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Abstract This paper deals with the stability of the feasible set mapping of linear
systems of an arbitrary number (possibly infinite) of equations and inequalities such
that the variable x ranges on a certain fixed constraint set X ⊂ R

n (X could represent
the solution set of a given constraint system, e.g., the positive cone of R

n in the
case of sign constraints). More in detail, the paper provides necessary as well as
sufficient conditions for the lower and upper semicontinuity (in Berge sense), and
the closedness, of the set-valued mapping which associates, with any admissible
perturbation of the given (nominal) system its feasible set. The parameter space
is formed by all the systems having the same structure (i.e., the same number of
variables, equations and inequalities) as the nominal one, and the perturbations are
measured by means of the pseudometric of the uniform convergence.
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1 Introduction

In this paper we consider given a non-empty set X ⊂ R
n and a linear system (called

nominal),

σ = {a′
tx � b t, t ∈ W; a′

tx = b t, t ∈ E},
where W and E are arbitrary index sets (possibly empty or infinite) such that
W ∩ E = ∅, T := W ∪ E �= ∅, a : T → R

n, and b: T → R (called LHS and RHS
functions, respectively). X could represent either the solution set of those constraints
that cannot be perturbed (e.g., sign constraints), in continuous optimization, or a
discrete set (i.e., a set with no accumulation point), in combinatorial optimization.

The solution set of σ in X is

F X = {x ∈ X | a′
tx � b t, t ∈ W; a′

tx = b t, t ∈ E}.
In particular, the solution set of σ in R

n is denoted with F, i.e., F = FR
n
. We say that

σ is consistent (relative to X) if F X �= ∅.
This paper analyzes the effect on F X of small changes in the coefficients of σ due

to either computing or measurement errors, maintaining the space of variables, R
n,

and the sets indexing inequalities and equations, W and E. Thus the parameter space
will be the real vector space

� =
{(

c
d

)
| c : T → R

n, d : T → R

}
,

where we identify
(c

d

) ∈ � with the system

σ1 = {c′
tx � dt, t ∈ W; c′

tx = dt, t ∈ E},
and consequently we will write σ1 ∈ � (observe that � only depends on T and n). If
σ1 is the resulting system of perturbing σ , the size of this perturbation is measured by
means of the uniform pseudometric, i.e.,

d(σ1, σ ) = sup
t∈T

∥∥∥∥
(

ct

dt

)
−

(
at

b t

)∥∥∥∥∞
.

Obviously, � is locally metrizable. Now we introduce three subsets of � which play
a crucial role in this paper. We denote by �X

c , �̂ and � the sets of consistent systems
(relative to X), the set of systems σ1 ∈ � such that the LHS function c : T → R

n is
bounded, and the set of systems σ1 such that the coefficient function (c, d) : T →
R

n+1 is bounded, respectively. Obviously, � ⊂ �̂ and both sets are open and closed
in �. The interiority of σ in �X

c is a kind of stability that has been analyzed in [1] .
Since all the results in this paper concern the behavior of the feasible set in the

proximity of the nominal system, they remain valid replacing � with an arbitrary
neighborhood of σ , e.g., if σ ∈ �, {σ1 ∈ � | d(σ1, σ ) < +∞} = �). They are also valid
for a different norm in R

n and under re-scaling of the linear constraint of index t ∈ T
with an arbitrary weight βt, provided that there exist two positive scalars β and β

such that β � βt � β for all t ∈ T.
There exists a wide literature on the continuity properties of the feasible set

mapping F : � ⇒ R
n such that F (σ1) = F1 is the solution set of σ1 (relative to R

n)
in the case that E = ∅ (see, e.g., [5, 10, 11] and references therein). The recent



paper [6] extends to linear systems such that 0 < |E| � n results on the interiority
of σ in �R

n

c and provides formulae for the distance from σ to ill-posedness. Many
other alternative approaches to the stability of the feasible set mapping are possible,
e.g., the study of the topological behavior of the feasible set in the proximity of the
nominal system (see, e.g., [15] and [16]), regularity properties and error bounds (see,
e.g., [17] and [18]), etc.

This paper analyzes the stability of σ , with an arbitrary index set E and ∅ �= X ⊂
R

n (the same context of [1]), from the perspective of the continuity properties, at σ,

of the set-valued mapping, FX : � ⇒ R
n, which associates to each σ1 ∈ � the set of

solutions of σ1 in X, denoted as FX (σ1) = F X
1 = F1 ∩ X. In other words, FX is the

intersection mapping of F with the constant set-valued mapping X. For the sake of
simplicity, we eliminate X when it is the whole space R

n (e.g., �R
n

c , FR
n

and FR
n

are
denoted by �c, F and F , respectively).

The paper is organized as follows. Section 2 introduces the necessary notation
and elements of set-valued analysis, including known results on the stability of F
when E = ∅, whereas Section 3 analyzes in an abstract framework the transference of
stability properties from arbitrary multifunctions to their corresponding intersection
mappings. Sections 4, 5 and 6 provide necessary conditions and sufficient conditions
for three desirable continuity properties of FX (closedness, lower and upper semi-
continuity). Finally, Section 7 contains the conclusions, including applications of the
results in Sections 4, 5 and 6 to three important linear programming (LP) models:
ordinary LP problems formulated in the general form,

P1 : Min c′x s.t. Ax � b , Bx = d, x ∈ R
n,

LP problems in standard format,

P2 : Min c′x s.t. Ax = b , x ∈ R
n+,

and 0–1 LP problems

P3 : Min c′x s.t. Ax � b , x ∈ {0, 1}n ,

where A(m × n), b ∈ R
m, B(p × n), d ∈ R

p, and c ∈ R
n. Observe that X is closed in

these models, it is convex in P1 and P2, and it is discrete in P3.

2 Preliminaries

Let us introduce the necessary notation. Given a non-empty subset Y of a certain real
linear space, we denote by conv Y the convex hull of Y. If Y is convex, dim Y and 0+Y
represent the dimension and the recession cone, respectively. When the linear space
is equipped with a certain topology, we denote by cl Y, int Y, and rint Y the closure,
the interior, and the relative interior of Y, respectively. Instead of lim

r→∞yr = y0 we

write yr → y0. We denote by B (x; ε) the open ball centered at x with radius ε > 0 in
the Euclidean space. The zero vector in R

n is 0n, In is the identity matrix and ker A is
the kernel of a linear mapping A.

We deal with the stability of FX in three different senses that we define for
arbitrary set-valued mappings (other related concepts can be found, e.g., in [2, 3]
and [19]). Let Y be an arbitrary set (called space of parameters) equipped with some
locally metrizable topology, let A: Y ⇒ R

n and let y0 ∈ Y.



A is closed at y0 if for any x ∈ R
n and any two sequences, {yr} ⊂ Y and {xr} ⊂ R

n

such that yr → y0, xr ∈ A(yr), r = 1, 2, ..., and xr → x0, one gets x0 ∈ A(y0).

A is lower semicontinuous in Berge–Kuratowski sense (lsc in brief) at y0 if for
each open set U such that U ∩ A(y0) �= ∅ there exists an open set V, y0 ∈ V ⊂ Y,
such that U ∩ A(y) �= ∅ for every y ∈ V.

A is upper semicontinuous in Berge–Kuratowski sense (usc) at y0 if for each open
set U such that A(y0) ⊂ U there exists an open set V, y0 ∈ V ⊂ Y, such that A(y)

⊂ U for every y ∈ V.

The mapping A is closed (lsc, usc) if it is closed (lsc, usc) at y for all y ∈ Y.

The statement of the following well-known result (see, e.g., [3, Lemmas 2.2.1 and
2.2.3, part (i)]) involves a concept of a different kind: A is locally bounded at y0 if
there exists an open set V, y0 ∈ V ⊂ Y, such that the set

⋃
y∈V

A(y) is bounded.

Lemma 1 Given A: Y ⇒ R
n and y0 ∈ Y, the following statements hold:

(1) If A is usc at y0 and A (y0) is closed, then A is closed at y0.
(2) If A is closed and locally bounded at y0, then A is usc at y0.

The next result is Lemma 2(iii) in [13].

Lemma 2 If A is usc at y0, then there exist a positive scalar ρ and a neighborhood of
y0, V, such that

A(y)�cl B (0n; ρ) ⊂ A(y0)�cl B (0n; ρ) , for all y ∈ V. (1)

The converse statement holds when A is closed at y0.

If A is a closed mapping (as it is FX under mild conditions), then the images are
closed and so the lsc property and the closedness of A at y0 can be expressed in terms
of Painlevé-Kuratowski limits. The corresponding properties, called inner and outer
semicontinuity, are a suitable pair of stability properties (see the discussion in [19]),
whereas the usc property is too restrictive, according to Eq. 1.

The lsc property of FX is related with the following desirable properties of
σ ∈ �X

c : σ is stably consistent if σ ∈ int �X
c and it is RHS-stably consistent if

there exists ε > 0 such that
{
a′

tx � dt, t ∈ T
} ∈ �X

c for all function d : T → R such
that |dt − b t| < ε for all t ∈ T. Obviously, if FX is lsc at σ ∈ �X

c , then σ is stably
consistent, and this implies that σ is RHS-stably consistent. The stability of σ is also
related with the existence of Strong Slater (SS in brief) points of σ in X (or at least in
cl X), i.e., points x such that a′

tx � b t + ε for some ε > 0 and for all t ∈ W, and such
that a′

tx = b t for all t ∈ E (if E �= ∅).
Observe that, if x is SS point of σ and E = ∅, then x is also SS point for systems

close enough to σ. In fact, if σ1 = {c′
tx � dt, t ∈ W} ∈ � satisfies

d (σ1, σ ) < δ < ε (n + 1)−
1
2

∥∥∥∥
(

x
−1

)∥∥∥∥
−1

and t ∈ W, we have∣∣∣∣
[(

ct

dt

)
−

(
at

b t

)]′ ( x
−1

)∣∣∣∣ �
∥∥∥∥
(

ct

dt

)
−

(
at

b t

)∥∥∥∥
∥∥∥∥
(

x
−1

)∥∥∥∥ < δ
√

n + 1

∥∥∥∥
(

x
−1

)∥∥∥∥ ,



so that

c′
tx − dt �

(
a′

tx − b t
) − δ

√
n + 1

∥∥∥∥
(

x
−1

)∥∥∥∥
� ε − δ

√
n + 1

∥∥∥∥
(

x
−1

)∥∥∥∥
> 0.

Moreover, if x is SS point of σ and x ∈ F, then every point of the segment ]x, x[
is also SS point of σ. In fact, let ε be as above and take λ ∈ ]0, 1[ . Denoting z (λ) :=
(1 − λ) x + λx, we have

a′
tz (λ) − b t = (1 − λ) a′

tx + λa′
tx − b t � λε, for all t ∈ W

and

a′
tz (λ) − b t = (1 − λ) a′

tx + λa′
tx − b t = 0, for all t ∈ E,

so that z (λ) is SS point of σ. Consequently, the set of SS points of σ is convex and
dense in F. Next we show that, if there exists a SS point of σ and σ ∈ �̂, then the set
of SS point of σ is open (relatively open) if E = ∅ (E �= ∅, respectively). In the worst
case, assume that E �= ∅ and let

L := {
x ∈ R

n | a′
tx = b t, t ∈ E

}
.

L is the affine hull of F and so, it is also the affine hull of the set of SS points of σ. Let
x ∈ R

n and ε > 0 such that a′
tx � b t + ε, for all t ∈ W, and a′

tx = b t for all t ∈ E, and
let k > 0 such that ‖at‖ < k for all t ∈ T. Then it is easy to verify that B

(
x; ε

2k

) ∩ L is
formed by SS points of σ.

In the examples of Section 3 we make use of some well-known stability properties
of F in the simple case that E = ∅. In fact, F is closed and it is usc at σ ∈ �c if F
is either bounded or the whole space R

n. The converse statement is not true unless
|T| < ∞ (a characterization of the usc property for general systems can be found in
[5], but it is very hard to be checked in practice). The next result recalls some of the
well-known conditions for F to be lsc at σ [11].

Lemma 3 Let σ ∈ �c be such that E = ∅. Then the following statements are equivalent
to each other:

(1) F is lsc at σ .
(2) σ is stably consistent.
(3) σ is RHS-stably consistent.
(4) There exists a SS point for σ .

3 Stability of the Intersection Mapping

In this section we consider given a non-empty set X ⊂ R
n and a set-valued mapping

A : Y ⇒ R
n, where Y is equipped with some locally metrizable topology. We also

consider the intersection mapping AX: Y ⇒ R
n such that AX (y) := X ∩ A (y) for all

y ∈ Y. It is easy to show by means of simple examples (similar to those in [4, Chapter



6], with A = F and T finite) that no continuity property is transmitted from A to AX

unless X satisfies a certain condition. For the sake of completeness we include here
some conditions which are consequence of well-known results on the intersection of
two set-valued mappings.

Proposition 4 Let A be closed at y0 ∈ Y. Then AX is closed at y0 if A (y0) ∩ cl X ⊂
X. In particular, AX is closed (usc) at y0 if X is closed (compact, respectively).
Consequently, If A is a closed mapping and X is closed (compact, respectively), then
AX is closed (usc, respectively).

Proof Let {yr} ⊂ Y and {xr} ⊂ R
n such that yr → y0, xr → x0 and xr ∈ AX (yr), r =

1, 2, ... Since xr ∈ A (yr), r = 1, 2, ..., and A is closed at y0, x0 ∈ A (y0). On the other
hand, since xr ∈ X for all r, x0 ∈ A (y0) ∩ cl X ⊂ X. Hence x0 ∈ AX (y0). Thus AX is
closed at y0. If X is closed, A (y0) ∩ cl X ⊂ X obviously. If X is compact, then AX is
usc at y0 by Lemma 1, part (2). 
�

The second statement in Proposition 4 is also consequence of [4, Theorems 5
and 7], [14, Proposition 4] and [3, Lemmas 2.2.3 and 2.2.4].

Proposition 5 If A is lsc at y0 ∈ Y, then each of the following conditions guarantees
that AX is lsc at y0:

(1) X is open;
(2) A (y0) is a convex set such that ∅ �= int A (y0) ⊂ X; and
(3) X is convex and int AX (y0) �= ∅.

Consequently, if A is lsc and X is open then AX is also lsc.

Proof We assume that A is lsc at y0 ∈ Y. Under (3), AX is lsc at y0 by straightforward
application of [9, Proposition 2.2].

Under either (1) or (2), we consider an arbitrary open set U such that
U ∩ AX (y0) �= ∅, i.e., (U ∩ X) ∩ A (y0) �= ∅.

First we assume (1), i.e., that X is open.
Since U ∩ X is open there exists a neighborhood of y0, say V, such that (U ∩ X) ∩

A (y) �= ∅ for all y ∈ V. Then U ∩ AX (y) �= ∅ for all y ∈ V.
Now we assume (2), i.e., that A (y0) is a convex set such that ∅ �= intA (y0) ⊂ X.
As a consequence of the assumptions on A (y0) we have A (y0) ⊂ cl intA (y0).

Since U ∩ A (y0) �= ∅, there exists z ∈ U ∩ int A (y0). Let ε > 0 such that B (z; ε) ⊂
U ∩ int A (y0). Since B (z; ε) ∩ A (y0) �= ∅, there exists a neighborhood of y0, V, such
that B (z; ε) ∩ A (y) �= ∅ for all y ∈ V. Then, for each y ∈ V, there exists a point
x ∈ B (z; ε) ∩ A (y) satisfying x ∈ B (z; ε) ⊂ U ∩ int A (y0) ⊂ U ∩ X and x ∈ A (y),
so that x ∈ U ∩ AX (y). Hence we have again U ∩ AX (y) �= ∅ for all y ∈ V. 
�

Statements (2) and (3) in Proposition 5 are also consequence of [3, Lemma 2.2.5
and Corollary 2.2.5.1]. The next example shows the independence of the alternative
conditions (1)–(3) in Proposition 5 (observe that A is lsc at y0 in all cases).

Example 6 Let n = 1 and σ = {x � 0}. Let us consider three different sets X:

(a) X = ]−2, −1[ ∪ ]1, 2[. Obviously, (1) holds whereas (2) and (3) fail.



(b) X = R+ ∪ {−1}. Only (2) holds.
(c) X = [−1, 1]. Only (3) holds.

Proposition 7 If A is usc at y0 ∈ Y, then each of the following conditions guarantees
that AX is usc at y0:

(1) X is closed;
(2) X is open and A (y0) ⊂ X; and
(3) AX is closed at y0

Consequently, if A is usc and X is closed then AX is also usc.

Proof We assume that A is usc at y0 ∈ Y. Let U be an open set such that
AX (y0) ⊂ U .

(1) First we assume that X is closed. Since A (y0) ⊂ W := U ∪ (
R

n
�X

)
, there

exists a neighborhood of y0, V, such that A (y) ⊂ W for all y ∈ V. Then
AX (y) ⊂ W ∩ X = U for all y ∈ V.

(2) Now we assume that A (y0) ⊂ X, where X is open. Since A (y0) ⊂ U ∩ X, and
this is open, there exists a neighborhood of y0, V, such that A (y) ⊂ U ∩ X for
all y ∈ V. In that case AX (y) ⊂ U ∩ X ⊂ U for all y ∈ V.

(3) Finally we assume that AX is closed at y0. If AX is locally bounded at y0, then
Lemma 1 applies. Otherwise, according to Lemma 2, there exist a positive scalar
ρ and a neighborhood of y0, V, such that Eq. 1 holds. Intersecting with X both
members of Eq. 1, we get

AX(y)�cl B (0n; ρ) ⊂ AX(y0)�cl B (0n; ρ) , for all y ∈ V.

We conclude that AX is usc at y0 applying again Lemma 2. 
�

Concerning condition (3) in Proposition 7, observe that, by Proposition 4 and
Lemma 1(1), the closedness of AX at y0 holds if A (y0) is closed and A (y0) ∩ cl X ⊂
X (e.g., if X is closed).

Let us consider now the separation of conditions (1)–(3) in Proposition 7 under
the assumption that A is usc at y0 ∈ Y. The separation of (1) and (2) is trivial. The
next example shows that (3) does not imply (1) or (2).

Example 8 Let n = 1 and σ = {0 � x � 1} and let X = ]−1, 2]. FX is closed at σ by
Proposition 4 whereas X is neither closed nor open.

Now we assume that A (y0) is closed. Then we have seen that (1)⇒(3). On the
other hand, if (2) holds, then AX is usc at y0, with AX (y0) = A (y0) closed, so that (3)
also holds. This means that, for the feasible set mapping F introduced in Section 1,
condition (3) is weaker than (1) and (2). This is not true for arbitrary set-valued
mappings.



Example 9 Let A : R ⇒ R such that A (0) = ]−1, 1[ and A (y) = ∅ otherwise. Obvi-
ously, A is usc at 0. We define now X in two different ways:

(a) For X = [−1, 1], since AX (0) = ]−1, 1[ is not closed, AX cannot be closed at 0.
Thus (1)�(3).

(b) For X = A (0) we get the same conclusion. Hence (2)�(3).

4 Closedness of F X

It is easy to prove that F is closed independently of the emptiness or not of E.

Proposition 10 If F ∩ cl X ⊂ X, then FX is closed at σ . The converse statement holds
if σ ∈ �̂.

Proof The direct statement is consequence of Proposition 4, taking into account that
F is closed.

Now we assume that {at, t ∈ T} is bounded and F ∩ cl X � X. Let y ∈
(F ∩ cl X) �X. Then we can write y = lim

r→∞xr, with xr ∈ X for all r ∈ N. We associate

with each r ∈ N the vector zr := xr − y and the system

σr := {a′
t

(
x − zr) � b t, t ∈ T}.

Since d (σr, σ ) �
(
supt∈T ‖at‖

) ‖zr‖ and lim
r→∞zr = 0n, lim

r→∞σr = σ . Moreover, xr ∈
Fr ∩ X = F X

r for all r ∈ N, but y /∈ F X . Therefore FX cannot be closed at σ . 
�

Observe that, if n = 1 and σ = {x � 0}, as in Example 6 (note that σ ∈ �̂), for
X = ]−2, 0], the set valued-mapping FX is not closed at σ because F ∩ cl X = {0}
and 0 /∈ X.

The next example shows that the boundedness assumption in the converse state-
ment of Proposition 10, σ ∈ �̂, is not superfluous.

Example 11 Let X = {x ∈ R
n | xn < 0} ∪ {0n} and let σ ∈ � such that T is infinite,

all the elements of F are SS points of σ and there exists ε > 0 such that F1 =
[−1, 1]n−1 × [0, 1] if d(σ1, σ ) < ε (according to Example 1 in [8] such a system exists
due to the infiniteness of T ). Since F X

1 = {0n} if d(σ1, σ ) < ε, FX is constant and has
closed images on a neighborhood of σ and so it is stable in all sense at σ . Nevertheless
F ∩ cl X = [−1, 1]n−1 × {0} � X. The reason is that necessarily σ /∈ �̂.

Corollary 12 FX is closed if and only if X is closed.

Proof The direct statement follows from Proposition 4. For the converse statement,
consider the consistent system σ1 := {0′

nx � −1, t ∈ T}. The closedness of FX at σ1

implies the closedness of the image F X
1 = R

n ∩ X = X. 
�

5 Lower Semicontinuity of F X

We give first a sufficient condition for FX to be lsc at σ.



Proposition 13 Let σ ∈ � and assume that σ ∈ �̂ and {at, t ∈ E} is linearly indepen-
dent if E �= ∅. If X is a convex set such that int X contains some SS point of σ , then
FX is lsc at σ .

Proof Let U be an open set such that F X ∩ U �= ∅. Let x ∈ F X ∩ U. We discuss four
possible cases.

Case 1: E = ∅.
We have σ = {a′

tx � b t, t ∈ W} and x̂ ∈ int X such that x̂ is SS point of σ.

The segment ]x, x̂[ is formed by SS points of σ and it is contained in int X
by the accessibility lemma. So ]x, x̂[ contains a SS point of σ, say x̃, such that
x̃ ∈ U ∩ int X. Let δ > 0 such that x̃ is SS point of σ1 = {c′

tx � dt, t ∈ W} if
d (σ1, σ ) < δ. In such a case x̃ ∈ F1 ∩ U ∩ int X ⊂ F X

1 ∩ U , where F1 is the
solution set of σ1. Thus F X

1 ∩ U �= ∅.
Case 2: W = ∅ and |E| = n.

We have σ = {a′
tx = b t, t ∈ E}, where {at, t ∈ E} is a basis of R

n. By conti-
nuity of the determinant as a function of the entries, there exists ε1 > 0 such
that, if σ1 = {c′

tx = dt, t ∈ E} satisfies d (σ1, σ ) < ε1, then {ct, t ∈ E} is also a
basis of R

n. In such a case, there exists a unique solution of σ1, say x (c, d) .

The assumption implies that x (a, b) = x is SS point of σ and x ∈ U ∩ int X.

By continuity of x (·, ·) at (a, b) (recall Cramer’s rule), there exists ε2,
with 0 < ε2 < ε1, such that x (c, d) ∈ U ∩ int X (and so F X

1 ∩ U �= ∅) if
d (σ1, σ ) < ε2.

Case 3: W = ∅ and |E| < n.
We can assume that E = {1, ..., m}, with m < n. Let {am+1, ..., an} ⊂ R

n such
that {a1, ..., an} is a basis of R

n. Let b t := a′
tx, t = m + 1, .., n. Since x ∈ X

is solution of the system σ̃ := {a′
tx = b t, t = 1, .., n}, with solution set F̃, we

have F̃ X ∩ U �= ∅. Taking into account that σ̃ is in case 2, there exists ε >

0 such that, if σ̃1 = {c′
tx = dt, t = 1, .., n} satisfies d (̃σ1, σ̃ ) < ε, then F̃ X

1 ∩
U �= ∅.
Now consider an arbitrary system σ1 = {c′

tx = dt, t = 1, .., m}, with solution
set F1, such that d (σ1, σ ) < ε. Associating with σ1 the system

σ̃1 := {c′
tx = dt, t = 1, .., m; a′

tx = b t, t = m + 1, .., n},
we have d (̃σ1, σ̃ ) < ε, so that F̃ X

1 ∩ U �= ∅. Observing that F̃ X
1 ⊂ F X

1 , we
conclude that F X

1 ∩ U �= ∅.
Case 4: W �= ∅ and E �= ∅.

Let k > 0 such that ‖at‖ < k for all t ∈ T. Since there exists a SS point of σ contained
in int X, say x̂, and ]x, x̂ [ ⊂ int X is formed by SS points of σ , we can assume without
loss of generality that x̂ is a SS point of σ contained in U ∩ int X. Let ε > 0 such that
a′

t x̂ � b t + ε for all t ∈ W and a′
t x̂ = b t for all t ∈ E. Let ρ > 0 such that ρ < ε

2k and
B (̂x ; ρ) ⊂ U ∩ int X.

Given t ∈ W, if x ∈ B (̂x ; ρ) , we have

a′
tx − b t = a′

t x̂ − b t + a′
t (x − x̂ )

� ε − k ‖x − x̂‖
� ε

2
.



Thus B ( x̂ ; ρ) is formed by SS points of the system σ W := {a′
tx � b t, t ∈ W}. Let

{x1, ..., xn+1} ⊂ B ( x̂ ; ρ) such that x̂ is an interior point of conv {x1, ..., xn+1}. Let
V := int conv {x1, ..., xn+1}.

Given j ∈ {1, ..., n + 1} , there exists γ j > 0 such that x j is SS point of every pertur-
bation of σ W , σ W

1 , such that d
(
σ W

1 , σ W
)

< γ j. Let γ := min {γ1, ..., γn+1} > 0. Then, if
d

(
σ W

1 , σ W
)

< γ, x1, ..., xn+1 are SS points of σ W
1 , in which case V ⊂ FW

1 ∩ U ∩ int X,
where FW

1 denotes the solution set of σ W
1 .

On the other hand, if F E denotes the solution set of σ E = {a′
tx = b t, t ∈ E}, we

have x̂ ∈ F E ∩ V. By cases 1 and 2, since {at, t ∈ E} is linearly independent, there
exists μ > 0 such that F E

1 ∩ V �= ∅ if d
(
σ E

1 , σ E
)

< μ, where F E
1 denotes the solution

set of σ E
1 = {c′

tx = dt, t ∈ E}.
Consequently, if d (σ1, σ ) < min {γ, μ}, since

d (σ1, σ ) = max
{
d

(
σ E

1 , σ E)
, d

(
σ W

1 , σ W)}
,

we get

∅ �= V ∩ F E
1 ⊂ (

U ∩ int X ∩ FW
1

) ∩ F E
1 ⊂ U ∩ F X .

This completes the proof. 
�

The next result is the extension of Lemma 3 to systems with an arbitrary E
(maintaining X = R

n).

Proposition 14 Let σ ∈ �c be such that σ ∈ � if E �= ∅. Then the following statements
are equivalent to each other:

(1) F is lsc at σ .
(2) σ is stably consistent.
(3) σ is RHS-stably consistent.
(4) There exists a SS point for σ and {at, t ∈ E} is linearly independent if E �= ∅.

Proof We can assume E �= ∅ (otherwise we have Lemma 3). (1)⇒(2) is trivial
and the equivalence of (2), (3) and (4) has been shown in [1, Corollary 1]. Thus
it is enough to prove that (4)⇒(1). But this is straightforward consequence of
Proposition 13 (take X = R

n). 
�

The next two results provide sufficient conditions for FX to be lsc at a given σ un-
der different assumptions. The first one is immediate consequence of Propositions 5
and 14.

Corollary 15 If there exists a SS point for σ and, moreover, σ ∈ � and {at, t ∈ E} is
linearly independent if E �= ∅, then each of the following conditions guarantees that
FX is lsc at σ :

(a) X is open;
(b) ∅ �= int F ⊂ X; and
(c) X is convex and int F X �= ∅.



Proposition 16 Let σ ∈ �X
c be such that E = ∅. Then each of the following conditions

guarantees that FX is lsc at σ :

(1) F X contains a dense subset of SS points of σ .
(2) X contains at least one SS point of σ and F X is convex.
(3) Every element of F X is SS point of σ .

Proof First we prove that (1) implies that FX is lsc at σ. Let U be an open set in
R

n such that U ∩ F X �= ∅. Since the set of SS points of σ is dense in F, U contains
some SS point of σ . Let x ∈ U ∩ F X and ε > 0 such that a′

tx � b t + ε for all t ∈ T.
Let δ > 0 such that d (σ1, σ ) < δ implies that x is SS point of σ1. Since x ∈ U ∩ F X

1 ,
we get U ∩ F X

1 �= ∅. Hence FX is lsc at σ .
Now we prove that (2)⇒(1). Let x ∈ X and ε > 0 such that a′

tx � b t + ε for all
t ∈ T, and assume that F X is convex. We shall prove that Z := ⋃{

]x, x[ | x ∈ F X
}

is
a dense subset of F X formed by SS points of σ . Every element of Z is SS point of σ

because each segment ]x, x[ , with x ∈ F X , is formed by SS points of σ. On the other
hand, since x ∈ F X and this is convex, Z ⊂ F X . Thus, Z is a subset of F X . Moreover,
given x ∈ F X , [x, x] ⊂ cl Z , so that F X ⊂ cl Z , i.e., Z is dense in F X .

(3) Let U be an open set of R
n such that U ∩ F X �= ∅. Select x ∈ U ∩ F X . By

assumption, x is SS point of σ. Take δ > 0 as in the proof of part (1). Since x solves
σ1 if d (σ1, σ ) < δ, we get x ∈ U ∩ F X

1 . 
�

If E = ∅ and |T| < ∞, the set of SS points of σ is int F, so that, by the two
previous results, any of the following conditions guarantees that FX is lsc at σ : (a)
int F �= ∅ and X is open; (b) ∅ �= int F ⊂ X; (c) int (F ∩ X) �= ∅ and X is convex; (1)
F ∩ X contains a dense subset of F and int F �= ∅; (2) X ∩ int F �= ∅ and F ∩ X is
convex; and (3) F ∩ X ⊂ int F. In this particular case it is possible to separate these
conditions (recalling that (2)⇒(1)).

Proposition 17 Let FX be lsc at σ ∈ �X
c . Then the following statements hold:

(1) {at, t ∈ E} is linearly independent if E �= ∅;
(2) F and X cannot be separated by a hyperplane if σ ∈ �̂;
(3) cl X contains some SS point of σ if σ ∈ �, |E| < ∞, and X is convex ;
(4) X contains at least one SS point of σ if σ ∈ �, |E| < ∞, and X is a closed convex

set ; and
(5) Every element of F X is SS point of σ if X is discrete.

Proof (1)–(4) are straightforward consequence of [1, Propositions 1 and 2] (recall
that σ is RHS-stably consistent if FX is lsc at σ ∈ �X

c ).
(5) Let x ∈ F X . Since x is an isolated point of X, there exists an open set in R

n, U,

such that U ∩ X = {x} . Obviously, U ∩ F X �= ∅, so that there exists ε > 0 such that
U ∩ F X

1 �= ∅ if d(σ1, σ ) � ε, in which case U ∩ F X
1 = {x} .

Assume that x is not a SS point of σ. Since a′
tx = b t for all t ∈ E, there exists s ∈ W

such that a′
sx < b s + ε. Consider

σ1 = {c′
tx � dt, t ∈ W; c′

tx = dt, t ∈ E}
such that c := a, dt := b t for t ∈ T� {s} , and ds := b s+ ε. Then we have d(σ1, σ ) = ε

and x /∈ F1, in contradiction with F1 ∩ (U ∩ X) = {x} . 
�



Finally, we characterize the lsc property of FX in two particular cases as a
straightforward consequence of Propositions 16 and 17.

Corollary 18 Let σ ∈ �X
c such that E = ∅. Then the following statements hold:

(1) If σ ∈ � and X is a closed convex set, then FX is lsc at σ if and only if X contains
at least one SS point of σ .

(2) If X is discrete, then FX is lsc at σ if and only if every element of F X is an SS
point of σ .

6 Upper Semicontinuity of F X

The first result in this section is the usc counterpart of Proposition 14 (i.e., for the
case X = R

n).

Proposition 19 Let σ ∈ �c such that F �= R
n. If F is bounded, then F is usc at σ . The

converse statement holds if σ ∈ �̂.

Proof Assume that F is bounded. Let U be an open set such that F ⊂ U.

Let S := W ∪ (E × {1, 2}). We associate with each function (c, d) : T → R
n+1,

another one (c, d) : S → R
n+1 just defining

(
c(t,1)

d(t,1)

)
=

(
ct

dt

)
and

(
c(t,2)

d(t,2)

)
= −

(
ct

dt

)
for all t ∈ E.

This way we associate with σ another system σ̃ = {a′
sx � b s, s ∈ S}, whose solution

set is F̃ = F. Let
(
�̃, d̃

)
be the pseudometric parameter space associated with σ̃ and

let F̃ be the corresponding feasible set mapping. Since F̃ is usc at σ̃ due to the
compactness of F̃, there exists ε > 0 such that F̃1 ⊂ U whenever d̃(̃σ1, σ̃ ) < ε.

Thus, if σ1 ∈ � satisfies d(σ1, σ ) < ε, then d̃(̃σ1, σ̃ ) < ε and so F1 = F̃1 ⊂ U.

Now we assume that F is unbounded. Then bdF is unbounded too and there exist
sequences {xr} ⊂ bdF and {yr} ⊂ R

n \ F such that ‖xr‖ → +∞ and ‖yr − xr‖ → 0.

Since {y1, y2, ...} is closed, U := R
n \ {y1, y2, ...} is an open set such that F ⊂ U.

Let k > 0 such that ‖at‖ < k for all t ∈ T. Let σr ∈ � be the system obtained
from σ, aggregating a′

t (yr − xr) to the RHS coefficient b t for all t ∈ T, r = 1, 2, ....

Denoting by Fr the solution set of σr, yr ∈ Fr \ U, r = 1, 2, .... Since d(σr, σ ) �
k ‖yr − xr‖ for all r, d(σr, σ ) → 0 and so F cannot be usc at σ . 
�

An immediate consequence of the previous result is that, F is locally bounded at
σ ∈ �c if and only if F is bounded.

Proposition 20 Each of the following conditions guarantees that FX is usc at σ ∈ �X
c :

(1) F is usc at σ and FX is closed at σ .
(2) F is bounded and F ∩ cl X ⊂ X (e.g., X is closed).
(3) F X is bounded and X is closed and convex.
(4) X is compact.



Proof

(1) It is straightforward consequence of Proposition 7(3).
(2) It implies (1), by Propositions 19 and 10.
(3) Let U be an open set such that F X ⊂ U. Since X is intersection of closed

halfspaces, X is the solution set of some system {a′
tx � b t, t ∈ S}, with S ∩T = ∅.

Consider the system

σ̃ = {a′
tx � b t, t ∈ W ∪ S; a′

tx = b t, t ∈ E},
with associated feasible set mapping F̃ . Since the solution set of σ̃ is F̃ = F X ,
and this is bounded, F̃ is usc at σ̃ (by Proposition 19). Let ε > 0 such that
d(̃σ1, σ̃ ) < ε implies that its solution set F̃1 satisfies F̃1 ⊂ U.

Now, we associate with each σ1 ∈ �, with solution set F1, the system σ̃1 which
results of aggregating to σ1 the inequalities a′

tx � b t, t ∈ S. If d(σ1, σ ) < ε, we
have d(̃σ1, σ̃ ) < ε and so F X

1 = F̃1 ⊂ U.

(4) It follows from Proposition 4. 
�

Taking n and σ as in Example 6 and X an arbitrary closed subset of R, F is usc
at σ (see Exercise 6.6 in [10]) and FX is closed at σ (by Proposition 10), but F is
unbounded. Thus, (1) holds, (2) fails (so that (2) is stronger than (1)) and (3) holds
if and only if X is convex depending on X. The next result can be seen as a converse
of statement (3) of Proposition 20).

Proposition 21 If FX is usc at σ ∈ �X
c ∩ �̂, W = ∅ and X is a closed convex set such

that dim 0+ X = n, then F X is either X or a bounded set.

Proof In order to use matrix notation, we assume that |E| < ∞ (the proof is
essentially the same for an arbitrary E). Let σ = {Ax = b} , A (m × n) and b ∈ R

m.

Assume that F X is an unbounded set different of X. Consider the open convex
set U := F X + B (0n; 1) . We must prove that the inclusion F ⊂ U is not preserved
by small perturbations of σ.

Since F �= R
n because F X �= X, 0 < dim ker A < dim 0+ X = n. On the other

hand, 0+ F X = (ker A) ∩ 0+ X.

Take x ∈ F X , y ∈ 0+ F X , and z ∈ (
0+ X

) \ ker A such that y �= 0n �= z. Let
M (n × n) be such that My = z. The matrix rIn + M is non-singular for r big enough,
say r � r0.

Given r ∈ N, we define σr := {Arx = br} , with solution set Fr, such that

Ar = A
[
In − M (rIn + M)−1]

and br = Arx. We have x ∈ F X
r ,

Ar − A = −AM (rIn + M)−1

and br − b = (Ar − A) x. Moreover, y + z
r ∈ ker Ar and y + z

r ∈ 0+ X, so that y +
z
r ∈ 0+ F X

r . Nevertheless, since

A
(

y + z
r

)
= 1

r
Az �= 0m,

y + z
r /∈ (ker A) ∩ 0+ X = 0+ F X = 0+U. Since 0+ F X

r � 0+U, F X
r � U.



Observing that F X
r � U for r � r0 whereas d(σr, σ ) → 0, we conclude that FX

cannot be usc at σ. 
�

7 Conclusions

This paper provides sufficient conditions and necessary conditions for the closedness,
the lower and the upper semicontinuity of the feasible set mapping FX of a system
σ with inequality constraints, equations and exact constraint set. The paper charac-
terizes the closedness of FX for the class of systems with bounded LHS function and
proves the closedness of FX when X is closed. The lower (upper) semicontinuity at
the nominal system has been characterized in some cases, e.g., when the coefficient
function (the LHS function, respectively) is bounded and X = R

n.

Concerning the viability of checking in practice the conditions in this paper, let us
observe that there exists some SS point of σ if and only if the linear system{

a′
tx − xn+1 � b t, t ∈ W; a′

tx � b t, t ∈ E ; xn+1 > 0
}

(2)

is consistent. If X is the solution set of some convex system

{ fs(x) < 0, s ∈ S; fs(x) � 0, s ∈ Z }, (3)

the existence of SS point of σ in X is equivalent to the consistency of the aggregation
of the systems in Eqs. 2 and 3. Consistency tests for such kind of systems are discussed
in [7]. Other conditions are formulated in terms of the containment of two sets. For
instance, F∩ cl X ⊂ X (the sufficient condition in Proposition 10) holds if and only if

{x ∈ R
n | a′

tx � b t, s ∈ W; a′
tx = b t, s ∈ E; fs(x) � 0, s ∈ S ∪ Z }

⊂ {x ∈ R
n | fs(x) < 0, s ∈ S; fs(x) � 0, s ∈ Z }. (4)

The containment of the solution sets of pairs of systems as those in Eq. 4 has
been also characterized in [7]. Most conditions become very simple when σ is
an ordinary linear systems. As an illustration, consider the LP models P1, P2, P3

introduced in Section 1, whose constraint systems, denoted by σ1, σ2, σ3, we assume
to be consistent.

The feasible set mapping FX is closed for all i because X is closed (Corollary 12).
Moreover, FX is lsc at:

– σ1 if and only if {Ax > b , Bx = d} is consistent and B is full-row rank (Proposi-
tion 14).

– σ2 if and only if R
n++ contains some solution of {Ax = b} and A is full-row rank

(by Propositions 13 and 17, because rint F = F and rint R
n+ = R

n++).
– σ3 if and only if any solution of σ3 in {0, 1}n satisfies Ax > b (Corollary 18).

Finally, FX is usc at:

– σ1 if and only if F is either R
n (i.e., A and B are null matrices, b ∈ R

n− and d = 0p)
or a bounded set (Proposition 19).

– σ2 if and only if F X is either R
n+ or a bounded set (Propositions 20 and 21).

– σ3, due to the compactness of X (Proposition 4 ).

The results in Sections 4, 5 and 6 could be useful in order to study the stability
properties of the optimal set and the optimal value mappings for linear optimization



problems with equations and inequalities subject to perturbations and a fixed
constraint set.
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