right one is smaller than φ(|v|p0
)−φ(0)+ |v|p0

. So φ(|v|p0
) ≥ 0. As |v|p0

≤ R,
necessarily |v|p0

≤ r∗. This means q∗ ∈ B(p0, r
∗) and then q∗ = p∗.

4.3 Estimates

4.3.1 Proof of (iv)

The estimates in Theorem 3.1(iv) can be obtained by a simple adaptation of some arguments
of [23]. First, given k ≥ 0, notice that similar computations to those in the proof of Lemma
4.3 yield

|X ′(p0)
−1Pc,2,0X(pk+1)|p0

≤ |X ′(pk)−1X(pk)|pk

∫ 1

0

[φ′(
∫ 1+t

0
|ċ|) − φ′(

∫ 1

0
|ċ|)]dt,

where c : [0, 2] → M is the concatenation of a minimizing geodesic curve joining p0 to pk

with γ(t) = exppk
[−tX ′(pk)−1X(pk)], t ∈ [0, 1]. Therefore

∫ 1

0
|ċ| = d(pk, p0) and

∫ 1+t

0
|ċ| =

d(pk, p0) + tβk for βk = |X ′(pk)−1X(pk)|pk
. Hence

|X ′(p0)
−1Pc,2,0X(pk)|p0

≤ βk

∫ 1

0

[φ′(d(pk, p0) + tβk) − φ′(d(pk−1, p0))] dt

≤
∫ 1

0

∫ tβk

0

`(d(pk, p0) + r) dr βkdt

=

∫ βk

0

`(d(pk, p0) + r)(βk − r) dr.



Next, following the proof of [23, Proposition 3.2], let us consider the auxiliary function
ψa(s) = 1

s2

∫ s

0
`(a+r)(s−r)dr for s ∈ [0, R−a]. It is direct to verify that ψa is nondecreasing.

Since βk ≤ rk+1 − rk and d(pk, p0) ≤ rk by (9), we deduce that

|X ′(p0)
−1Pc,2,0X(pk)|p0

≤ βk
2ψd(pk,p0)(rk+1 − rk) ≤ βk

2ψrk
(rk+1 − rk).

But

φ(rk+1) = β − rk+1 +

∫ rk+1

0

`(s)(rk+1 − s)ds =

∫ rk+1

rk

`(s)(rk+1 − s)ds

=

∫ rk+1−rk

0

`(rk + r)(rk+1 − rk − r)dr = (rk+1 − rk)2ψrk
(rk+1 − rk).

Thus
|X ′(p0)

−1Pc,2,0X(pk+1)|p0
≤ φ(rk+1)(βk/(rk+1 − rk))2.

Finally, by Lemma 4.2 we obtain

|X ′(pk+1)
−1X(pk+1)|pk+1

≤ ‖[Pc,2,0X
′(pk+1)

−1]X ′(p0)‖p0
|X ′(p0)

−1Pc,2,0X(pk+1)|p0

≤ −φ′(d(pk, p0) + βk)−1φ(rk+1)(βk/(rk+1 − rk))2

≤ −φ′(rk+1)
−1φ(rk+1)(βk/(rk+1 − rk))2,

which proves (11). This implies for all k ≥ k0 ≥ 0 and n ≥ 0, d(pk+n+1, pk+n) ≤
|X ′(pk+n)−1X(pk+n)|pk+n

≤ (rk+n+1 − rk+n)(βk0
/(rk0+1 − rk0

))2
k−k0

. Summing for all
n ≥ 0, we obtain (12).

4.4 Proof of (v)

Let us proceed with the proof of the last part of Theorem 3.1. Define Q : [0, R] → R as the
following quadratic polynomial function

Q(r) = φ′(r∗)(r − r∗) + 1
2φ

′′(r∗)(r − r∗)2, (23)

whose smallest root is r∗ (recall that φ′′(r∗) = `(r∗) > 0 and φ′(r∗) ≤ 0). Newton’s method
for solving the equation Q(r) = 0, starting at ρ0 := 0, generates the sequence

ρk+1 = ρk −Q′(ρk)−1Q(ρk). (24)

It is easy to verify that {ρk} is well defined, monotonically increasing and convergent to r∗.
Furthermore, it is well known that in this case the solution of (24) has the closed form

ρk =

{

r∗(1 − q2
k−1)(1 − q2

k

)−1 if q ∈ (0, 1),
r∗(1 − 2−k) if q = 1,

where q is given by (13); see, for instance, [10, 16, 23, 25]. Therefore, Theorem 3.1(vi) is a
direct consequence of the following result.



Lemma 4.6 Let {rk} and {ρk} be respectively defined by (7) and (24). Then for every
k ≥ 0, rk ≥ ρk.

Proof. We argue by induction. The property is immediate for k = 0 because r0 = ρ0 = 0.
Now, assume that rk ≥ ρk for some k ≥ 0. By using (24) one has

rk+1 − ρk+1 = rk+1 − rk + ρk − ρk+1 + rk − ρk

= −φ′(rk)−1φ(rk) +Q′(ρk)−1Q(ρk) + rk − ρk

= Q′(ρk)−1[Q(ρk) +Q′(ρk)(rk − ρk)] − φ′(rk)−1φ(rk).

By convexity, Q(ρk) +Q′(ρk)(rk − ρk) ≤ Q(rk), and Q′(ρk) ≤ Q′(rk) because ρk ≤ rk < r∗.
Since Q′ is negative on [0, r∗], we deduce that

rk+1 − ρk+1 ≥ Q′(rk)−1Q(rk) − φ′(rk)−1φ(rk).

As φ′′ = ` is nondecreasing on [0, R], the function φ′ is convex and thus

φ(rk) = −
∫ r∗

rk

φ′(t)dt ≥ −φ
′(rk) + φ′(r∗)

2
(r∗ − rk).

It ensues that

−φ′(rk)−1φ(rk) ≥ 1

2
(r∗ − rk)[1 + φ′(rk)−1φ′(r∗)].

On the other hand, a straightforward computation gives Q′(rk)−1Q(rk) = 1
2 (r∗ − rk)[−1 −

Q′(rk)−1φ′(r∗).] By convexity of φ′, we have Q′(rk) = φ′(r∗)+φ′′(r∗)(rk − r∗) ≤ φ′(rk) < 0.
As φ′(r∗) ≤ 0, we get

Q′(rk)−1Q(rk) ≥ −1

2
(r∗ − rk)[1 + φ′(rk)−1φ′(r∗).]

Therefore, we obtain

rk+1 − ρk+1 ≥ Q′(rk)−1Q(rk) − φ′(rk)−1φ(rk) ≥ 0,

which proves the result. �

5 Special cases

5.1 Riemannian Kantorovich’s theorem

The well known Kantorovich’s theorem for Newton’s method in Banach spaces [12] gives a
criterion for (quadratic) convergence which is verifiable at the starting point provided a local
Lipschitz constant is known. An extension of Kantorovich’s theorem to finite-dimensional
and complete Riemannian manifolds has been obtained by Ferreira and Svaiter in [9]. We
will see that the latter can be viewed as a special case of Theorem 3.1. To this end, let us
introduce the following definition of Lipschitz continuity for tensors (for a related notion see
[9, Definition 2.2]).



Definition 5.1 A (1,k)-tensor T on M is said to be L-Lipschitz continuous on a subset S
of M , if for all geodesic curve γ : [0, 1] →M with endpoints in S, we have

‖Pγ,1,0T (γ(1)) − T (γ(0))‖γ(0) ≤ L

∫ 1

0

|γ̇(t)|dt.

Theorem 5.1 (R-Kantorovich’s theorem) Given p0 ∈M such that X ′(p0) ∈ GL(Tp0
M),

set a = ‖X ′(p0)
−1‖p0

and β = |X ′(p0)
−1X(p0)|p0

. Assume that 2aβL ≤ 1 for a constant L
such that X ′ is L-Lipschitz continuous on the closed ball B(p0, R0) for some R0 ≥ r∗ where

r∗ =
1 −√

1 − 2aβL

aL
.

Then the sequence {pk} generated by Newton’s method starting at p0 is well defined and
convergent to a singularity p∗ of X.

If 2aβL = 1, i.e. r∗ = 2β, then p∗ is the unique singularity of X in B(p0, 2β).
If 2aβL < 1 then X ′(p∗) ∈ GL(Tp∗M) and p∗ is the unique singularity of X in B(p0, R)

for any R ∈ [r∗, R0] such that R < 1+
√

1−2aβL
aL .

In any case d(p∗, p0) ≤ r∗ ≤ 2β, and for all k ∈ N, one has d(p∗, pk) ≤ r∗ − rk =

r∗ 1−q

1−q2k q
2k−1, where q is given by (13) for λ = aβL, and {rk} is the sequence generated by

Newton’s method, starting at r0 = 0, applied to the scalar function

φ(r) = β − r +
aL

2
r2. (25)

Proof. Assume without loss of generality that β > 0. Take c ∈ G2(p0, r). Take (t, y) and
(t′, y′) in c with t ≤ t′. We have

‖X ′(p0)
−1[Pc,t′,0X

′(y′) − Pc,t,0X
′(y)]‖p0

≤ ‖X ′(p0)
−1‖p0

‖Pc,t′,tX
′(y′) −X ′(y)‖y

≤ aL

∫ t′

t

|ċ|,

where we have used the isometry property of the parallel transport and Definition 5.1. Define
`(r) = aL, if r ∈ [0, R], and let us verify that φ := φ` complies with the requirements of
Theorem 3.1. Indeed, in this case φ is given by (25) and we have that φ(R) ≤ 0. The roots

of φ are r± = 1±
√

1−2aβL
aL . We have r− ≤ 2β ≤ 1

aL ≤ r+ with equality iff 2aβL = 1. In any
case, r∗ = r− is the unique root of φ on [0, R], with φ′(r∗) = −1 + aLr∗, which is negative
when 2aβL < 1. Finally, straightforward computations in (14) yield λ = aβL. The result
follows thus by a direct application of Theorem 3.1. �

5.2 An Euclidean case: Nesterov-Nemirovskii self-concordancy

In their pioneering work [14], Nesterov and Nemirovskii developed a general theory of the
computational complexity of interior-point methods for convex optimization, based on the



notion of self-concordant functions. See [17] for a simplified yet comprehensive presentation
of this theory. Inspired by the analysis in [4], we next show that Theorem 3.1 yields a local
convergence result of Newton’s method for the minimization of self-concordant functions
which is a slight variant of a key result in [14].

Suppose that M = IRn with the usual identification TxIRn ∼= IRn. Let us denote by 〈·, ·〉
the Euclidean product in IRn. Recall that a convex function f ∈ C3(Ω; IR) defined on an
nonempty, open and convex set Ω ⊂ IRn is said to be a-self-concordant for a > 0 if

∀x ∈ Ω, ∀h ∈ IRn, |f ′′′(x)[h, h, h]| ≤ 2a−1/2(f ′′(x)[h, h])3/2. (26)

From now on, following [14], we assume that f : Ω → IR is a strong, non-degenerate and
a-self-concordant function, i.e.,

1. f(yk) → ∞ whenever {yk} converges to a point in the boundary ∂Ω.

2. Hx := f ′′(x) is positive definite for all x ∈ Ω.

3. f satisfies (26).

In particular, f is strictly convex on Ω and x∗ ∈ Ω is the unique minimizer of f on Ω iff
f ′(x∗) = 0. Now, set

〈h1, h2〉Hx
= a−1f ′′(x)[h1, h2]

and
|h|Hx

=
√

〈h, h〉Hx
.

The Dikin ellipsoid of center x ∈ Ω and radius r > 0 is defined by

Dr(x) = {y ∈ IRn | |y − x|Hx
≤ r}.

It corresponds to the closed ball of center x and radius r when IRn is endowed with the
metric structure induced by the scalar product 〈·, ·〉Hx

. By [14, Theorem 1.1.1] (see also [17,
Theorem 2.5.18]), if r < 1 then Dr(x) ⊂ Ω and for any y ∈ Dr(x) we have

∀h ∈ IRn, |h|Hy
≤ 1

1 − r
|h|Hx

. (27)

Lemma 5.1 Fix x0 ∈ Ω and let IRn be endowed with the metric structure induced by
〈·, ·〉Hx0

. Then for any R ∈ (0, 1), X = f ′ satisfies (5) with ` : [0, R] → [0,+∞) being
given by

`(r) =
2

(1 − r)3
.



Proof. It suffices to show that ‖f ′′(x0)
−1f ′′′(y)‖Hx0

≤ `(r) for r ∈ [0, R] and y ∈ B(x0, r) =
Dr(x0) (see Remark 3.1). Using the notation 〈f ′′′(y)h1h2, h3〉 = f ′′′(y)[h1, h2, h3], by defin-
ition we have

‖f ′′(x0)
−1f ′′′(y)‖Hx0

= sup{|f ′′(x0)
−1f ′′′(y)h1h2|Hx0

| |hi|Hx0
≤ 1, i = 1, 2}

= sup{〈f ′′(x0)
−1f ′′′(y)h1h2, h3〉Hx0

| |hi|Hx0
≤ 1, i = 1, 2, 3}

= a−1 sup{f ′′′(y)[h1, h2, h3] | |hi|Hx0
≤ 1, i = 1, 2, 3}.

On the other hand, by a general lemma on symmetric trilinear forms [14, Proposition 8.1.1]
(see [11] for an alternative proof of that lemma), it follows from the self-concordance property
(26) that f ′′′(y)[h1, h2, h3] ≤ 2a|h1|Hy

|h2|Hy
|h3|Hy

. Hence,

‖f ′′(x0)
−1f ′′′(y)‖Hx0

≤ 2 sup
{

|h1|Hy
|h2|Hy

|h3|Hy
| |hi|Hx0

≤ 1, i = 1, 2, 3
}

≤ 2

(1 − r)3
,

where in the last inequality we have used (27). This proves our claim. �

Theorem 5.2 (Self-concordant minimization) Let x0 ∈ Ω and β = |f ′′(x0)
−1f ′(x0)|Hx0

.

If β ≤ (
√

2 − 1)2 = 3 − 2
√

2 ≈ 0.17157 then f admits a unique minimizer x∗ which
belongs to Dr∗(x0) for

r∗ =
1

4
[β + 1 −

√

β2 − 6β + 1],

and in particular |x∗ − x0|Hx0
≤ r∗ ≤ 2β. The sequence generated by Newton’s method

xk+1 = xk − f ′′(xk)−1f ′(xk) starting at x0 is well defined, contained in Dr∗(x0) and con-
vergent to x∗.

For all k ≥ 0, |x∗ − xk|Hx0
≤ r∗ − rk where {rk} is the sequence generated by Newton’s

method, starting at r0 = 0, applied to the scalar function

φ(r) = β − 2r +
r

1 − r
. (28)

The sequence {rk} converges to r∗ which is the smallest zero of φ in [0, 1). Furthermore,

rk =
1 − ν2k−1

1 − ν2k−1η
r∗, (29)

where

ν =
1 − β −

√

β2 − 6β + 1

1 − β +
√

β2 − 6β + 1
, η =

1 + β −
√

β2 − 6β + 1

1 + β +
√

β2 − 6β + 1
.

Proof. Motivated by Lemma 5.1, consider `(r) = 2/(1 − r)3, r ∈ [0, R] for some R < 1. A
direct computation shows that the corresponding function φ defined by (6) is given by (28).
Finding a zero of this function amounts to solving 2r2 − (β + 1)r + β = 0. This equation
has a real root iff ∆ := β2 − 6β + 1 = (β − 3 + 2

√
2)(β − 3 − 2

√
2) ≥ 0, which is the case

because β ≤ (
√

2− 1)2 = 3− 2
√

2. The roots are then r± = [1 + β ±
√

∆]/4, and we choose



r∗ = r−, the smallest one. When β > 0 (otherwise x0 is the solution), it is clear that r∗ > 0.
Furthermore, it is direct to verify that r∗ ≤ 1−1/

√
2 and φ(1−1/

√
2) ≤ 0 with equalities iff

β = (
√

2− 1)2. Hence, it is possible to choose R ∈ [r∗, 1− 1/
√

2] such that the assumptions
of Theorem 3.1 hold.

Notice that, as φ′(r) = −(1−4r+2r2)/(r−1)2, we have that φ′(r∗) < 0 if r∗ < 1−1/
√

2,
which amounts to β < (

√
2− 1)2 and ∆ > 0, hence ν < 1 and we can ensure that quadratic

convergence occurs in that case.
This completes the proof because, in R

n viewed as an Euclidean space, Newton’s iterates
does not depend on the choice of the inner product. �

Remark 5.1 The closed form (29) for rk is given in [23], where a majorant function ana-
logue to (28) is used to improve the original α-theorem of Smale. See also Theorem 5.3
below.

Remark 5.2 The convergence test provided by the constant β in Theorem 5.2 is not op-
timal: it can be refined by using the fact that ∇f is not only a vector field but also a
gradient, see for instance [14, 17]. On the other hand it is worthwhile to note that the rate
of convergence (29) slightly improves classical results on this topic.

Remark 5.3 It would be interesting to develop a theory of self-concordancy for real-valued
functions defined on Riemannian manifolds. This is beyond the scope of this paper.

5.3 Riemannian Smale’s α-theorem

Another celebrated local convergence result on Newton’s method is the so called α-theorem
of Smale [18] for analytic functions, which is a very useful tool for the construction and
computation complexity analysis of homotopy algorithms for solving nonlinear equations
[3]. An extension of Smale’s α-theorem to Riemannian manifolds was established by Dedieu,
Priouret and Malajovich [5]. As a special case of Theorem 3.1, we will obtain a Riemannian
version of Smale’s theorem which improves [5, Theorem 1.4] (see Remark 5.4).

From now on, let us assume that both the complete Riemannian manifold (M, g) and
the vector field X under consideration are analytic. Following [18], we set

γ(p) = sup
k≥2

∥

∥

∥

∥

1

k!
X ′(p)−1X(k)(p)

∥

∥

∥

∥

1
k−1

p

, (30)

for each point p ∈M such thatX ′(p) ∈ GL(TpM), and γ(p) = +∞ otherwise. By analyticity
of X, γ(p) < +∞ whenever X ′(p) is invertible and the following Taylor formula holds:

∀u ∈ TpM , |u|p < γ(p)−1 ⇒ Pζ,1,0X
(k)(ζ(1)) =

+∞
∑

j=0

1

j!
X(j+k)(p)[u]j , (31)

where ζ(t) = expp[tu]. Here, we adopt the convention 0−1 = +∞.



Lemma 5.2 Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0
M), r > 0 and p ∈ B(p0, r).

(i) If r < γ(p0)
−1 then for all k ≥ 2,

‖X ′(p0)
−1[Pζ,1,0X

(k)(p)]‖p0
≤ k!γ(p0)

k−1

(1 − γ(p0)r)k+1
, (32)

where ζ : [0, 1] →M is the minimizing geodesic curve joining p0 and p.
(ii) If r < (1 − 1/

√
2)γ(p0)

−1 then X ′(p) ∈ GL(TpM) and

γ(p) ≤ 1

(1 − γ(p0)r)ψ(γ(p0)r)
γ(p0) (33)

for ψ(α) = 1 − 4α+ 2α2 = (α− 1 + 1/
√

2)(α− 1 − 1/
√

2).

Proof. (i) Let us write ζ(t) = expp0
[tu], t ∈ [0, 1], with u ∈ Tp0

M and p = expp0
[u] so that

|u|p0
≤ r. We obtain from (31) that

‖X ′(p0)
−1[Pζ,1,0X

(k)(p)]‖p0
≤

+∞
∑

j=0

1

j!
‖X ′(p0)

−1X(j+k)(p0)[u]
j‖p0

≤
+∞
∑

j=0

(j + k)!

j!
γ(p0)

j+k−1|u|jp0

≤ k!γ(p0)
k−1

+∞
∑

j=0

(j + k)!

j!k!
(γ(p0)r)

j =
k!γ(p0)

k−1

(1 − γ(p0)r)k+1
.

(ii) Denoting by I : Tp0
M → Tp0

M the identity operator on Tp0
M , we get

‖X ′(p0)
−1[Pζ,1,0X

′(p)] − I‖p0
≤

+∞
∑

j=0

1

j!
‖X ′(p0)

−1X(1+j)(p0)‖p0
rj − 1

≤
+∞
∑

j=0

(1 + j)(γ(p0)r)
j − 1 =

1

(1 − γ(p0)r)2
− 1.

As γ(p0)r < 1−1/
√

2, we have that 1/(1−γ(p0)r)
2−1 < 1. We deduce thatX ′(p0)

−1
Pζ,t,0X

′(p)
is invertible, hence X ′(p) ∈ GL(TpM), and

‖[Pζ,1,0X
′(p)−1]X ′(p0)‖p0

≤ (1 − γ(p0)r)
2

2(1 − γ(p0)r)2 − 1
=

(1 − γ(p0)r)
2

ψ(γ(p0)r)
.

Therefore

‖X ′(p)−1X(k)(p)‖p = ‖X ′(p)−1Pζ,0,1X
′(p0)X

′(p0)
−1Pζ,1,0X

(k)(p)‖p

≤ ‖[Pζ,1,0X
′(p)]−1X ′(p0)‖p0

‖X ′(p0)
−1

Pζ,1,0X
(k)(p)‖p0

≤ k!γ(p0)
k−1

(1 − γ(p0)r)k−1ψ(γ(p0)r)
.



From the fact that 0 < ψ(α) ≤ 1 when 0 ≤ α < 1 − 1/
√

2, it follows that

γ(p) ≤ sup
k≥2

γ(p0)

(1 − γ(p0)r)ψ(γ(p0)r)
1

k−1

=
γ(p0)

(1 − γ(p0)r)ψ(γ(p0)r)
,

which proves (33). �

Lemma 5.3 Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0
M). For any R ≤ (1−1/

√
2)γ(p0)

−1,
X satisfies (5) with

`(r) =
2γ(p0)

(1 − γ(p0)r)3
, r ∈ [0, R].

Proof. To prove that ` complies with (5) it suffices, by Remark 3.1, to establish that for
every r ∈ [0, R] and c ∈ G2(p0, r) we have that

||X ′(p0)
−1[Pc,a,0X

′′(c(a))]|| ≤ `(r), ∀a ∈ [0, 2]. (34)

By continuity, it suffices to establish this property for r ∈ [0, R).
Fix c ∈ G2(p0, r) with r < R. By definition of G2(p0, r), c is the concatenation of two

geodesics ζi : [0, 1] → M (i = 0, 1) with ζ0 being minimizing. Let us write c(t) = ζ0(t) if
t ∈ [0, 1] and c(t) = ζ1(t − 1) if t ∈ [1, 2] . Since ζ0(0) = c(0) = p0, applying Lemma 5.2(i)
to ζ0 with k = 2, we deduce that (34) holds for all a ∈ [0, 1].

In order to prove (34) for a ∈]1, 2], we argue as follows. First, consider a ∈ (1, 2]
such that d(c(1), c(a)) < γ(c(1))−1. Since c on [1, 2] is a geodesic curve, we may write
c(a) = expc(1)[u1] for some u1 ∈ Tc(1)M with |u1|c(1) < γ(c(1))−1. Notice that |u0|p0

+
|u1|c(1) = d(p0, c(1))+d(c(1), c(a)) ≤ r. By Taylor’s formula (31), we have Pc,a,1X

′′(c(a)) =
∑+∞

j=0
1
j!X

(j+2)(c(1))[u1]
j , hence

Pc,a,0X
′′(c(a)) =

+∞
∑

j=0

1

j!
[Pc,1,0X

(j+2)(c(1))][(Pc,1,0u1)]
j .

Since c(t) = ζ0(t) = expp0
[tu0], t ∈ [0, 1], for some u0 ∈ Tp0

M with |u0|p0
= d(p0, c(1)) ≤

r < γ(p0)
−1, we have c(1) = expp0

[u0] and we can use (31) again to get

Pc,a,0X
′′(c(a)) =

+∞
∑

j0,j1=0

1

j0!j1!
X(j0+j1+2)(p0)[u

j0
0 , (Pc,1,0u1)

j1 ].



Therefore

‖X ′(p0)
−1[Pc,a,0X

′′(c(a))] ‖p0
≤

+∞
∑

j0,j1=0

1

j0!j1!
‖X ′(p0)

−1X(j0+j1+2)(p0)‖p0
|u0|j0p0

|Pc,1,0u1|j1p0

≤
+∞
∑

j0,j1=0

(j0 + j1 + 2)!

j0!j1!
γ(p0)

j0+j1+1|u0|j0p0
|u1|j1c(1)

=
+∞
∑

k=0

(

k
∑

j=0

(k + 2)!

j!(k − j)!
|u0|jp0

|u1|k−j
c(1)

)

γ(p0)
k+1

=

+∞
∑

k=0

(k + 2)(k + 1)
(

|u0|p0
+ |u1|c(1)

)k

γ(p0)
k+1

≤
+∞
∑

k=0

(k + 2)(k + 1)(rγ(p0))
kγ(p0) =

2γ(p0)

(1 − rγ(p0))3
.

The previous argument shows that (34) holds for every a ∈ (1, 2] with d(c(1), c(a)) <
γ(c(1))−1. If d(c(1), c(a)) ≥ γ(c(1))−1 then one does not know whether a direct Taylor’s
expansion at c(1) is valid or not. Nevertheless, as r < R ≤ (1 − 1/

√
2)γ(p0)

−1, by virtue
of (33), there exists a positive constant K depending on r and γ(p0) such that γ(p) ≤ K
for all p ∈ B(p0, r). Consequently, there exist a finite subdivision 1 = t1 < . . . < tn+1 = a
of [1, a] and corresponding tangent vectors ui ∈ Tc(ti)M such that c(ti+1) = expc(ti)[ui] and

|ui|c(ti) = d(c(ti+1), c(ti)) ≤ K−1 ≤ γ(c(ti))
−1 for i = 1, . . . , n. In such a case, successive

applications of appropriate parallel transports and Taylor’s formulas yield

Pc,a,0X
′′(c(a)) =

+∞
∑

j0,...,jn=0

1

j0! . . . jn!
X (j0+...+jn+2)(p0)[u

j0
0 , (Pc,t1,0u1)

j1, . . . , (Pc,tn,0un)jn ].

Then, since |u0|p0
+

∑n
i=1 |ui|c(ti) ≤ r, we can use similar arguments to show that (34) holds.

We leave the details to the reader. �

Theorem 5.3 (Riemannian α-theorem) Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0
M),

and set α = βγ for β = |X ′(p0)
−1X(p0)|p0

and γ = γ(p0).
If α ≤ α0 := (

√
2− 1)2 = 3− 2

√
2 then the sequence {pk} generated by Newton’s method

starting at p0 is well defined, contained in B(p0, r
∗) where

r∗ =
1

4γ
[1 + α−

√

α2 − 6α+ 1],

and convergent to some p∗, which is the unique singularity of X on B(p0, (1 − 1/
√

2)γ−1).
In particular, d(p∗, p0) ≤ r∗ ≤ 2β.

For all k ≥ 0, d(p∗, pk) ≤ r∗ − rk where {rk} is the sequence generated by Newton’s
method, starting at r0 = 0, applied to the scalar function

φ(r) = β − 2 r +
r

1 − γ r
. (35)



The sequence {rk} converges to r∗ which is the smallest zero of φ in [0, γ−1). Furthermore,
rk has the closed form

rk =
1 − ν2k−1

1 − ν2k−1η
r∗,

for

ν =
1 − α−

√
α2 − 6α+ 1

1 − α+
√
α2 − 6α+ 1

, η =
1 + α−

√
α2 − 6α+ 1

1 + α+
√
α2 − 6α+ 1

.

Proof. By Lemma 5.3, one can use the same arguments, up to the factor γ, of the proof of
Theorem 5.2. We leave the details to the reader. �

Remark 5.4 Theorem 5.3 is a finite-dimensional Riemannian version of some results of
[22, 23] and improves two aspects of the R-α-theorem proved by Dedieu et al. in [5]. First,
the constant α0 = 3− 2

√
2 in Theorem 5.3, which is the same of [22, 23], is better than the

analogue constant 0.130716944... in [5, 18] characterized as the unique root of the equation
2α = ψ(α)2 in [0, 1 − 1/

√
2). Second, in our approach there is no need of any condition

relying on the injectivity radius rp0
of the exponential map at p0, while in [5, Theorem 1.4]

it is assumed in addition that β ≤ s0rp0
for a suitable universal constant s0 > 0.

Remark 5.5 We focus on the conditions of the original α-theorem in order to illustrate our
approach. However, further improvements of Smale’s result relying directly on the quantities
‖X ′(p0)

−1X(k)(p0)‖p0
, k ≥ 2, (and not on the upper bound γ(p0)) are given in [21, 23] for

the Euclidean case. Of course, Riemannian versions of those results can be obtained by
specialization of Theorem 3.1; we will not develop this point here.
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