
Integrating Service-Oriented Mobile Units to Support 
Collaboration in Ad-hoc Scenarios 

 
 

Andrés Neyem 
(Department of Computer Science, Universidad de Chile, Chile 

aneyem@dcc.uchile.cl) 
 

Sergio F. Ochoa 
(Department of Computer Science, Universidad de Chile, Chile 

sochoa@dcc.uchile.cl) 
 

José A. Pino 
(Department of Computer Science, Universidad de Chile, Chile 

jpino@dcc.uchile.cl) 
 
 
 

Abstract: Advances in wireless communication and mobile computing extend collaboration 
scenarios. Mobile workers using computing devices are currently able to collaborate in order to 
carry out productive, educational or social activities. Typically, collaborative applications 
intended to support mobile workers involve some type of centralized data or services, because 
they are designed to work on infrastructure supported wireless networks. This centralization 
constrains the collaboration capabilities in ad-hoc communication cases. This paper introduces 
the concept of Service-Oriented Mobile Unit (SOMU) in order to reduce such limitation. 
SOMU is an autonomous software infrastructure running on a computing device; it is able to be 
integrated to ad-hoc networks and it can interoperate with other mobile units in ad-hoc 
collaboration scenarios. In addition, the paper presents the challenges faced when designing 
and implementing the SOMU platform. It also describes an application developed on SOMU. 

Keywords: Service-Oriented Mobile Units, Web Services Platform, Middleware for Mobile 
Groupware, Ad-hoc Collaboration Scenarios. 
Categories: C.3, C.5, J.7.  

1 Introduction  

Fast development in the area of information and communication technology and 
especially in broadband Internet access and mobile computing has changed the 
established ways of communication, learning, entertainment and work in professional 
and private lives. Mobile computing devices and wireless communication capabilities 
have become useful to support mobile work anywhere. Examples of suitable places 
are parks, coffee shops, shopping malls, airports, universities, schools, hospitals, 
administrative offices and factories. Particularly, these technologies have allowed 
workers to labor outside of the office and accomplish their activities while they are on 
the move. A mobile worker is often conceived as a person executing tasks anywhere 
and anytime, using mobile computing devices with wireless communication 
capabilities.  



Mobile workers require capabilities for data synchronization and collaboration 
with other people. They have frequently some uncertainty about which will be the 
next collaboration scenario and its characteristics as well. Therefore, they need 
autonomous, flexible and interoperable collaborative solutions independently of the 
availability of centralized resources or communication infrastructure. When two or 
more mobile workers meet, their physical location should not be a limitation to 
collaborate.  

Collaboration activities involving mobile workers can be supported by mobile 
networks, also called MANETs (Mobile Ad-hoc NETworks) [Aldunate et al. 2006b].  
However, solutions using MANETs have to be designed considering the features of 
these networks, such as small communication range, dynamic topology and high 
disconnection rate [De Rosa et al. 2005].  

Currently, most collaborative applications intended to support mobile workers 
involve some type of centralized data or services because they are designed to work 
on infrastructure supported wireless networks (access points). Typically this 
centralization constrains the collaboration possibilities in ad-hoc communication 
scenarios [Buszko et al. 2001, Aldunate et al. 2006a]. In order to reduce such 
limitation, this paper introduces the concept of Service-Oriented Mobile Unit 
(SOMU). SOMU is an autonomous software infrastructure running on portable 
computing devices. It can be integrated to ad-hoc networks and it may interoperate 
with other mobile units through standardized services. Each SOMU is able to provide 
and consume services from/to others units and it does not depend on centralized data 
or services to support mobile workers’ activities. Collaborative mobile applications 
developed on this middleware inherit the SOMU capability for interacting among 
them almost in any communication setup. 

Next section presents two application scenarios and introduces the main 
challenges to be met when designing a solution to support mobile ad-hoc 
collaboration. Section 3 presents and discusses related work. Section 4 describes the 
design decisions made to deal with the requirements of these collaborative 
applications. Section 5 describes the way to overcome the stated challenges with 
SOMUs. Section 6 describes an application scenario where the ad-hoc collaboration 
was supported by an application developed on SOMU. Section 7 presents the 
conclusions. 

2 Requirements for Mobile Ad-hoc Collaboration 

There is a large variety of work scenarios where mobile ad-hoc collaboration can be 
supported [Aldunate et al. 2006b]. This section characterizes a work setting where 
SOMU is advantageous to support collaboration. Such setting is very demanding in 
terms of services required from collaborative applications. In order to illustrate the 
main requirements involved in mobile ad-hoc collaboration, two work scenarios are 
briefly described below.  

 
• Disaster Relief: Activities to resist and recover from natural, hazardous and 

intentional eXtreme Events (XE) are highly dynamic and demand effective 
collaboration from a broad range of organizations (police, firefighters, medical 



personnel and government agencies). Typically, there are minimal communication 
services available in this collaboration scenario supporting just voice messages 
delivery (e.g. a couple of radio channels) [Comfort 2004]. However, collaboration 
among first responders (mobile workers) is highly required and it needs support for 
voice and data communication [Ochoa et al. 2007]. These mobile workers need to 
know basic information about the site and affected buildings (e.g. maps, probable 
people locations and vulnerable points), exit routes, resources deployed in the area 
and tasks assignment. Mobile computing devices and MANETs could provide an 
important support to deliver this information in the affected area [Figure 1.a.].  

 On the other hand, these mobile workers need to be autonomous, interoperable and 
be able to have access to several types of shared information to perform the 
assigned activities. Sometimes they also have to update such information and 
communicate the updates to their partners, leaders and other organizations in order 
to support decision-making processes. Most of these capabilities have to be offered 
by the groupware solutions independently of the characteristics of the physical 
location where the first responders meet. It means that no centralized data or 
services should be required to support collaboration among them. Using such 
supporting technological infrastructure, Government authorities in charge of macro-
decisions must be able to access information from the mobile workers, monitor the 
activities evolution, make decisions and deliver orders and information. 
Summarizing, in this scenario:  

− Dispersed teams work in the affected area. 
− Teams do not belong to the same organization. 
− Mobile workers (first responders) record the advances and problems in the 

relief process. 
− They are not able to use fixed communication infrastructure. 
− They must communicate and share information. 
 

• Building and Construction: Each construction site typically has a main contractor. 
The main contractor in turn outsources several parts of the construction project, e.g. 
electrical facilities, gas/water/communication networks, painting and architecture. 
Some of these sub-contracted companies work concurrently and they need to know 
the advances of each other to plan the execution of pending work. Moreover, all 
these companies should periodically report the advances to the main contractor; the 
contractor must coordinate the efforts of the companies. For example, electrical 
engineers (mobile employees) belonging to a company need to be on the move in 
order to inspect and record the status of the electrical facilities being developed by 
the company workers at a construction site. During the inspection, each engineer 
using a Tablet PC updates the information recording the current status of the 
electrical facilities [Figure 1.b]. After the inspection and before leaving the 
construction site, the engineers meet to share the data, review it and check 
agreement on the updated information. If they detect incomplete or contradictory 
data, some of them can re-inspect the facilities in order to solve such case. Before 
leaving the construction site, an electrical engineer shares the updated information 
with a main contractor’s employee, who is in charge of tracking the construction 
project updates. Typically no wireless communication support is available at the 



construction site; however it should not be a limitation for collaboration among 
them. Similar to the previous work scenario, the collaboration involves: 

− Dispersed teams that work at the construction site. 
− Teams do not belong to the same company. 
− Inspectors (mobile workers) record the advances and problems in the 

contracted work. 
− They are not able to use fixed communication infrastructure. 
− They have to communicate and share information. 

 

 
Figure 1.a: Use of mobile technology in 
disaster relief scenarios 

 
Figure 1.b: Use of mobile technology 
in construction scenarios 

 
In both scenarios, the mobile workers need autonomy, interoperability and they 

also need to be able to collaborate independently of the features of the physical 
locations. Next section presents the general requirements involved in a mobile 
application, and section 2.2 specifies those particularly relevant to support 
collaborative work. 

2.1 General Requirements 

The computation capability of the mobile computing devices is also an issue to 
consider when designing groupware solutions to support mobile ad-hoc collaboration. 
Next, these requirements are briefly explained. 

• Autonomy: Collaborative mobile applications should work as autonomous 
solutions in terms of communication, data and functionality. Communication 
availability in the physical scenario and access to centralized shared data and 
services cannot be a limitation to support collaboration among these mobile 
workers. Therefore, self-configurable solutions able to work in peer-to-peer 
settings are required. These solutions have also to consider the changes in the 
collaboration context. On the other hand, these solutions should also be 
autonomous in terms of power supply consumption, however this issue is out of 
scope of this paper.  

• Interoperability: Provided mobile workers may belong to various organizations 
and need to do casual or opportunistic collaboration, their collaborative mobile 
applications should offer communication, data and services interoperability. 



Thus, the applications could interact among them although they were not 
designed specifically to work together. Similarly, notifications and information 
delivered by the network could be understood by the applications receiving such 
message. 

• Shared information availability: Shared information supporting collaborative 
applications in these scenarios need to be highly replicated since there are 
frequent disconnections in wireless networks (even using access points). The 
groupware application has to keep the coherence of shared information in a peer-
to-peer network. It must also synchronize the information when it is updated in 
parallel and asynchronously. Hence, when a mobile worker requests the most 
updated piece of shared information, he/she can recover the most updated 
available piece.  

• Variability of the work context: Since mobile workers are on the move to carry 
out their activities, their work context can frequently change. Some attributes, 
such as MANET topology and the Internet/servers access, will change from one 
place to the next one. It means the communication and coordination mechanisms 
embedded into the groupware solution have to consider these context changes in 
order to provide an effective support for collaboration.  

• Use of hardware resources: Collaborative mobile applications should operate, in 
many cases, with constrained hardware resources; e.g., the case in which these 
solutions need to run on Personal Data Assistants (PDAs). Storage and memory 
capacity, processing power, screen size, data input and battery life are the most 
important constraints. 

2.2 Requirements for Mobile Collaboration 

The issues described in section 2.1. represent basic requirements to deal with. They 
should be addressed regardless if the application is collaborative or not. Collaborative 
applications designed to work in these work scenarios have also additional 
requirements. These requirements are just those derived from the type of work to be 
supported (i.e. loosely coupled work [Pinelle and Gutwin 2006]) and the features of 
the work and activity contexts [Alarcon et al. 2006]. Such requirements are the 
following ones: 

• Discretionary Collaboration. Loosely coupled mobility means that collaboration 
with others is (in most cases) not strictly required; instead, workers engage in 
collaboration when they decide that it is valuable to do so.  Since the 
collaboration processes are sporadic, the team members do individual work most 
of the time [Pinelle and Gutwin 2006]. This type of collaboration requires session 
management capabilities.  

• On-demand information sharing. Workers need to share and synchronize 
information on-demand [Ochoa et al. 2007, Pinelle and Gutwin 2006]. When 
information maintained by a worker is shared with the rest of the team, the 
sharing should be at the worker’s judgment so that information can be selectively 
protected. This feature requires session management capabilities and awareness 
of users’ availability. 



• On-demand information synchronization. Since several mobile workers perform 
autonomous and parallel activities, they need instances for information 
synchronization. This synchronization process is typically on-demand, and it 
could be attended or unattended [Ochoa et al. 2007]. This capability requires 
users and/or roles support. 

• Low coordination cost. Tasks are often strongly partitioned among workers. This 
partitioning minimizes coordination demands and it allows people to work 
autonomously and in parallel [Pinelle and Gutwin 2006]. Ideally, the 
coordination process should be unattended [Ochoa et al. 2007]. 

• Awareness of users’ reachability. Mobile workers need to know when a 
particular user is reachable, because they do on-demand collaboration. Hence, 
awareness mechanisms indicating user reachability should be embedded in 
mobile groupware applications. 

Other CSCW supporting mechanisms such as floor control and synchronous 
interactions do not make sense to be considered, due to the high disconnection rate of 
the communication network. This paper introduces SOMU to deal with most of the 
aforementioned requirements. SOMU is a fully distributed software piece (unit), 
which can provide and consume services from other units. The interaction among 
these mobile units is supported by a MANET. Each unit has been implemented as a 
middleware running on laptops and PDAs. Collaborative mobile applications 
developed on this middleware are then able to interact among them almost in any 
communication setup. Thus, mobile workers using such applications can collaborate 
when there is no stable communication support or even without any communication 
support at all. 

3 Related Work 

Several collaborative solutions have been proposed to support mobile workers in 
specific settings [André and Antunes 2004, Guerrero et al. 2004, Menchaca-Mendez 
et al. 2004, Muñoz et al. 2003, Zurita and Baloian 2005]. Although these proposals 
have shown to be useful to support specific collaborative activities, they were not 
designed as general solutions. Therefore, the capability to reuse these solutions in 
various work scenarios is relatively small.  

On the other hand, there are several interesting initiatives in the middleware area, 
which propose reusable functions to support collaboration in peer-to-peer networks. 
One of them is LaCOLLA [Marques and Navarro 2006]. This middleware has a fully 
decentralized peer-to-peer architecture and provides general purpose functionalities 
for building collaborative applications. LaCOLLA works well in networks with 
important signal stability, such as wired or fixed wireless (one-hop) networks. Notice 
the work scenario for the current paper requires similar functions but for ad-hoc 
wireless (multi-hop) networks. Furthermore, LaCOLLA is not able to run on PDAs. 

Unlike LaCOLLA, the iClouds framework offers spontaneous mobile user 
interaction and file exchange support in mobile ad-hoc networks [Heinemann et al. 
2003]. This framework also provides independence of a server doing a full replication 
of any shared file, which is appropriate for Mobile Ad-hoc NETworks (MANET). 



However, it does not provide support to exchange shared objects, just files. 
Furthermore, iClouds does not distinguish among copies of the same shared file (e.g. 
master and slave copies) and it does not support distributed operations on those files 
either. The functions provided by iClouds are focused just on data sharing. 

There are frameworks providing specific functionalities to support mobile 
collaboration through an API, such as YCab [Buszko et al. 2001]. These frameworks 
implement their own protocol and they provide the following generic services: session 
management, text chatting, image view, GPS and client information. Probably, the 
most popular framework to support peer-to-peer collaboration is JXTA [JXTA 2003]. 
This framework provides a common platform to help developers build distributed P2P 
services and applications. Here, every device and software component is a peer and 
can easily cooperate with other peers. Although JXTA has shown to be useful to 
support collaboration in peer-to-peer networks, it also requires a wired or fixed 
wireless network (similar to LaCOLLA). Therefore, it is not well suited to apply it in 
ad-hoc mobile work settings. 

On the other hand, Nokia has developed a services-oriented framework that could 
be used to support mobile collaboration. This framework includes a set of APIs and 
an SDK (Software Development Kit) allowing developers to create service-oriented 
applications that act as consumers of Web services on mobile devices [Hirsch et al. 
(2006)]. Since mobile applications can just consume services, their autonomy is small 
because they require a service provider. It is unsuitable for our ad-hoc mobile work 
scenarios. 

Currently, there are several proposals to share information in P2P networks, even 
considering mobile computing devices [Hauswirth et al. 2005, Neyem et al. 2005]. 
Typical examples are tuple-based distributed systems derived from LINDA [Gelernter 
1985], such as: FT-LINDA, JINI, PLinda, T-spaces, Lime, JavaSpaces and GRACE 
[Bosneag and Brockmeyer 2005, Handorean et al. 2003, Nemlekar 2001]. Despite the 
fact these implementations work in P2P networks, they use centralized components 
that provide the binding among components of the distributed system. XMIDDLE 
[Mascolo et al. 2002] is another middleware allowing mobile hosts to share XML 
documents across heterogeneous mobile hosts, permitting on-line and off-line access 
to data. Nevertheless, these middleware are just focused on data sharing and they do 
not support the autonomy and interoperability capabilities required by mobile 
workers. 

4 SOMU Design Decisions 

The first design decisions try to deal with the general requirements involved in most 
computer-supported mobile work [Section 4.1]. These decisions establish a basic 
infrastructure supporting any groupware solution developed over it. Section 4.2 
presents the design decisions made to deal with the mobile groupware requirements, 
considering the features of the selected basic infrastructure.  

4.1 Design Decisions to Deal with the General Requirements 

The strategy followed by SOMU to deal with the general requirements (presented in 
[Section 2.1]) involves a fully distributed lightweight platform to share information 



resources. By lightweight we mean a platform able to run on a PDA. The SOMU 
design considered to keep low the consumption of memory and CPU, because these 
are the most critical components for an application. The others hardware components 
are easily addressable (e.g. storage) or unsolvable (e.g. battery life). The platform uses 
communication based on MANETs, Web services and XML-based information. Next 
sections explain these design decisions. 

4.1.1 Ad-hoc Networking 

Ad-hoc networking refers to a network with no fixed infrastructure [Aldunate et al. 
2006b].  When the nodes are assumed to be capable of moving, either on their own or 
carried by their users, these networks are called MANETs. The network nodes rely on 
wireless communication to collaborate with each other. The advantage of ad-hoc 
networking is that the absence of a fixed infrastructure reduces the cost, complexity 
and time required to deploy the network. It also allows users to be on the move 
transporting their communication capabilities [Stojmenovic and Wu 2004]. Although 
most of these MANETs have a small communication threshold in terms of allowed 
distance between two mobile workers, routing capabilities can help overcome this 
limitation. Most MANETs adhere to standard specifications, such as IEEE 802.11b/g 
(Wi-Fi); therefore the communication interoperability among mobile workers is 
ensured. Next, a brief explanation of these MANET properties is presented. 
 

No pre-existing infrastructure: Ad-hoc networks are not supported by infrastructure. 
The nodes in the network use wireless communication for information dissemination 
and gathering. This lets ad-hoc networks be applicable in several environments, 
providing communication autonomy and interoperability to mobile workers.  
Small communication threshold: The current wireless communication norms 
supporting mobility have a limited communication threshold. For example, the Wi-Fi 
threshold is about 200 meters in open areas and 20 meters in built areas. Most 
groupware solutions need to extend the communication threshold as much as possible 
to increase the interaction scope; hence, routing mechanisms are required to allow it. 
Routing capabilities: Routing support in MANETs is vital not only to increase the 
communication threshold but also to support appropriate message delivery. In 
addition, if the groupware application has to deliver messages depending on the users’ 
role, routing becomes critical.  

4.1.2 Service-Oriented Computing 

The Service-Oriented Computing (SOC) paradigm involves four main components: 
services, clients, servers and discovery technology (registry). Services provide useful 
functionality to clients. Clients use services to support functionalities that will be 
available for users. Servers provide the services to clients. The discovery technology, 
usually implemented as a registry, enables servers to publish their services and clients 
to find and use needed services. As a result of a successful lookup, a client may 
receive a piece of code that actually implements the service or eases the 
communication with the server offering the service.  

Since these components typically are located in different computers, the user 
mobility jeopardizes the interaction capabilities among them. A failure or 



disconnection of a mobile device implies a complete lack of communication between 
users in a collaborative session and between clients and services whose 
communication is routed via this device, even if they could communicate directly. For 
example, if the node hosting a service registry suddenly becomes unavailable [Figure 
2.a], the advertising and lookup of services become paralyzed even if the client and 
server remain connected. A similar problem occurs when the advertisement of a 
service is still available in the lookup table, but the service provider is outside the 
client communication range [Figure 2.b]. 

 

Figure 2: a) The client could use the service, but it cannot discover it because the 
service registry is not accessible; b) A client discovers a service, which is no longer 
reachable.  

Considering the situations depicted in [Figure 2], it is clear the service-oriented 
model needs to be adapted to avoid centralized components, e.g. the registry. Model 
and technologies addressing these issues on MANETs should consider all nodes as 
mobile units able to provide and consume services from other mobile units. That is 
exactly the solution implemented in SOMU to deal with the users’ mobility and 
service interoperability. Therefore, the mobile users can collaborate and interact 
among them on-demand. Since these solutions have to run on a range of mobile 
computing devices (from PDAs to notebooks), SOMU was designed and developed to 
be lightweight.  

4.1.3 XML-based Information 

The eXtensible Markup Language (XML) is a simple, flexible and standard text 
format to represent and exchange data. XML and its family of technologies provide 
flexibility to specify formats, modularity (mainly compositionality and reuse), 
scalability and independence of platforms and applications. The information specified 
in XML helps to improve data interoperability among software applications. Such 
information can have associated semantics specifying meanings of the data. It allows 
mobile workers belonging to various organizations/companies understand the 

Registry 

cannot lookup 

cannot register 

could use service 
Server 

communication 
range 

Client 

Registry 

cannot use service 
Server 

Client 

lookup 

communication 
range 

(a) (b) 



meaning of the shared information. XML files can be synchronized in order to get 
updated versions from asynchronously-updated XML files.  

The XML data specification architecture represents the foundation layer for 
establishing the format and structure of messages used in a service oriented solution. 
XSD (XML Schema Definition) preserves the integrity and validity of message data, 
and XSLT (eXtensible Stylesheet Language Transformations) is employed to generate 
various information representations. In other words, XML is used to represent data in 
a standardized manner and for building a communication framework to bridge the 
information disparity that usually exists between and within organizations.  

4.2 Design Decisions to Deal with Mobile Groupware Requirements 

The previous decisions impose restrictions on the viable options to deal with the 
mobile groupware requirements. Next sections present the decisions made to address 
these requirements. 

4.2.1 Distributed Sessions, Users and Roles Management  

Mobile groupware applications must allow multiple work sessions involving users 
playing several roles. Sessions, users and roles management should be fully-
distributed since the workers have to keep their autonomy. The loosely coupled work 
the users perform in these scenarios requires on-demand collaboration, information 
sharing and data synchronization; thus, explicit session management [Edwards 1994] 
should be used in the application design. In explicit sessions, participants must 
intentionally connect with other clients in order to interchange information or carry 
out opportunistic collaboration.  

Any user in the MANET may participate in more than one session. They access a 
session sending a request or by invitation. Once a user gets in a session s/he becomes 
visible, gets a role and can access the shared resources of such a session. A work 
session is created when the first user is registered as member of it and it is deleted 
when the last user is unregistered. A session is potentially alive even if no users are 
currently connected, but there exist registered users.  

Every user maintains personal information (such as username, password, full 
name, etc.) and s/he can have specific access rights over the shared resources 
according to her/his role. Users have an identifier that allows mobile groupware 
applications to make the users’ rights effective. The rights are related to the role each 
user has for each session s/he is working on. Typically these rights are related to the 
user capability to carry out certain operations (e.g. erase, view, modify and recover 
information) or processes on the shared resources (e.g. backup, message delivery). 

4.2.2 Distributed Management of Shared and Private Resources 

Every user must have a local private and a shared repository for each session s/he 
belongs. It allows her/him to share resources on-demand. When a user logs in a 
session, the user’s local shared resources become visible to the rest of the session 
members. When a user leaves a session, the local (private and shared) resources are 
kept available for him/herself, by allowing the user work asynchronously. 

Since mobile workers have to be autonomous, the resources required by a user to 
perform an activity should be reachable; thus, they must be locally stored through a 



replication mechanism. Replication of resources increases the users’ autonomy but it 
also adds inconsistency. A resource reconciliation process is then required.  

Mobile workers connected to a session use a local (private) repository to store the 
private resources and a shared (public) repository to store the resources they want to 
share with the session members. The shared repository contains two types of 
information resources: reconcilable and irreconcilable. A reconcilable resource is a 
piece of information which can be synchronized with other copies of such resource 
(from other mobile workers) in order to obtain a consistent representation of it. These 
resources are shared through data synchronization processes. This sharing approach 
maximizes the opportunity for distributed asynchronous work and enables mobile 
workers to modify shared data without restriction.  

On the other hand, the irreconcilable resources are those pieces of information 
that cannot be synchronized. Typically, the system has no information about the 
internal structure of these files. These resources are shared through file transfer. This 
sharing mechanism is a solution with low coordination cost. 

4.2.3 Context Management  

Context is defined here as everything that can influence the behavior of shared 
workspaces; this includes resources internal to a computing device (e.g. memory or 
screen size) and external resources (e.g. bandwidth, quality of the network 
connection, and mobile hosts location and proximity). Context is highly dynamic in 
mobile scenarios. Mobile hosts may rapidly connect and leave the network. The 
lookup service is complex in the mobile scenario, and broadcasting is the usual way 
of implementing service advertisement.  

Each mobile groupware application requiring to be context-aware must have a 
distributed context manager. This manager must store, update and monitor current 
status of the context in order to adapt the application functionality to changes in the 
work scenario (e.g., a mobile worker gets isolated or networking support is not 
available anymore). The context manager can also be used to adapt the system 
functionality to heterogeneous mobile computer devices and communication 
scenarios. Furthermore, context information can be used to optimize application 
behaviors depending on the computing resources availability. Some contextual 
variables useful in mobile collaboration are: location, relative location, computing 
devices characteristics and networking support. 

The context manager has to be carefully engineered to reduce the use of limited 
resources, such as battery, CPU, memory or network bandwidth. This manager must 
provide just a minimal set of functionalities and then it is the application which is in 
charge of monitoring and adapting its behavior according to its own needs.  

5 The Services-Oriented Mobile Unit 

SOMU is a lightweight platform supported on MANETs and able to run on PDAs, 
Tablet PCs and Notebooks. It enables each mobile computing device to produce and 
consume Web services from other peers. Furthermore, SOMU allows mobile workers 
to share information in XML and other formats.  



Collaborative applications developed on this platform can use the general 
solutions implemented in SOMU. These solutions concern the management of 
sessions, users, messages, shared objects and repositories; and partially the work 
context. Collaborative applications inherit the capabilities for interacting with 
applications running on others mobile units. It helps developers to focus on the 
application main goals, freeing them to deal with the low-level interaction support.  

The SOMU architecture consists of a set of components organized in two layers 
and a transversal component [Figure 3]. The layers were named coordination and 
communication, and the transversal component, shared space. The layers manage the 
Web services stored in the shared space to implement specific communication and 
coordination services. These three components communicate with the adjacent one 
through an API. Since the SOMU architecture is modular, the replacement of 
components produces minimal impact on the middleware and also on the application 
supported by the middleware.  

 

 

Figure 3: SOMU Architecture 
 
Guerrero and Fuller suggest that basic (generic) services for CSCW are: sessions 

management, users management, roles management, messages delivery, meta-objects, 

 

TCP/IP 

 Mobile Collaborative Applications

SO
M

U
 P

la
tf

or
m

 

Work Items  

μWebServer 
SOAP 

Component 

Listener 

 HTTP 
Component 

Units Profiles  

 MUPMa 

μSessions  
Manager  

μFileTransfer       
Manager  

μXML 
Synchronizer 

Files Block

API   

Sessions Information

XML Files

Multicast 

Communication 

Coordination 

MUNMe MsgMa 

API 

 S
ha

re
d 

Sp
ac

e 

Files 

Web Services 

 μServices 
Manager 

A
PI

   



repositories (or shared spaces), awareness, floor control and environments [Guerrero 
and Fuller 2001]. The components included in the SOMU architecture allow dealing 
with most of these services.  

- μSession Manager. This component manages (creates, updates and deletes) work 
sessions and their shared resources. Since this component records information 
about users and roles, it is able to provide users/roles awareness information to 
other users in the same session (if requested by the applications). 

- Shared Space. This component implements a distributed shared space where data 
and services can be shared among members of a work session. 

- μFileTransfer Manager. This component allows groupware applications to interact 
with the shared space. 

- μXML Synchronizer. This component allows information synchronization with a 
low processing cost.  

- Profile Manager. This component provides device information for all the types of 
mobile units making up the current MANET. 

- Mobile Units Near Me. This component provides awareness information about 
users’ availability and proximity. 

- Message Manager. This component disseminates any type of information to one or 
more receivers. It implements distributed notifications (or messages delivery). 

 
Other typical groupware coordination services such as floor control or 

synchronous messaging do not make sense to be considered in this scenario, because 
the communication environment has high disconnection rates. Therefore, it is highly 
probable that mobile users get isolated during some time periods. In summary, 
synchronous messaging is not recommended, and floor control will require adaptive 
mechanisms to be effective in this scenario. Adaptive solutions are complex and 
expensive if they have to run on a PDA with scarce hardware resources. The next two 
sub-sections explain these components in detail. 

5.1 Coordination Layer 

The coordination layer is in charge of providing the services required by mobile 
workers’ applications to coordinate the operations on the shared resources (e.g. files, 
sessions and Web services). This coordination is made individually (per unit) and it 
generates a consistent view of the group activities. The components of this layer are 
described below. 

5.1.1 μSession Manager 

This component records information about users, sessions, roles and shared resources. 
It also lets users interact with the objects shared by users of a session. The user role is 
just an informative data, since it is not possible to carry out a distributed control of it. 
Since the component records users and roles information, it is able to provide 
users/roles awareness information to other users in the same session. 



Access to a session is implemented as a record the μSession Manager writes in 
the local sessions repository. Then, the users become available in the shared 
environment (visible) and they can access the session resources. Although the list of 
available sessions is public, the restrictions to access the session resources will 
depend on the type of session. The resources of public sessions are visible to any user 
in the network. The resources of private sessions are visible only to the users 
connected to them. Users can also create a new session or request access to other 
existing sessions. 

When a user creates a private session, SOMU gives him/her a SessionId, which is 
not visible to the rest of the MANET members. The SessionId should be sent to the 
invited users. The invitation and the SessionId will be delivered using multicast as a 
way to reduce the use of the network. A user can leave a work session indicating that 
decision to the local session manager. If such user is the only registered one, then the 
session is deleted. 

All reachable mobile units are identified in real time by a SOMU component. 
This allows users collaborate or share information on demand. When two or more 
reachable users decide to interact, automatically a session is created in order to isolate 
the interactions between them and to hide such process from the rest of the mobile 
units in the MANET. 

Every work session has a shared folder in each member mobile unit. This folder 
stores the files each user shares with the partners. Once a user is in a session, his/her 
local shared folder becomes visible to the rest of the session members. Shared 
information specified in XML can be synchronized with the version of a specific 
partner or the rest of the session members. The attributes of each shared XML file are 
analyzed and compared to carry out the synchronization process. The μXML 
Synchronizer component performs that task. Remote shared resources in other 
formats can be downloaded or remotely accessed using the local session manager. 

5.1.2 μFileTransfer Manager 

Users produce data as a result of the collaboration process. This data is stored in files 
that users share to support collaboration. This component provides a transparent way 
to share these files through multicast transmission among users interacting in a work 
session. Typically, users browse the remote shared files and decide if there is any file 
interesting for them. If a user decides to download certain remote file, the μSession 
Manager creates a download request to the μFileTransfer component [Figure 3]. 
Then, the μFileTransfer gets information from the Mobile Units Profile Manager 
(MUPMa), related to the remote unit that stores the file. This information is used to 
determine the appropriate block size in which the file will be broken down before 
being transmitted. The block size is relevant to consider because it affects directly the 
performance of the file transfer process. If the distance between the provider and the 
consumer of a file is short (i.e., one hop), the block size could be large (16 - 32kb). 
Otherwise the block size should be reduced to 1-4 kb because the disconnection rate 
usually loses various blocks during the transmission. If the block size is large and the 
consumer and provider are not near, then it is likely the retransmission process 
overflows the link between them. These block sizes were determined through several 
file transfer tests conducted during the SOMU evaluation process. 



Once the size has been decided, the μFileTransfer locally invokes the work items 
creation to download the remote file blocks. These work items represent the Web 
Services (WS) invocations, which are handled by the μServices Manager component. 
The Web services in charge of transferring the remote file blocks adhere to the WS-
Attachment specification [Nielsen et al. 2002]. Moreover, they are implemented using 
the DIME (Direct Internet Message Encapsulation) protocol to encapsulate the 
messages.  

Each file block sent by the remote unit is received by the μServices manager, 
which notifies the μFileTransfer component. Such component stores the blocks in a 
temporal local space. When all file blocks are received, the μFileTransfer notifies the 
μSession Manager component this fact. Thus, the file transfer process concludes. 

5.1.3 μXML Synchronizer 

It is clear that XML representations of any type of information help increase the data 
interoperability among software applications. In mobile ad-hoc environments, where 
disconnections are frequent, mobile users work asynchronously by updating the local 
XML files. Hence, it is necessary to deal with the data inconsistency of different 
cached replicas. The μXML Synchronizer provides synchronization functionalities 
through an application dependent reconciliation process [Neyem et al. 2006]. 
Currently this component reconciles XML documents; however the process to follow 
is the same if XML elements need to be synchronized. 

The data reconciliation (or synchronization) process is on-demand; therefore each 
user decides when to synchronize and whom to synchronize with. A user can 
synchronize or get (via file transfer) shared files only if the users involved in the 
process are all connected to the same session at the same time.  

The reconciliation process is an adaptation of the XMIDDLE algorithm [Mascolo 
et al. 2002]. In our adaptation, the data replication and synchronization are two 
fundamental aspects in the reconciliation strategy. The detection of conflicts and 
support data reconciliation is eased by a versioning mechanism for XML documents 
and the use of resolutors. Every mobile host maintains two types of XML documents: 
versions and editions. Versions contain changes that have been performed locally 
(without communicating them to the other hosts). Editions are, in a sense, stable 
versions; they contain changes that have been agreed with another host, after a 
reconciliation process. We refer to the process of establishing a new edition as 
releasing a version. Therefore, an edition can have both versions and editions as direct 
descendants in the version graph, whereas a version does not have descendants, 
because first it has to be turned into an edition [Figure 4]. Consequently, versions 
always contain the most recent information.  

For instance, Figure 4 shows Host A and Host C have released two editions of the 
tree (XML files). Currently, Host A works on a modified copy (a version) of the latest 
common edition. Host B has only a version (it has not reconciled it with other hosts). 
Shared XML documents are distinguished by an edition identifier. This identifier 
contains the type of XML document, the edition number (which is the maximum of 
the two previous edition numbers incremented by one) and the hosts that agreed in 
releasing this edition. We use the symbol “*” when the creation of the edition does 
not involve a second host (this is the case of a host that generates the first edition after 



the application performed an export operation) or when all hosts have agreed and 
established a new common edition. 

 

 
Figure 4: Versions history graph of an XML document 

The versioning scheme solves the problem of identifying different editions of 
shared information in a peer-to-peer network that lacks a central authority to issue 
edition numbers. In fact, it is possible for two hosts to reconcile a tree they copied 
from another host, without interacting with the owner (in our case, a possible central 
authority). The synchronization strategy is suitable for a mobile setting because it 
applies a typical peer-to-peer solution, without the presence of a host that is able to 
provide a particular service (in our case, number edition issuing). 

On the other hand, the reconciliation protocol is one of the most important design 
aspects of the strategy implemented in this component. Essentially, its aim is to obtain 
a consistent version of the same XML document once hosts become connected and 
agreed with other hosts to synchronize. It is based on XML tree differentiating and 
merging techniques. In fact, the design goals of this protocol are to minimize data 
transfers, only transmitting the differences between data structures and, at the same 
time, to be able to locally reconstruct diverging replicas from a common previous 
edition on the same host [Neyem et al. 2006]. Then, the result of the reconciliation is 
propagated to the others host, communicating only the changes performed on the 
common latest edition. Therefore, this synchronization process has low cost in terms 
of CPU and bandwidth consumption. 

The reconciliation protocol uses a mechanism to control possible conflicts 
between different replicas. In other words, it can be performed in an application-

[Edition-c, v1, HostA, *] 

XXMMLL  

[Edition-c, v1, HostA, *]  

HHoosstt  BB  HHoosstt  AA  HHoosstt  CC  

[Edition-c, v1, HostA, *]  

XXMMLL  XXMMLL  

[Version-l, v1, HostA, *]  [Version-l, v1, HostC, *]  

[Version-c, v2, HostA, HostC]  [Version-c, v2, HostA, HostC]  

[Edition-c, v2, HostA, *]  [Edition-c, v2, HostA, *]  [Edition-c, v2, HostA, *]  



specific way. This feature of our strategy is fundamental for a large class of 
applications. It is worth noting that this component does not implement any particular 
policy. From this point of view, it is extremely flexible. In fact, programmers can 
easily develop complex mobile applications that need data sharing, without 
considering the problems related to disconnections and possible data inconsistencies.  

5.2 Communication Layer 

The communication layer is typically in charge of providing the support for message 
interchange among mobile units. This component allows a user to send a message to 
all users in the MANET, those connected to a session, a specified group of users, or a 
single user. Based on that, a mobile collaborative application can send messages 
(notifications, commands, data or events) to other users. This layer components are 
the following ones: μWebServer, μServices Manager, NUNMe (Mobile Units Near 
Me), MUPMa (Mobile Units Profile Manager) and MsgMa (Messages Manager). 

5.2.1 μWebServer 

The μWebServer component has the capability to expose and consume Web services, 
and executing HTTP requests from Laptops, Tablet PCs and PDAs. A listener module 
is responsible for managing client requests on a particular port [Figure 3]. It performs 
validations and determines the most appropriate supporting components to carry out a 
request. The supporting components represent the implementation of an Internet 
protocol, particularly HTTP and SOAP. 

Figure 5: Sequence diagram of a service request over HTTP 

The HTTP component supports the processing of HTML, GIF and JPEG Web 
requests and GET and POST through SOAP components. As client requests are 
received, the required file is retrieved from local storage. Then, this file is converted 
into a stream of bytes and sent back to the client mobile unit. Figure 5 shows the 
sequence diagram to invoke Web services over HTTP GET operations. Figure 6 (a) 
presents the results of invoking the “Mobile UDDI” Web service (included by default 
in SOMU), which provides information about all Web services hosted in a remote 
mobile unit. Figure 6 (b) presents the results of a similar invocation. In this case, the 

Browser 

PutHttpRequest(Msg) 

Mobile User 

SendHttpRequest(Msg)

μWebServer 

return DataRequest 
ShowRequest 

ProcessHttpRequest(Msg) 



invoked remote Web service is the “Mobile Info Profile”, which informs the WSDL 
(Web Service Definition Language) document about a mobile unit. 

 

 
 
Figure 6: (a) List of Web services hosted in a remote mobile unit; (b) WSDL of a 
remote Web service 

On the other hand, the SOAP component addresses the requirements of processing 
Web services remote invocations sent by other mobile units. The current 
implementation supports GET, POST and SOAP action operations. Typically GET 
and POST operations are used for browser requests. Meanwhile, SOAP actions are 
used to identify SOAP packets sent by applications using a particular Web service. 
Additionally, the SOAP component provides facilities to automatically generate 
WSDL files from a requested Web service, provides security verification (through 
WS-Security specification with UsernameToken Profile) to determine the access 
rights, and provides files transfer with WS-Attachment specification using DIME. 

It is worth noticing the solution implemented in the μWebServer was focused on 
the design of lightweight versions of two key components: the Web services 
architecture and the component-based Web server. This last module is able to support 
lightweight Web services extensions and a range of Internet standards protocols. 
Furthermore, the module hosts Web services in mobile devices, which offers many 
benefits in delivering of portable software services to mobile users. It allows mobile 
users to interoperate with their partners in an ad-hoc environment. 

5.2.2 μServices Manager 

This component is in charge of creating, storing and dispatching work items when an 
application invokes remote Web services (provided by other mobile units). The work 
items stored in a mobile unit represent the Web Services (WS) invocations that such 
unit needs to perform. Each work item is composed of a Ticket, a Mobile Universal 
Identification (MUI), the WS Proxy, WS Input and WS Output. The ticket is the work 
item identifier. It is used to communicate the results of a WS invocation to a mobile 
collaborative application. The MUI identifies each mobile unit and allows the 
μServices Manager to make direct invocations to WS running on other mobile units. 
WS Proxy contains the information required to coordinate the invocation and the 
response of WS provided by other units. WS Input contains the invocation parameters 

(a) (b) 



to be sent by the WS Proxy when it invokes the remote WS. WS Output contains the 
results of a WS invocation. 

 

 

Figure 7: Sequence diagram of a process to create, store and dispatch work items 

In order to understand the functionality of this component, Figure 7 presents a 
possible sequence diagram of a process to create, store and dispatch work items. For 
instance, let us suppose the mobile unit providing a specific Web service is online. 
When an application running in another device invokes such Web service, the 
μServices Manager creates a work item and records it in a queue. The work item is 
kept there until it is processed or a deadline is got. μServices Manager also creates a 
proxy client instance, which interacts with the remote Web service. Then, the 
μServices manager sends the WS request to the remote unit, which process it and 
returns the results. When the μServices manager of the client receives the results, it 
notifies to the application, it delivers the results and it removes the work item record.  

On the other hand, if the remote mobile unit hosting the Web services is not 
reachable, the Mobile Units Near Me (MUNMe) component verifies whether the 
service provider mobile unit gets online. When such unit is online, the μServices 
manager of the client unit retrieves the work item from the queue. Then, the manager 

AP: Application 

InvokeWebService  
CreateAndEnqueueWorkItem 

μSM: μServices_Manager nMUN: MUNMe MU: Mobile_ Unit 

return Ticket 

IsOnline(WorkItem.MUI) 

DequeueWorkItem 

return OnlineState 

[State True] GetOnlineWSProxy 

InvokeMethodOnlineWSProxy 

return WSRequest 
return Results  

[State False] EnqueueWorkItem 

alt 

loop 



sends the WS invocation of the remote unit using the proxy functions. After 
processing the request, the remote unit returns the results back to the client’s proxy. 
Finally, the μServices manager in the client unit returns the results to the mobile 
collaborative application and it removes the work item from the queue. 

5.2.3 Mobile Units Near Me 

The Mobile Units Near Me (MUNMe) is the component in charge of discovering and 
recording the mobile units that are close to the current mobile device. This component 
classifies the distance between two nodes as: near, reachable or unreachable. Near 
means the nodes are at one hop of distance from each other. Reachable means the 
separating distance is more than one hop; and unreachable indicates the nodes are not 
in the same network or one of these nodes is not available.  

This information is updated with the Web services remote invocations performed 
by each mobile unit, and also with the notifications sent by the remote units. 
Additionally, a general update process is performed every 30 seconds or on-demand 
when the user decides that it is a good time to start an interaction with a specific 
mobile unit. This component uses a multicast protocol to discover units connected to 
the MANET, and it obtains the name, Mobile Universal Identification (MUI) and the 
IP address of such mobile units. 

5.2.4 Mobile Units Profile Manager 

Web services are typically accessed from various kinds of mobile computing devices; 
therefore, interoperability and personalization play an important role for universal 
access and application usability. The Mobile Units Profile Manager (MUPMa) stores 
and manages information related to mobile units, such as the universal identification, 
hardware resources, operating system and network capabilities. Web services can use 
this information to optimize the interactions between providers and consumers. 
Particularly, the μFile Transfer component uses the MUPMa to determine the 
appropriate block size when sending a file from a provider to a consumer. It affects 
the application performance and network available bandwidth. 

5.2.5 Messages Manager 

This component is responsible of sending messages among mobile units adhering to a 
multicast and unicast strategy. The multicast messages are used by the μSession 
Manager to maintain updated information about sessions and shared resources located 
on remote mobile units. Any policy for message delivery that is supported by 
unicast/multicast should be implemented as part of the Messages Manager. 

The message delivery service in SOMU is based on ad-hoc gossip multicast 
[Haas et al. 2002], because it offers an intermediate solution between the routing and 
flooding techniques. By using gossip-based multicast, we expect the delivery 
mechanism achieves high reliability with moderate degradation of performance. This 
delivery strategy relies on the following three-phases algorithm: 

Potential Disconnection Detection: This phase is performed permanently by every 
node in the MANET. At every time step t, each node monitors its 1-hop neighbors. 
For each 1-hop neighbor located at a distance greater than a certain number of hops, 



given as a parameter, the monitoring node records such distance at that moment. At 
the next time step, the monitoring node will determine the new distance for each 
previously monitored 1-hop neighbor. If, for each 1-hop neighbor, the distance has 
increased, then the monitoring node will try to find out if at least one of its other 1-
hop neighbors is near to the one under observation. If the monitoring node fails on 
such task, it will propagate a “potential disconnection” message through the MANET.  

Correction: The second phase is also implemented by each mobile unit in the 
MANET. Once a node detects a potential disconnection, it propagates a message 
through the network, using gossip-based multicast. Any mobile unit receiving that 
message will wait a given period of time for the counterpart message; i.e., the 
message sent by the other node involved in the potential disconnection. If the 
counterpart message is received by the mobile unit, then it will ignore the situation 
because it means that there is at least one alternative route connecting both nodes. On 
the contrary, if the counterpart message is not received by the unit, then it assumes a 
disconnection is in progress and it will set itself towards that task; i.e., move towards 
the potential disconnection area. 

Maintenance: Each mobile unit in the potential disconnection area tries to detect the 
presence of the requesting nodes during the third phase of the algorithm. If a unit does 
not find the requesting nodes after a given period of time, then it sets itself back to 
Idle state. Nonetheless, if a unit detects the requesting nodes, then it sets its state to 
supporting mode. The unit will remain in such a mode until either the supported nodes 
are again within communication range or the supported nodes are apart and the 
disconnection is imminent. In such case, the mobile unit will play the potential 
disconnection phase. 
 

This three-phase algorithm relies on two assumptions. On one hand, the set of 
mobile units is comprised of homogenous devices not only in terms of 
communication capability, but also in terms of mobility; i.e., they are able to move at 
similar speeds. On the other hand, it is assumed the environment is free of obstacles; 
i.e., the time for a mobile unit to reach a target location depends only on the distance. 

5.3 Requirements vs. SOMU Components 

Table 1 presents a summary of the requirements described in section 2, versus the 
design decisions made. In addition, these decisions are mapped to the SOMU 
components that implement them.  
 

SOMU Components were implemented in C# using the .NET Compact 
Framework; however, they can also be implemented using the J2ME SDK for mobile 
devices. The .NET platform was chosen since it offered rapid prototyping and a rich 
development environment including live debugging on emulators. The .NET libraries 
natively support XML manipulation, Web service description and reflection. This 
allows us to implement basic services for Web services description and discovery. 
 
 
 
 



 
 

 

Table 1: Matching requirements with SOMU components 

5.4 SOMU Components Dynamic Interaction 

Figure 8 shows the interactions between two mobile collaborative applications, when 
an application “A” requires downloading a file in a session and it invokes a Web 
service exposed by a remote application “B”. The first step of this interaction requires 
“A” to make a local request to the μSession manager to download a file stored in “B”. 
The μSession manager creates a download petition to the μFileTransfer (2nd step). 
The μFileTransfer gets information from the MUPMa related to the remote unit which 
stores the file. Based on this information, the component determines the appropriate 
block size to transfer the file between these two mobile units. 

Let us assume the file size fits in the file block. In such case the μFileTransfer 
Manager component creates just one download request for the remote file (3rd step). 
The μServices manager receives the request and it creates and queues a work item 
(4th step).  Then, this manager asks the MUNMe component if the application “B” is 
online and within the “A” communication range. If the answer is negative, then the 
μServices manager waits and retries until it gets a positive answer (5th step). 

When the mobile application “B” becomes reachable, the μServices manager of 
“A” creates the proxy using reflection from the context information. Such information 
is in the WS Proxy field which is part of the work item. Then, the μServices manager 
invokes the remote service hosted in “B” (6th step). The invocation is received by the 
remote μWebServer (7th step). Since the request is a Web service invocation, the 
μWebServer SOAP component activates the corresponding Web service and it 
invokes the method implementing such service (8th step). 

 



 

Figure 8: Interactions among SOMU main components 

Since the μSession manager previously subscribed this Web service as shared, 
this service interacts with the μServices manager to determine if the requesting user 
has the access rights to download the file (9th step). If the answer is positive, then the 
μServices manager assigns the request control to the μFileTransfer manager (10.1 
step). If the application “B” is subscribed to receive the events related to download 
files, then the μServices manager will send the corresponding notification (10.2 step).  
The μFileTransfer manager returns the result and control to the Web Services (11th 
step). The μWebServer returns the results to the mobile application “A” (12th step).  

When the μServices manager from “A” receives the results, it removes the work 
item from the queue and it notifies the μFileTransfer manager indicating that item has 
finished its processing (13th step). Then, μFileTransfer component notifies the 
μSession manager the download file request has finished. Finally, this manager 
notifies the mobile application “A” (14th step). 
Next section presents an application scenario showing how the actions taken by a 
mobile collaborative application are translated into the actions that occur within the 
Services Oriented Mobile Units. A mobile collaborative application using services 
provided by the platform was developed in order to test SOMU. This application 
represents a proof-of-concept and it illustrates the feasibility to use SOMU to support 
mobile collaboration in ad-hoc scenarios. 

5.5 Results of Performance Tests 

This section presents the preliminary results of tests applied to SOMU in laboratory 
simulations. These tests involved Wi-Fi communication and PDAs with a CPU speed 
of 624 MHz 64 MB RAM / 128 MB ROM. The devices were stationary during the 
test and they were deployed within a large room. The distance between two devices 
was no longer than 3 meters. 

Mobile Collaborative 
Application “A” 

1 

TCP/IP 

μSessions  
Manager 

μFileTransfer 
Manager   2 

3 

MUPMa 
μServices  
Manager 

4 

MUNMe 

5 
6 SO

M
U

 P
la

tf
or

m
 

SO
M

U
 P

la
tf

or
m

 

MUNMe 

μWebServer

7

W
eb

 se
rv

ic
es

 
Sh

ar
ed

 F
ile

s 8 

μFileTransfer 
Manager   

μSessions  
Manager 

9 

10.1 

10.2 

11 

12 

13 

14 

Mobile Collaborative 
Application “B” 

Multicast 



Download Performance: This test corresponds to sequential invocations of a Web 
Service (WS) from one PDA to another one. The invoked WS downloads files from 
the remote device provider. The communication protocols used to do it were POST, 
GET and SOAP. The response time was measured at the consumer side. Figure 9 
shows the time spent by the WS in the downloading process is an almost linear 
function of the file size. The download time is low because SOMU is running on a 
PDA. 
 

 
Figure 9: Download time as a function of 
file size 

 
Figure 10: Download time as a function 
of number of concurrent invocations  

Performance of Concurrent WS Invocations: This test measures the average 
response time of a WS running on a particular PDA, when it is concurrently invoked 
by several remote clients. The time was measured at the consumer side. The invoked 
WS downloads a file of 1MB. Figure 10 shows the results, which are similar to the 
previous test: a) the download time is almost linear, but it now depends on the number 
of clients invoking the WS; and b) the SOMU performance is still acceptable. 
 

 

 
 

Figure 11: Download time as function of 
file size for two results returning 
strategies 

 
 
Figure 12: Average response time of a 
WS. Service provided by SOMU and MS 
Internet Information Server 

 
Performance based on the Download Mechanism: This test compares the 
downloading performance depending on the mechanism used to return the results to 
the WS consumer. In this case, the results were returned as both attachments and 
parameters. Figure 11 shows the download time is much better when the results are 
returned as attachments. As it was mentioned in section 5.2.1, SOMU implements 
WS-Attachments for PDAs. 

WS response time: This test compares the average response time of a WS, when such 
service is provided by SOMU and by Microsoft Internet Information Server (IIS). The 
test was done using a notebook as service provider because IIS cannot expose WS in 
PDAs. The clients were implemented using threads running on the same computer. 



The invoked WS validates a small XML file and returns a boolean response. The 
results [Figure 12] show SOMU has better performance than IIS in WS processing. 

6 Application Scenario: Disaster Relief 

This section presents a mobile groupware application developed on SOMU to support 
first responders in urban disaster scenarios. Next the key requirements of this 
application are described. Most of them match the requirements presented in section 
2. Then, the groupware solution is briefly introduced and it is shown how the SOMU 
components interact satisfying the specified requirements. 

6.1 Application Requirements 

An urban area can be seen as an interconnected system (public utilities, transportation 
systems, communications, power systems, homes and office buildings) where a 
failure can potentially affect many people. When a disaster affects urban areas, two 
key issues have to be addressed to mitigate it. The first one is to control the cascading 
effects on the interconnected systems [Godschalk 2003, Stewart and Bostrom 2002]. 
The second one is to keep a communication infrastructure available. This 
infrastructure should be wireless because of the mobility of first responders, and it 
should provide digital communication because it allows transmitting voice and data, 
and also routing messages on the network [NCTAUS 2004, Canos et al. 2005]. These 
capabilities allow distributed decision-making and coordination of efforts done by 
organizations participating in disaster relief activities [Comfort 2004]. Summarizing, 
an interoperable and digital infrastructure that provide mobile ad-hoc communication 
is required, and the communication based on MANETs represents an interesting 
option. 

Typically, the composition of a disaster relief mission involves police, 
firefighters, medical personnel and government agencies. Police is in charge of 
isolating and securing the affected area, firefighters are the initial responsible body for 
protecting human life and physical infrastructure, medical personnel are responsible 
for healthcare of the affected people, and government authorities, usually located at a 
command post, are responsible for coordinating the efforts [Comfort 2004]. These 
organizations need to specify in an interoperable format all information they use, 
because it should be aggregated and shared with other organizations. In other words, 
they need information interoperability and synchronization capabilities. 

Initially, first responders moving around the disaster scenario work in 
autonomous groups; however, they should coordinate their activities and share 
information to make local decisions as efficient and effective as possible. Since they 
are not able to give much attention to the application during the rescue activities, they 
collaborate and share information on-demand. These interactions are possible if each 
first responder using the application has awareness of other users’ reachability. Once 
two or more workers meet and decide to collaborate, the cost of collaboration and 
coordination should be low, because they do not have much time for such tasks.  

First responders are able to use just small mobile computing devices, e.g., PDAs, 
because they need to be on the move to carry out the activities. Therefore, the 
applications running on these devices must be lightweight. 



6.2 Application Functionality 

The application developed on SOMU, named MobileMap, is a kind of GIS that runs 
on PDAs and PC. The application allows first responders work autonomously and 
they can access and update shared geographical information about the disaster area 
and resources deployed/available to support the mitigation process. This information 
is depicted on a map allowing a visual identification of the current location. The 
information is presented in several layers [Figure 13] and contained in various XML 
files to deal with the information interoperability requirement.  

The owner of the layer decides whether the information in that layer will be 
accessible on a shared, public or on-demand basis. The mobile workers and decision 
makers (managers) deployed in the disaster area are the users of this information. 
Notice these people do not belong to the same organization and they do not visualize 
the same information, as explained below. 

 

 

Figure 13: Representation of information in the software system 

The lowest information layer shows a general view of the affected area. The 
middle layer is composed of maps with information particularly relevant for an 
organization. Thus, the Police information layer contains the officers’ location, 
isolated area, entrance/exit routes, and task force assignments. The firefighters’ 

C
om

m
an

d 
Po

st
C

om
m

an
d 

Po
st

Information of the mitigation effortInformation of the mitigation effort

FirefightersPolice Officers

Information from specific organizationsInformation from specific organizations

Civil engineers

General view of the affected areaGeneral view of the affected area



information layer includes the group locations, places where search and rescue 
activities were done, available/deployed equipment, evacuation routes and task 
assignments and priorities. Finally, the civil engineers information layer contains the 
stability of the affected civil infrastructure, location of available/deployed heavy-
weight equipment, additional maps, vulnerable points and tasks assignment.  

The highest information layer represents the intra-organization information. This 
layer can combine public information from the organizations participating in the relief 
effort and following up the mitigation process. Typically, the command post uses 
information from this layer to support the decision-making process.  

The application allows first responders to update and synchronize these 
information layers on-demand. The reconciliation process is automatic and based on 
resolutors; therefore, it can be considered as a low cost mechanism. Furthermore, the 
application allows mobile users to detect neighbors (awareness of users’ reachability) 
and interact with them. Each mobile unit is autonomous in terms of data and services 
required by the application. 

6.3 Application Execution 

Let us consider the following situation. A firefighter team needs to get updated 
information related to the stability of the physical infrastructure of an affected area, 
because they need to conduct search and rescue activities in that place. The most 
direct way to get updated information is to request it to the civil engineers evaluating 
the area. They record such information in the civil engineers information layer. 

Some firefighter team members use MobileMap to get information from civil 
engineers, other partners and the command post. When a firefighter wants to get 
updated information from civil engineers, he/she submits a request to the SOMU 
platform through the application. The platform translates the request into one or more 
work items. Since the communication in the disaster area is based on MANETs, the 
SOMU middleware needs to be aware of the presence of civil engineers in the 
neighborhood in order to process the work item. 

The Mobile units near me component can notify the μService manager running 
on the firefighters units the occurrence of a civil engineer being reachable. Then, this 
manager synchronizes the local information with the civil engineer information 
getting an updated view of the disaster area stability [Figure 14]. Using the updated 
information, these first responders can make better decisions about where and when to 
conduct the search and rescue activities. The decisions made and the results of the 
search and rescue activities are recorded in the firefighters’ information layer. Now, 
updated shared information is available.  

The process of information synchronization can be triggered and performed in 
background or as an user assisted process. These strategies can be useful in this 
scenario because civil engineers need to know which buildings have been already 
searched in order to choose other buildings to perform the search and rescue 
activities.  

The synchronization process uses not only the Web services provided by SOMU 
by default, but also other Web services created just for this application. One of these 
Web services is used by the μXML Synchronizer component to reconcile XML files. 



6.4 Information Synchronization 

When a civil engineer becomes reachable, firefighter units are notified. Therefore, the 
μSession manager creates an XML synchronization request to the μXML 
Synchronizer. This last component creates a work item through μServices manager 
and invokes a remote Web service exposed by the civil engineer’s mobile unit. The 
invocation includes the version of the information layer the firefighters have. As soon 
as the μWebServer in the civil engineer unit receives the request, it launches the 
SyncXML service to process the request.  

Figure 14: Information Synchronization between a firefighter and a civil engineer 

Since the information the firefighter has is outdated, a local process is launched 
in the civil engineer mobile unit to retrieve the updated information from the local 
layer. These updates to the firefighter information are retrieved based on the 
versioning mechanism used by the synchronization protocol. As a result, an XML file 
indicating the information updates is sent to the firefighter μServices manager. This 
manager delivers that information to the μXML Synchronizer, which is in charge of 
reconciling both files. This component uses a mechanism (based on a resolutor) to 
detect and solve possible conflicts between different file replicas and obtain a 
consistent version of the same XML Document. Finally, μXML Synchronizer notifies 
the μSession manager that the synchronization request has finished and μSession 
manager notifies the mobile application in order to refresh the information shown on 
the screen. 

6.5 Preliminary Application Results 

An experiment was designed and performed at the premises of the Department of 
Computer Science of the University of Chile in order to evaluate SOMU capabilities. 
The floor space used in the experiment is about 1200 mt2 (60 x 20 meters). This 
physical infrastructure includes several concrete walls; therefore, the network signal 
has interruptions in many sectors when MANETs are deployed there. The isolated 

Synchronization Result 

Firefighter Civil Engineer 



areas depend on the number and location of the network nodes. That scenario 
resembles many real locations where urban search and rescue processes occur. 

Three interaction cases were studied. The experiment’s main goal was to assess 
the SOMU capabilities to support mobile collaboration through the Web services 
exposition and consumption using PDAs. The application used in these exercises was 
MobileMap (described in sections 6.2 and 6.3).  

6.5.1. Experiments Design 

Two mobile workers and also a number (between 0 and 7) of stationary PDAs were 
involved in the exercises. Each mobile worker (service consumer) had to request a 
synchronization of an information layer, implemented using an XML file, with his 
partner (service provider). The stationary PDAs acted just as intermediary to support 
the process. The following six variables were measured during these experiments: 
 

File size: The size of the file to be synchronized was predefined. It involved nine 
values: 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000 kb.  

Transfer rate: The synchronization process (explained in [Section 5.1.3]) is 
performed by a Web service, which involves two file transfers between the 
consumer and provider nodes. The “transfer rate” variable represents the average 
throughput for both operations. 

Synchronization time: This variable represents the average time spent in the 
synchronization process. The time unit was the second and the corresponding 
variables were measured at the consumer side. 

Number of hops: This variable indicates how many hops were used (average) to 
support the file transfer processes. 

Waiting time: This is the elapsed time for a PDA from the instant a mobile user 
(potential provider) becomes available to the time the provider completes the 
reception of the request sent by the consumer PDA. 

Number of tries: This variable indicates how many times a stored request was sent 
from consumer to provider, until the transfer was successfully completed. 

 
Next, the three cases used in the study are presented. Then, section 6.5.2 discusses the 
obtained results. 
 
Case I: Seven PDAs are deployed in the experimentation site and they are kept 
stationary forming a MANET [Figure 15]. Two additional PDAs are then deployed in 
the same area, and they are used by two mobile workers. These users walk by the 
corridor (indicated with dashed lines) keeping an opposite location to each other and 
moving at a constant speed (1 m/s). The pathway is about 80 meters long. Each user 
device runs a background process that randomly modifies an XML file. This file is an 
information layer of the MobileMap application. The users complete 10 laps 
modifying files for each file size. The stored values are averages for each file size. 
 



 

Figure 15: Map of the experimentation site 

Case II: This case is similar to the previous one. The purpose of this case is to check 
performance with a reduced number of hops. Thus, just four stationary PDAs are used 
(labeled with “A” in [Figure 15]). The mobile workers' movement and the process 
carried out by them is the same than for case I.  
 
Case III: This last case involves just two mobile workers. No stationary PDAs are 
deployed. The obtained results in each case are presented below. 

6.5.2 Obtained Results 

Figure 16 shows the results of transfer rate versus file size. In case I, the transfer rate 
falls from 157.3 to 93.2 kb with increasing file size. However, it seems to be stable 
for file sizes larger than 1Mb. A possible explanation for this is that small files are 
fast to synchronize, e.g. the synchronization of two 200kb files requires just six 
seconds. Therefore, the networking environment does not change much in that period 
and the path supporting the communication is usually the same during the whole 
process. 

When the file size is between 200 kb and 1 Mb, the transfer rate falls. The cause 
for this behavior may be that two or three communication paths are required to carry 
out the process. Finally, the synchronization process requires at least 40 seconds for a 
file over 1Mb; thus, several interim points have to be used to connect a consumer with 
a provider. In such case each mobile worker will walk about 40 meters from the 
invocation point to the one where the results are received. The stability of the results 
shown in Figure 16 probably occurs because the transfer uses the same 
communication paths for all file sizes over 1 Mb. 

The file transfer rate for case II is lower than in the previous case, but it is stable 
independently of the file size. The obtained performance stability may be a 
consequence of the fact that there are just few and similar paths available to connect a 
consumer with a provider.  

Finally, case III has transfer rates only for files sizes lower than 100 kb. This is 
because communication between mobile workers is possible just when both are 
crossing the central corridor of the building. Since no interim transfer states are stored 



by the application, the only files able to be synchronized in such short time period 
(about 3-4 seconds) are those with size smaller than 100kb. The synchronization of 
larger files will transfer just a portion of the file and then, it will unsuccessfully re-try 
once and again. The Number of tries variable reflected the occurrence of these events. 
The experiment shows SOMU is fast to detect peers proximity and react based on it. 
It also shows the WS requests can be effectively queued/unqueued by the 
μServices_Manager depending on the availability of a service provider. 
 

 
 

Figure 16: Transfer rate vs. file size 
 
On the other hand, the duration of the synchronization process also depends on the 
file size and the number and location of stationary PDAs deployed in the area. Figure 
17 summarizes the results obtained for each case. 
 

 

Figure 17: Synchronization time vs. file size 

The synchronization time presented in Figure 17 includes: waiting time, file 
transfer time and reconciliation time. The first component is variable, but it is always 
less than a second. The file transfer time is highly dependent on the file size and it 
may be very large. Finally, the reconciliation time is stable, taking between 0.3 and 5 
seconds depending on the file size. Summarizing, the performance of the groupware 



services in mobile ad-hoc network is highly dependent on the implemented file 
transfer (and routing) solution. 

The number of synchronization tries in case I was between 1 (for 20 Kb files) and 
1.2 tries average (for 10Mb files). It seems to be a consequence of the large number of 
PDAs routing the packages. In case II, the number of tries was similar to the previous 
one; its values are between 1.2 and 1.6. This indicates the routing algorithm is good to 
get a dynamic path between consumer and provider, although the number of interim 
node is small. The number of tries for case III is just 1 for files up to 50 kb, and 
infinite for larger files. It is worth to notice these values are reachable just in scenarios 
with a high disconnection rate, and when a few number of workers are available. In 
any other situation, the results should be better. 

The number of hops used to communicate the consumer with the provider in case 
I was between 2.7 and 4.2 hops. And in case II those values were between 3.2 and 4.3. 
In case III the only option available is 1 hop. 

These results show that SOMU is a context-aware platform able to react quickly 
and adapt its communication mechanisms in order to provide groupware services to 
applications developed on it. The platform hides all these mechanisms to the user and 
software applications that use its services. It makes it easy to be used by developers. 
Furthermore, SOMU has shown that it is able to expose and consume Web services 
on PDAs, even when these devices are on the move. The platform is also able to 
synchronize XML files located in small devices of nomad users. The results show the 
performance of these functionalities is highly acceptable. 

In addition, because of the platform does not include any kind of centralized 
component, the solutions implemented on it will be more robust than those involving 
centralized elements. These features make SOMU-based solutions easy to deploy and 
put into production in several work scenarios, such as police operatives, computer 
supported learning and health care activities. Finally, these solutions allow users to 
carry out activities involving high mobility, because they are able to run in 
lightweight computing devices, making an efficient use of the networking 
capabilities.  

6.5.3. System Usability 

The system was also evaluated by experts from the 6th and 8th Santiago (Chile) 
firefighters units during June 2007. These experts are the official urban search and 
rescue trainers for Chilean firefighters, and police/military officers. Five PDAs were 
used to evaluate the system functionality, performance and usability. The first 
important conclusion indicates the system is ready to be used at least in small urban 
incidents (fires, chemical spills, small collapses). The system functionality was 
considered useful to support urban search and rescue activities. The main 
observations were related to the icons design shown on the user interface. 

The application usability was evaluated simulating the actions that firefighters 
must do during two small urban emergency situations: a fire and a car accident. The 
features of these emergencies were obtained from real cases that were occurring in the 
city. The details of those events were received through the radio system located at the 
Santiago Alarms Center.  



Finally, the experts evaluated the application performance as acceptable. 
Therefore, during the next weeks, MobileMap will be used as a pilot experience by 
the 6th firefighters unit in real small urban incidents. 

7 Conclusions and Future Work 

Mobile computing devices and mobile ad-hoc wireless networks (MANETs) offer a 
wide range of new collaboration possibilities for these mobile workers. However, the 
design and implementation of the mobile collaborative solutions for ad-hoc scenarios 
imply to deal with several key requirements, such as: autonomy, interoperability, 
shared information management, context-awareness, and low resources use.  

Most frameworks and platforms proposed to support collaborative activities of 
mobile workers use some type of centralized data or services. This centralization 
jeopardizes the application capabilities to support collaboration in ad-hoc 
communication settings. This paper presents a platform called SOMU (Service-
Oriented Mobile Unit) intended to support the collaborative activities carried out by 
mobile workers in ad-hoc scenarios. Unlike previous related works, SOMU proposes 
a fully decentralized architecture to share resources allowing mobile devices to act as 
autonomous units. The results presented in section 6.5 show this approach not only is 
feasible, but also it is more robust than the centralized one when MANETs are 
involved. In addition, this approach is able to present good performance even when 
interoperability issues are involved. 

The SOMU platform provides solutions to deal with most requirements of the 
mobile groupware applications in ad-hoc environments (presented in [Section 2]). 
Moreover, SOMU lets mobile computing devices expose and consume Web services 
in order to ensure services interoperability among them. Moreover, the platform uses 
communications based on MANETs and XML-based information as a way to provide 
data and communication interoperability among mobile units. Because the platform is 
replicated at each mobile unit, users can work autonomously and collaborate on-
demand. These capabilities are relevant to support mobile collaboration when there is 
no stable communication support or no communication at all. 

SOMU was implemented as a lightweight middleware running on laptops, Tablet 
PCs and PDAs. The platform provides a basic foundation for the development of 
mobile collaborative applications. It intends to increase the technical feasibility of 
solutions in the area and to reduce the development effort of MANET-based mobile 
collaborative applications. Although these issues have not been fully analyzed yet, the 
initial findings support these hypotheses.  

Future work includes, in the short future, formal experimentation to study the 
possible contributions and limitations of SOMU and the consequences on the 
applications developed on it. As a second step, the functionality of SOMU will be 
extended to integrate (by default) P2P sessions management, standard WS discovery 
mechanisms (such as the WS-Discovery specification), and enabled support for the 
new protocols stack that includes WS-Addressing, WS-Trust, WS-Federation, WS-
Eventing and MTOM (Message Transmission Optimization Mechanism) Attachment. 

 



Acknowledgements 

This work was partially supported by Fondecyt (Chile), grant Nº: 11060467 and 
1040952 and by MECESUP (Chile) Project Nº: UCH0109. 

References 

[Alarcón et al. 2006] Alarcón, R., Guerrero, L., Ochoa, S., Pino, J.: "Analysis and Design of 
Mobile Collaborative Applications using Contextual Elements"; Journal of Computing 
and Informatics, 25, 6 (2006), 469-496. 

[Aldunate et al. 2006a] Aldunate, R., Ochoa, S., Pena-Mora, F. Nussbaum, M.: "Robust Mobile 
Ad-hoc Space for Collaboration to Support Disaster Relief Efforts Involving Critical 
Physical Infrastructure"; ASCE Journal of Computing in Civil Engineering, American 
Society of Civil Engineers (ASCE), 20, 1 (2006), 13-27. 

[Aldunate et al. 2006b] Aldunate, R., Larson, G., Nussbaum, M., Ochoa, S., Herrera, O.: 
"Understanding the Role of Mobile Ad hoc Networks in Non-traditional Contexts"; 
Proc. IFIP Int. Conf. on Mobile and Wireless Comm. Networks, Santiago Chile (2006), 
199-215.  

[André and Antunes 2004] André, P., Antunes, P.: "SaGISC: A Geo-Collaborative System"; 
Proc.of CRIWG’04,  Lecture Notes in Computer Science 3198, San Carlos Costa Rica 
(2004), 175-191. 

[Bosneag and Brockmeyer 2005] Bosneag, A.M., Brockmeyer, M.: "GRACE: Enabling 
collaborations in wide-area distributed systems"; Proc. of WETICE’05, Workshop on 
Distributed and Mobile Collaboration (DMC), IEEE CS Press, Linkoping University 
Sweden (2005), 72-77. 

[Buszko et al. 2001] Buszko, D., Lee, W., Helal, A.: "Decentralized Ad-Hoc Groupware API 
and Framework for Mobile Collaboration"; Proc. of ACM Int. Conf. on Supporting 
Group Work (GROUP), ACM Press, Colorado USA (2001), 5-14. 

[Canos et al. 2005] Canós J.H., Borges M.R.S., Alonso G.: "An IT View of Emergency 
Management"; IEEE Computer, 38, 12 (2005), 27. 

[Comfort 2004] Comfort, L.: "Coordination in Complex Systems: Increasing Efficiency in 
Disaster Mitigation and Response"; Int. J. of Emergency Management 2, 1 (2004), 62-
80. 

[De Rosa et al. 2005] De Rosa, F., Malizia, A., Mecella, M.: "Disconnection Prediction in 
Mobile Ad hoc Networks for Supporting Cooperative Work"; IEEE Pervasive 
Computing, 4, 3 (2005), 62-70. 

[Edwards 1994] Edwards, K.: "Session Management for Collaborative Applications"; Proc. of 
CSCW’94, ACM Press, (1994), 323-330. 

[Gelernter 1985] Gelernter, D.: "Generative Communication in Linda"; ACM Transactions on 
Programming Languages and Systems, 7, 1 (1985), 80-112. 

[Godschalk 2003]  Godschalk, D.: "Urban Hazard Mitigation: Creating Resilient Cities"; 
Natural Hazards Review, ASCE, August (2003), 136-146. 

[Guerrero and Fuller 2001] Guerrero, L.A., Fuller, D.: "A Pattern System for the Development 
of Collaborative Applications"; Group Decision and Negotiation, 43, 7 (2001), 457-467. 

[Guerrero et al. 2004] Guerrero, L., Pino, J., Collazos, C., Inostroza, A., Ochoa, S.: "Mobile 
Support for Collaborative Work"; Proc.of CRIWG’04, Lecture Notes in Computer 
Science 3198, San Carlos Costa Rica (2004), 363-375.  

[Haas et al. 2002] Haas, Z., Halpern, J., Li, L.: "Gossip-Based Ad Hoc Routing"; Proc. of IEEE 
Infocom’02, June (2002), 1707–1716. 

[Handorean et al. 2003] Handorean, R., Payton, J., Julien, C., Roman, G.: "Coordination 
Middleware Supporting Rapid Deployment of Ad Hoc Mobile Systems"; Proc. 



ICDCS’03, Workshop on Mobile Computing Middleware, IEEE CS Press, Rhode 
Island USA (2003), 363-368. 

[Hauswirth et al. 2005] Hauswirth, M., Podnar, I., Decaer, S.: "On P2P Collaboration 
Infrastructures"; Proc. of WETICE’05, Workshop on Distributed and Mobile 
Collaboration (DMC), IEEE CS Press, Linkoping University Sweden (2005), 66-71. 

[Heinemann et al. 2003] Heinemann, A., Kangasharju, J., Lyardet, F., Mühlhäuser, M.: 
"iClouds: Peer-to-Peer Information Sharing in Mobile Environments"; Proc. of Euro-
Par’03, Lecture Notes in Computer Science 2790, Klagenfurt Austria (2003), 1038-
1045. 

[Hirsch et al. (2006)]  Hirsch, F., Kemp, J., Ilkka, J.: "Mobile Web Services: Architecture and 
Implementation"; Nokia Research Center. John Wiley & Sons Publisher, (2006). 

[JXTA 2003] JXTA Project, 2003, http://www.jxta.org.  
[Marques and Navarro 2006] Marques, J., Navarro, L.: "LaCOLLA: A Middleware to Support 

Self-sufficient Collaborative Groups"; Computing and Informatics, 25, 6 (2006), 571-
595. 

[Mascolo et al. 2002] Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W.: "XMIDDLE: A 
Data-Sharing Middleware for Mobile Computing"; Journal on Personal and Wireless 
Communications, 21, 1 (2002), 77-103. 

[Menchaca-Mendez et al. 2004] Menchaca-Mendez, R., Gutierrez-Arias, E., Favela, J.: 
"Opportunistic Interaction in P2P Ubiquitous Environments"; Proc.of CRIWG’04,  
Lecture Notes in Computer Science 3198, San Carlos Costa Rica (2004), 349-362. 

[Muñoz et al. 2003] Muñoz, M.A., Rodriguez, M., Favela, J., Martinez-Garcia, A.I., Gonzalez, 
V.M.:   "Context-aware mobile communication in hospitals"; IEEE Computer, 36, 9 
(2003), 38-46. 

[NCTAUS 2004] National Commission on Terrorist Attacks Upon the United States: "The 9/11 
Commission Report", Dec. (2004), http://www.9-11commission.gov/report/index.htm. 

[Nemlekar 2001] Nemlekar, M.: "Scalable Distributed Tuplespaces"; MSc. Thesis. Department 
of Electrical and Computer Engineering, North Carolina State University, Chapter 5, 
(2001). 

[Neyem et al. 2005]  Neyem, A., Ochoa, S., Guerrero, L., Pino, J.: "Sharing Information 
Resources in Mobile Ad-hoc Networks"; Proc. of CRIWG’05, Lecture Notes in 
Computer Science 3706, Porto do Galinhas Brazil (2005), 351-358. 

[Neyem et al. 2006] Neyem, A., Ochoa, S., Pino, J.: "A Strategy to Share Documents in 
MANETs using Mobile Devices"; Proc. of ICACT’06, Phoenix Park Korea (2006), 
1400-1404. 

[Nielsen et al. 2002] Nielsen, H. Christensen, E., Farell, J.: "WS-Attachments Specification"; 
Technical Report IBM, June (2002), http://www-
106.ibm.com/developerworks/webservices/library/wsattach.  

[Ochoa et al. 2007] Ochoa, S., Neyem, A., Pino, J., Borges, M.: "Supporting Group Decision 
Making and Coordination in Urban Disasters Relief Efforts"; Special Issue: Diverse 
Landscape of Decision Support System Applications, J. of Decision Systems 16, 2 
(2007), 143-172. 

[Pinelle and Gutwin 2006] Pinelle, D., Gutwin, C.: "Loose Coupling and Healthcare 
Organizations: Deployment Strategies for Groupware"; Computer Supported 
Cooperative Work, 15, 5-6 (2006), 537-572. 

[Stewart and Bostrom 2002] Stewart, T., Bostrom, A.: "Extreme Event Decision Making 
Workshop Report"; Decision Risk and Management Science Program NSF, June 
(2002).  

[Stojmenovic and Wu 2004]  Stojmenovic, I., Wu, J.: "Ad-hoc Networks"; IEEE Comp., 37, 2 
(2004), 9-74. 

[Zurita and Baloian 2005]  Zurita, G., Baloian, N.: "Handheld Electronic Meeting Support"; 
Proc. of CRIWG’05, Lecture Notes in Computer Science 3706, Porto do Galinhas 
Brazil (2005), 341-350. 


