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Abstract

We use a model of vertical relations between two congestible airports and an airline oligopoly to examine, both analytically and
numerically, how deregulation may affect airports prices and capacities. We find that: (i) unregulated profit-maximizing airports
would overcharge for the congestion externality and, compared to the first-best, would induce large allocative inefficiencies and dead-
weight losses. They would restrict capacity investments but, overall, would induce fewer delays; (ii) Welfare maximization subject to
cost recovery performs quite well, achieving congestion levels similar to a private-unregulated airport but without inducing such large
traffic contraction; this puts a question mark on the desirability of deregulation of private airports; (iii) Increased cooperation between
airlines and airports provides some improvements, but the resulting airport pricing strategy leads to a downstream airline cartel;
(iv) When schedule delay costs effects are strong and airline differentiation is weak, it may be optimal to have a single airline
dominating the airports, but this happens only when airports' pricing schemes render the number of airlines irrelevant for competition.
Keywords: Airport privatization and deregulation; Airport congestion pricing; Vertical structure
1. Introduction

In the literature nowadays, congestion is often men-
tioned as themost important problemmajor airports face. In
the last decades, some authors have argued in favor of
airport privatization because, among other things, private
airports would charge efficient congestion prices andwould
respond to market incentives for capacity expansions (see
e.g. Craig, 1996). Following the example of the UK,
many countries moved – or are moving – towards privati-
zation of some of their public airports1 but, out of the
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concern that the privatized airports would exert market
power, most of the newly privatized airports have been
subject to economic regulation (such as price cap inLondon
Heathrow or rate-of-return in Amsterdam). Lately, howev-
er,many authors have argued that privatization has not been
as successful as expected because the regulation mechan-
isms would misplace the incentives regarding capacity.2

Moreover, it has been argued that ex-ante regulation could
be unnecessary altogether so it could be either completely
discarded or replaced by ex-post price monitoring. Why?
Some of the reasons that have been put forward are (see e.g.
Beesley, 1999; Condie, 2000; Forsyth, 1997, 2003; Starkie,
2 Price caps would lead to under-investment in capacity, while rate-of-
return would lead to over-investment in capacity. For a list of papers that
discuss country-specific experienceswith regulation seeOumet al. (2004).

http://dx.doi.org/10.1016/j.ijindorg.2007.09.002


3 The supplementary appendix can be requested from the author and
can be found, in the online version, at doi:10.1016/j.ijin-
dorg.2007.09.002.
4 Brueckner (2002), Zhang and Zhang (2003) and Oum et al. (2004)

considered an airport in isolation; Pels and Verhoef (2004) considered
two airports. Brueckner considered homogenous airlines while Pels
and Verhoef considered a homogenous duopoly.
5 A per-flight charge may not be a reflection of actual practice.

Many airports actually have weight-based charges, but this has been
starkly criticized on efficiency grounds by economists for at least
three decades (e.g. Carlin and Park, 1970). Per-flight charges have
been assumed in most analytical airport pricing papers.
2001, 2005; Productivity Commission, Australia, 2002;
Civil Aviation Authority UK, 2004): (i) airports have low
price elasticity of demand so price levels will not have large
implications for allocative efficiency; (ii) airlines have
countervailing power that will put downward pressure on
airport prices; and (iii) alternatively, most of the problems
would be solved if deeper collaboration between airlines
and airports was allowed and encouraged.

The move towards dismantlement of regulation or the
less-stringent price monitoring has already started in some
countries (e.g.NewZealand andAustralia) yet “the content
and likely impact of monitoring has yet to be determined”
(Forsyth, 2003). What we attempt on this paper is to shed
light on the potential impact of deregulation on pricing
practices and capacity decisions of airports. For this, we
compare the performances of profit-maximizing airports to
first-best and second-best airports, that is, airports that
maximize social welfare (with and without a budget
constraint). Indeed, as a referee pointed out, what we
analyze here are somewhat theoretical extremes: a private-
unregulated airport does not necessarily behave as a pure
profit-maximizing airport and, certainly, a public airport
does not necessarily maximize social welfare. Yet, we see
this analysis as a reasonable first approach to the issue.

There are many papers that have examined optimal
airport pricing. For example Brueckner (2002, 2005) and
Pels andVerhoef (2004) look for the optimal toll that airport
authorities should charge for the use of a fixed-capacity
airport, in order to maximize social welfare. Zhang and
Zhang (2003) andOumet al. (2004) on the other hand, look
in addition into the decisions of an unregulated profit-
maximizing airport, including capacity decisions. They do
this, however, without formally modeling the downstream
airline market, something achieved by assuming that the
airport's demand is a function of a full price – which
includes airport charges and congestion costs – and
measuring consumer surplus through the integration of
the airport's demand. In this paper instead, we formally
model the airline market as an oligopoly, which takes
airport charges and capacities as given, recognizing that
this is a vertical setting: airports provide an input – airport
service–which is necessary for the production of an output
–movement – that is sold at a downstreammarket. Hence,
the demand for airports services is a derived demand. The
differences in terms of airports' pricing schemes and
capacity investments arematerial. This is so because, as it is
analytically shown, only if the airline market is perfectly
competitive, the integration of the derived demand for the
airport provides a correct measure of consumer surplus.

We find that unregulated profit-maximizing airports
would overcharge for the congestion externality. Ana-
lytical and numerical results showed that, when
compared to the first-best, these airports would induce
large allocative inefficiencies and dead-weight losses.
They would restrict capacity investments but, neverthe-
less, would induce fewer delays. Airports that maximize
social welfare but subject to a budget constraint would
perform fairly well, both in terms of allocative efficiency
and congestion management. We also find that two
features that we include in our airline oligopoly model
and that have not been considered before – namely,
schedule (frequency) delay cost and demand differenti-
ation – play an important role on the incentives an airport
has with respect to the dominance by a single airline.
Finally, we provide a few extensions by looking into
maximization of joint profits of airports and airlines (a
benchmark for collaboration between these agents) and
independent profit maximization of two airports.

The plan of the paper is as follows: Section 2 contains
formal modeling of the downstream airline market. We
use the derived demand for airports services obtained
here to compare the performance of first-best and second
best airports against profit-maximizing airports in
Section 3. Section 4 contains extensions to the models
presented, while Section 5 summarizes and integrate our
findings. Proofs of some propositions and details on the
numerical examples are provided in the Appendix.
However, for space reasons, some other proofs, deriva-
tions and results have been omitted from the paper but
are available in a supplementary appendix.3

2. The airline market

2.1. The airline oligopoly model

The oligopoly model presented here is used to obtain
the derived demand for airports and to characterize it. We
consider two airports, where round trips are serviced byN
airlines with identical cost functions, which face (hori-
zontally) differentiated demands in a non-address
setting.4 We analyze a three-stage game: first, airports
choose capacities, Kh; second, they choose the charge per
flight, Ph;

5 finally, airlines choose their quantities. We



look for sub-game perfect equilibria through backward
induction, so we focus first, in this section, on the Nash
equilibria of the airlines' sub-game. Each airline's
demand is dependent on the vector of full prices, θ:

qiðqÞ ¼ qiðhi; q�iÞ
hi ¼ ti þ GðsiÞ þ aðDðQ;K1Þ þ DðQ;K2ÞÞ ð1Þ

where qi is the demand faced by airline i, θi is its full
price,Q is the total number of flights of all airlines, ti is the
ticket price for the round trip, G(τi) is schedule delay
cost,6 τi is the expected gap between passengers' actual
and desired departure time, D(Q,Kh) represents flight
delay (of both take-off and landing) because of congestion
at airport h and α represents the passengers' value of
time.7 Note that τi depends on the frequency chosen by
airline i: the higher the frequency, the smaller the gap.
Thus, schedule delay cost can be written as g(Qi)≡G(τi
(Qi)) whereQi is the number of flights of airline i, g′(Qi)b
0 while gʺ(Qi) has no evident sign a priori. The delay
function considered is8

DhðQ;KhÞ ¼ Q
KhðKh � QÞ : ð2Þ

Assuming linear symmetric demands and substitute
outputs we get qiðqÞ ¼ a� bhi þ

PN
jpi ehj, where a, b
6 Schedule delay cost represents the monetary value of the time
between the passenger's desired departure time and the actual
departure time. It was introduced by Douglas and Miller (1974) as
the addition of two components: frequency delay cost and stochastic
delay cost. The former is a cost induced by the fact that flights do not
leave at a passengers' request but have a schedule. Stochastic delay
has to do with the probability that a passenger cannot board her
desired flight because it was overbooked. Overbooking arises in the
presence of stochastic demands, which is not the case here. Hence,
our schedule delay cost corresponds only to frequency delay cost.
7 In parallel but independent work, Zhang and Zhang (2006)

analyzed a vertical structure of airlines and airports somewhat similar
to the one proposed here. However, our work considers a number of
model features – such as airline differentiation, two airports, schedule
delay cost – and different analyses – such as characterization of the
derived demand for airports, analysis of second best capacities,
optimal number of airlines, independent versus system privatization,
vertical integration/two part tariffs and numerical simulations – that
are not considered in their work. The main overlap is in Propositions 1
and 2.
8 This convex function of Q was proposed by the US Federal

Aviation Administration (1969) and is further discussed in Horonjeff
and McKelvey (1983). It has been used by Morrison (1987), Zhang
and Zhang (1997) and Oum et al. (2004). Pels and Verhoef (2004)
considered delay functions that were linear on Q.
and e are positive. Inverting the system and re-labeling we
get

hi ¼ A� Bdqi �
XN
jpi

Edqj ð3Þ

where A, B and E are fixed positive numbers and we
assume thatBNE, that is, outputs are imperfect substitutes
(it is easy to verify that BNE is equivalent to bN (N−1)e).
We assume that airlines behave as Cournot oligopolists in
that they choose quantities (see Brander and Zhang, 1990;
Oum et al., 1993, for some empirical evidence). Note that
homogeneity in the Cournot competition – the usual case
in airline oligopoly models (e.g. Oum et al., 1995;
Brueckner, 2002) – is a special case of our model; it
suffices to replace E by B in the results. This enables an
assessment of the importance of (horizontal) airline
differentiation in airport decisions. Two more comments
about the demand model are important. First, we
incorporated the schedule delay cost, an important aspect
of service quality which has sometimes been considered
in pure airline oligopoly models but never in airport
markets analysis.9 Second, we chose to have N as an
exogenous parameter because airports may have prefer-
ences regarding N that are different than the pure free
entry equilibrium, and they may indeed have a sizeable
influence in the number of active firms. Airports'
preferred N under different ownership and pricing
schemes is analyzed in Sections 3 and 4 (airlines' free
entry equilibrium is described in the supplementary
appendix).

Using Eqs. (3) and (1), the system of inverse demands
faced by the airlines can be obtained as ti ¼ A� Bdqi �PN

jpi Edqj � gðQiÞ � aðDðQ;K1Þ þ D ðQ;K2ÞÞ. This
can be simplified though, by recognizing that qi=Qi×
Aircraft Size×Load Factor. Here, we assume that the
9 Douglas and Miller (1974) and Oum et al. (1995) considered
schedule delay cost in analytical models, while Morrison and Winston
(1989) measured it empirically in their estimation of an airline choice
model. The fact that the schedule delay cost is airline dependent –
rather than depending on the overall frequency Q of the industry –
can be supported by two model features: first, airlines are
differentiated and thus their frequency is seen as an individual
attribute (as in the discrete choice framework of Morrison and
Winston, 1989). Second, passengers take round trips and have to take
the same airline for their return flight; thus, what matters for a
passenger is the frequency of each particular airline, even if the
differentiation is not too strong. If one were to consider homogeneity
and unidirectional trips such that, in effect, passengers would board
the first flight they can, then a more reasonable model would have
airlines choosing departure times and then competing in prices. An
example, for a duopoly, of this airline scheduling competition can be
found in Shipper et al. (1998).



product between aircraft size and load factor, denoted by
S, is constant and the same across carriers, making the
vertical relation between airports and airlines of the fixed
proportions type.10 Thus

tiðQi;Q�iÞ ¼ A� SBQi �
XN

jpi
SEQj � gðQiÞ

� aðDðQ;K1Þ þ DðQ;K2ÞÞ: ð4Þ

Note that the inverse demand system is not linear in
output, as D is not and there is no reason to think that g
is. In fact, we make the following useful assumptions
about schedule delay costs:

(a) The monetary cost of the gap between the actual
and desired departure times,τ, is proportional to its
length.

(b) τ is inversely proportional to the frequency of
flights.

Assumption (a) is similar to what has been already
assumed regarding congestion delay costs. Hence, under
Assumptions (a) and (b) we get g(Qi)=G(τi(Qi))=γ ·τi
(Qi)=γ ·η ·Qi

−1, where γ is the constant monetary value
of a minute of schedule delay and η is a constant.11 With
this, the residual inverse demand is negative and upward
sloping first; it then becomes positive, and then
downward sloping, when the linear part of the function
starts dominating schedule delay cost effects. Finally,
for higher values of Qi, congestion starts to kick and ti

decreases faster than linearly. The explanation of the
shape of the demands is quite intuitive: schedule delay
cost put by itself, and regardless of other technological
considerations such as a fixed cost, a limit to the number
of airlines that can be active in the industry. This
minimum scale of entry though, stems from a feature
that is particular to transport services and implies that
perfect competition between airlines, as the limit case
when N→∞, is not consistent with this model.

The final ingredient necessary before obtaining
equilibria is costs. Airline costs are

C i
AðQi;Q�i;Ph;KhÞ ¼ Qi tcþ

X
h¼1;2

ðPh þ bDðQ;KhÞÞb: ð5Þ
The term in square brackets is the cost per flight,

which includes pure operating costs c, airports charges
10 This assumption was also made by Brueckner (2002) and Pels and
Verhoef (2004). A variable proportions case arises if, before a change
in airport charges, airlines decide to change S (aircraft size, load factor
or both). As pointed out by a referee, with fixed load factors and
aircraft size, prices per passenger and per flight are equivalent.
11 If passengers' desired departure time is uniformly distributed, then
Assumption (b) holds and η=1/4.
P1 and P2, and congestion delay costs.12 Thus, airline
i's profits, ϕi, are obtained from Eqs. (4) and (5), and the
fact that revenues are tiqi= t

iQiS. We get

/iðQi;Q�i;Ph;KhÞ

¼ AS � BQiS
2 �

X
j p i

EQjS
2 � c�

X
h¼1;2

Ph

" #
Qi

� SQigðQiÞ � ðaS þ bÞ
X
h¼1;2

QiDðQ;KhÞ:

ð6Þ

2.2. The derived demand for airports and its
characteristics

To obtain the derived demand for airports, we solve
for the equilibrium of the airline market. Using Eq. (6),
it can be shown that under Assumptions (a) and (b) there
exists a unique, interior and symmetric Cournot–Nash
equilibrium of the sub-game, as long as N is smaller
than the free-entry number of firms which should always
hold.13 Thus, ∂ϕi /∂Qi=0 gives us the unique and
symmetric Cournot–Nash equilibrium of the game.
Calculating this and imposing symmetry, we obtain the
following important equation

XðQ;Ph;Kh;NÞ

¼ ðaS þ bÞ
X
h¼1;2

DhðQ;KhÞ þ Q
N
Dh

QðQ;KhÞ
� �

þ S g
Q
N

� �
þ Q
N
g V Q

N

� �� �
þ S2ð2Bþ ðN � 1ÞEÞQ

N

þ cþ
X
h¼1;2

Ph � AS ¼ 0:

ð7Þ

Eq. (7) implicitly defines a function Q(Ph,Kh;N), i.e.
airports' demand as a function of airport charges,
capacities and airline market structure, N (the implicit
function theorem holds). Note that under Assumptions
(a) and (b), g(x)+xg′(x)=0 and the second term would
be zero. Also, defining P=P1+P2, one can explicitly
obtain the airports' inverse demand P(Q,Kh;N).
12 Using the expression for delay in Eq. (2), it can be verified that
marginal costs are strictly increasing and larger than average cost
(except at Qi=0). Cost, marginal cost and average cost functions are
strictly convex. Given that aircrafts sizes are assumed constant, this
cost function may represent a short-run.
13 See the supplementary appendix for proofs and a discussion of
Cournot (or tatonnement) stability.



We now characterize the demand for airports. We are
interested first in learning how airports' demandQ(Ph,Kh;
N) changes with Ph, Kh and N or, alternatively, how the
inverse demand changes withQ, Kh and N. Consider first
changes of Q with P. If Assumptions (a) and (b) hold,

dQ
dP

¼ �XP

XQ

¼ � N

ðaS þ bÞPhððN þ 1ÞDh
Q þ Q2Dh

QQÞ þ S2ð2Bþ ðN � 1ÞEÞ :

ð8Þ

All other derivatives are easily obtained by using the
same comparative statics techniques on Eq. (7). Below,
we summarize the results. The first two rows of Eq. (9)
require Assumptions (a) and (b) regarding schedule delay
cost, while those in the third row do not. In summary

∂P
∂Q

b0;
∂P
∂N

N0;
∂2P

∂Q∂N
N0;

∂2P
∂Q2

b0;
∂Q
∂N

N0;

∂Q
∂Ph

b0;
∂Q
∂Kh

N0;
∂2Q

∂P2
h

b0;
∂2Q

∂Ph∂Kh
N0

∂P
∂Kh

N0;

∂2P
∂Q∂Kh

N0;
∂2P

∂K2
h

b0;
∂2P

∂K1∂K2
¼ 0;

∂2P
∂Kh∂N

b0:

ð9Þ

Having characterized the shape of the demand
function, we can now compute the surpluses (in sub-
game equilibrium) of airlines and passengers. Passenger
surplus is given by PS ¼ R A

hðP;K;NÞ
PN

i qiðqÞdhi. Since
∂qi /∂θj=∂qj /∂θi, the line integral has a solution that is
path independent (PS is equal to both Hicksian
measures). Using a linear integration path, straightfor-
ward calculations lead to

PSðPh;Kh;NÞ ¼ ðBþ ðN � 1ÞEÞS 2QðPh;Kh;NÞ2=2N :

ð10Þ

The aggregate (equilibrium) profit for carriers, Φ, is
easily obtainable from an individual carrier's profit Eq. (6)
and the imposition of symmetry, that is,Qi=Q(P,Kh,N) /N.
We obtain:

UðP;Kh;NÞ

¼ QS A� QS
N

ðBþ ðN � 1ÞEÞ � g
Q
N

� �
� a

X
DðQ;KhÞ

� �
� Q½cþ P þ b

X
DðQ;KhÞ�: ð11Þ

We turn now into an important question, which we
frame as follows: the airline market model was useful to
derive and characterize the demand for airports (Eqs. (7)
and (9)). It would be simple if we could directly use this
demand function to fully analyze the airports markets,
because this function may be estimated only with airport
level information. Indeed, we would directly use this
demand function to setup a maximization of airports'
profits problem. But things are less obvious in the
maximization of social welfare case though. What is
needed is a measure of consumer surplus but as it is clear
from this vertical setting, consumers of airports are both
final consumers (passengers) and airlines. What we need
then is a measure of the sum of passenger surplus and
airlines profits. What has been assumed in previous
papers where the airline market is not formally incorpo-
rated (Zhang and Zhang, 1997; Oum et al., 2004), is that
the airport demand does carry enough information so that
its integration gives this total consumer surplus. We
investigate now under which conditions this is true. In
Zhang and Zhang (1997) and Oum et al. (2004), the
demand for the airport,Q, is assumed to be dependent on
a full price ρ, which includes flight delay costs and the
airport charge. Using the notation of this paper, the
demand for the airport would be Q≡Q(ρ), where:

q ¼
X
h¼1;2

Ph þ ðaS þ bÞ
X
h¼1;2

DhðQ;KhÞuP

þ ðaS þ bÞ
X

h
Dh:

ð12Þ

Other charges to passengers, such as the flight ticket,
are assumed to be exogenous as far as the airport is
concerned. However, when one considers the full vertical
structure and the associated sub-game equilibrium,Qi(Ph,
Kh;N)=Q(Ph,Kh;N) /N, both delays (Eq. (2)) and ticket
prices (Eq. (4)) will directly depend on airport charges and
capacities, which are the decision variables of the airports.
So, the first question that arises is: is it reasonable to use
the full price idea at the airport, rather than at the airline
market level? An answer can be obtained by looking at
Eq. (7). Using Eq. (12) to form ρ, and abstracting from
schedule delay cost effects (i.e. making g=0) so that we
can take N→∞, Eq. (7) can be written as:

QS2
2B
N

þ ðN � 1Þ
N

E

� �
þ qþ c� AS

þ ðaS þ bÞQ
N

X
h

Dh
Q ¼ 0:

ð13Þ

Hence, Q would not depend only on ρ but also on
DQ and N; the (implicit) demand for airports should be
Q≡Q(ρ, DQ, N). Note, however, that in the perfect



15 For more on the general relation between input and output market
competition case, i.e. when N→∞, Eq. (13) leads to
QðNYlÞ ¼ AS�c�q

S2E , which implies that Q(ρ ,DQ ,
N→∞)≡Q(ρ). Thus, under perfect competition, a
full price as defined by ρ, can in fact be used directly at
the airport market level: Q(ρ) summarizes well the
equilibrium of the downstream market.

Next, what has been (implicitly) assumed before, is
that the integration of the airport demand with respect to
ρ would capture the full consumer surplus. Let us study
this, using the general (implicit) demand function Q≡Q
(ρ,DQ,N). We are thus interested in unveiling how

Z l

q
Qðq;DQ;NÞdq ð14Þ

is related to airlines profits and passenger surplus.
Regrouping terms in Eq. (11) to form ρ, and considering
again g=0, we can write the aggregate (equilibrium)
profit for carriers as:

UðQ; qÞ ¼ QS A� QS
N

ðBþ ðN � 1ÞEÞ
� �

� Q½cþ q�:

ð15Þ
Consider now the total derivative of Φ with respect to

ρ. From Eq. (15) the following results

dU
dq

¼ �Qðq;DQ;NÞ � ðN � 1ÞES2Q
N

∂Q
∂q

� ðaS þ bÞQ
N

X
h

Dh
Q
∂Q
∂q

: ð16Þ

Reordering, integrating from ρ to∞, and using Eq. (13)
we finally get14Z l

q
Qðq;DQ;NÞdq ¼ Uþ PS� BS2Q2

2N

� 1
N
ðaS þ bÞ

Z l

q
Q
X
h

Dh
Qdq: ð17Þ

Eq. (17) shows that integration of the airports demand
with respect to the full price, delivers a correct measure of
consumer surplus if and only if the airline market is
perfectly competitive (N→∞). This was in fact the
maintained assumption of Zhang and Zhang (2003) and
Oum et al. (2004) sowe have provided theoretical support
for their modeling. When the airline market is imperfectly
competitive though, the integral of Q with respect to ρ,
14 Here, we used the fact that Q(ρ=∞, DQ, N)=0 and therefore
Φ(ρ=∞, DQ, N)=0.
does not capture airlines profits plus passenger surplus
becausemarket power induces losses of consumer surplus
and partial internalization of congestion — third and
fourth terms in Eq. (17) respectively.15

The main conclusion of the previous analysis is that to
analytically examine the airport markets, one cannot
abstract from the airlinemarket if competition is imperfect
there. Formal modeling is required to adequately set up
the social welfare maximization problem. The simplest
way to do this is by considering directly the three actors
involved (which is the method we use), although one
could also add themissing terms to the integral of airport's
demand. At the practical level, the conclusion is bad news
for managers of public airports or airport regulation
authorities: optimal pricing and capacity investments
would require detailed knowledge about the market
structure and demand of the airline market; information
on costs and demand for airports alone is not enough. This
unquestionably complicates the problem, implying that
we would need to search for regulation mechanism that
work (i.e. are feasible), yet which are not optimal.

3. The airports market

3.1. System of welfare-maximizing airports

In this section, we look at the first two stages of the
game – airports' capacities and prices – taking as known
the equilibrium in the third stage, and compare the perfor-
mance of airports under different objective functions. We
do this both analytically and through numerical examples;
details on these numerical simulations (such as the param-
eters used) are presented in the Appendix. So, consider first
a system of airports maximizing social welfare. This case
will be denoted byW and has been the case usually studied
in the airport pricing literature that considers airlines' mar-
ket power, e.g. Brueckner (2002, 2005) and Pels and
Verhoef (2004). In those papers however, capacity was
fixed while here it is a decision variable. As discussed in
Section 2, with imperfect competition in the airline market
the social welfare (SW) function is not simply the integral
of airports' demand plus airports' profits. The correct SW
function can be obtained by adding the two airports' profits
(total profits denoted by π), passenger surplus in Eq. (10)
and the sum of airlines' profits in sub-game equilibrium in
Eq. (11); that is: SW=π+PS+Φ. Decision variables areQ,
P (which is the sum of P1 and P2), K1 and K2, butQ and P
surplus see Basso (2006). Among other things, he shows that, in a case
like this, the integral of the input demandwith respect to P – as opposed
to ρ – would never adequately capture downstream firms' profits plus
final consumer surplus, not even under perfect competition.



are related through the demand function. We use P and Kh

as decision variables – i.e. we use the inverse demand
function P(Q,Kh;N) rather than the direct demand function
Q(Ph,Kh;N) – but obviously results do not change if we
choose otherwise. In this setup, the three-stage game is
identical to a two-stage game where Q and Kh are chosen
simultaneously. As it is usual in the literature, we assume
that an airport costs are separable and given by C(Q)+rK.
Hence, the problem of the welfare maximizing airports is

max
Q;K1;K2

SWðQ;Kh;NÞ ¼ fPðQ;Kh;NÞQ� 2CðQÞ � ðK1 þ K2Þrg

þ ðBþ ðN � 1ÞEÞS2Q2

2N

� �

þfQS A� QS

N
ðBþ ðN � 1ÞEÞ � g

Q

N

� �
� a

X
Dh

� �

�Q½cþ P þ b
X

Dh�g:

ð18Þ
First-order conditions lead to the following pricing

and capacity rules:

P ¼ 2C Vþ ðN � 1Þ
N

ðaS þ bÞQ
X
h

Dh
Q � QS2B

N
; ð19Þ

�QðaS þ bÞ∂DðQ;KhÞ
∂Kh

¼ r; h ¼ 1; 2: ð20Þ

Second-order conditions do not hold globally but
simulations showed that they do hold for a large range of
parameter values, particularly for the numerical examples.
A necessary condition though, is that C is not too
concave.16 It is also easy to prove that at the optimum,
K1=K2=K. The pricing rule has three components:
(i) airports marginal cost. (ii) A charge that increases
price and is equal to the uninternalized congestion of each
carrier. This efficient ‘congestion toll’ was first described
by Brueckner (2002). It has the important feature that it
diminishes with airlines' market shares (the larger the N,
the larger the toll), showing that the scope for congestion
pricing would be narrower that in the ‘road case’ where
users do not havemarket power. (iii) A term that decreases
price andwhich amounts to a subsidy to firmswithmarket
power in order to increase social welfare. This term,
which was first identified by Pels and Verhoef (2004),
attempts to diminish allocative inefficiency through an
external decrease in airlines' marginal cost. Pels and
Verhoef considered only a duopoly, but it is easy to see
from Eq. (19) that the subsidy decreases with the number
of airlines as expected.
16 Airports' operational economies of scale would be exhausted at
fairly small traffic levels (e.g. Doganis, 1992).
As for capacity, Eq. (24) shows that capacity is added
until the costs of doing so equate the benefits in saved
delays to passengers and airlines. This capacity decision is
essentially the same as the one found byOumet al. (2004),
even though they did not consider the airline market
formally. The importance of considering the airline
market will become clear when comparing this capacity
rule to the one used by profit-maximizing airports.

As can be seen, the final charge Eq. (19)will be above or
below marginal cost depending on whether the congestion
toll or the subsidy dominates. If K is fixed, the congestion
toll increases as N grows while the subsidy decreases.
When capacity is a decision variable however, optimal K
changes withN and, therefore, it is not necessarily true that
the congestion toll increases and the subsidy decreases asN
increases. In fact, the signs of dQW /dN, dKW /dN, and
dPW /dN cannot be determined a priori. In the numerical
examples shown in the Appendix however, we found that
traffic, capacities and price increase with N. When N is
small, prices are indeed negative because internalized
congestion is large and hence the congestion toll is small,
while subsidies need to be large. In fact, in the numerical
examples, the price reachesmarginal cost onlywhenN≥9.
But with capacity costs, price equal marginal cost would
not lead to cost recovery; budget adequacy only occurs
when N is over 200. These results speak of two things:
First, that it will be important to look at the more realistic
second best case, in which airportsmaximize social welfare
subject to a budget constraint. This is done in Section 3.3.
Second, and perhaps more importantly, that ‘solving’ the
problem of airlines' market power through airport pricing
does not seem to be, on one hand desirable and, on the other
hand feasible (see Brueckner, 2005, for more on this).

Since both Q and K increases with N, it is reasonable
to ask what happens with delays as the number of
airlines increase. Numerically, it can be seen that delay
slightly decreases with N, showing that the airports
would keep up with traffic growth induced by more air
carriers. How does social welfare change with N?
Differentiating SW evaluated at optimal Q and K with
respect to N, and applying the envelope theorem we get:

dSW
dN

¼ ∂SW
∂N

¼ ðB� EÞS2Q2

2N 2
þ Sg V

Q
N

� �
Q2

N 2
: ð21Þ

The first term on the right hand side (RHS) is non-
negative while the second is negative. It can be seen that
when differentiation is weak, i.e. B≈E, Eq. (21) may be
negative which would imply that it would be better, in a
social welfare sense, to have one airline. This may appear
surprising but the explanation is simple: these ‘first-best’
airports solve not only the congestion externality but they



also solve airlines' market power through subsidies.
Hence, having a monopoly airline would not produce
allocative inefficiencies. But a monopoly airline provides a
higher frequency than each airline in oligopoly because the
number of flights of individual airlines decreases with N.
And larger frequencies mean smaller schedule delay cost
(recall this was assumed to be airline dependent) which
increases demand. Indeed, this result abstracts from the fact
that the airport itself would require subsidies to operate. In
the opposite case, when differentiation is strong, i.e.
B≫E, Eq. (21) would probably become positive. In that
case, the expansion of demand generated by a new firm
will overweight the increased schedule delay cost due to
reduced frequencies.17

3.2. System of profit-maximizing airports

We now examine the decisions of a system of airports
which maximize profits, which can be roughly under-
stood as private-unregulated airports. We denote this
case by SPA. The problem the SPA faces is given by

max
Q;K1;K2

pðQ;Kh;NÞ ¼ PðQ;Kh;NÞQ� 2CðQÞ
� ðK1 þ K2Þr: ð22Þ

First-order conditions on Q lead to the well-known
pricing rule P=2C′+P /εP – where εP is the (positive)
price elasticity of airports' demand – but this does not tell
us much in this case. Using Eq. (8), however, we can
calculate an explicit expression for εP from where we get:

P ¼ 2C Vþ ðN þ 1Þ
N

ðaS þ bÞ

�Q
X
h

Dh
Q þ Q

N þ 1
Dh

QQ

� �

þQS2ð2Bþ ðN � 1ÞEÞ
N

: ð23Þ
Just as in the first-best, the pricing rule has three

components. The second component is related to
congestion. Comparing this to Eq. (19), it can be easily
seen that profit-maximizing airports would overcharge
for congestion: their congestion charge is proportional
to (N+1) /N, which is larger than an airline's market
share, and the expression also includes a term related to
the second derivative of the delay function, which
further increases the congestion charge. This shows that,
17 These results were not obtainable in Pels and Verhoef's model
because they did not have N as a variable and had no schedule delay
cost. Brueckner did consider N firms, but Eq. (21) would have always
been zero in his case because his model featured homogeneity and no
schedule delay cost.
just in terms of delays, deregulation may lead to traffic
levels that are too small to be efficient, although the
overcharge for congestion becomes less important as the
number of airlines grow. The airports' price is further
increased by the third term in Eq. (23), which is pure
market power from the part of the airports: Profit-
maximizing airports would certainly not subsidize the
airlines but instead would try to capture part of their
profits by increasing the price. We discuss the relative
importance of each of these two terms (congestion and
market power charges) below.

As for capacity, first-order conditions lead to

Q
∂P
∂Kh

¼ r; h ¼ 1; 2: ð24Þ

Eq. (24) shows that the airports would increase
capacity until marginal revenue equals the marginal cost
of providing the extra capacity. Clearly, the capacity rule
of profit-maximizing airports in Eq. (24) is different
than that of welfare-maximizing airports in Eq. (20).
This result differs from what was obtained by Oum et al.
(2004), as they found that private and public airports
followed the same capacity rule which led them to
conclude that private airports set capacity levels
efficiently for the traffic they induced through pricing.
The divergence is caused by the fact that their set-up
only holds for a perfectly competitive airline market, as
discussed in Section 2.2. Indeed, if one replaces in the
private airport capacity rule Eq. (24), the marginal value
of capacity by its full expression, i.e. ∂P

∂Kh
¼ �ðaS þ bÞ

Q
N D

h
QK þ Dh

K

� 	
, one can see that, if N→∞, then the

capacity rules (20) and (24) do coincide. In general,
however, this would not be the case: the marginal
revenue perceived by the airport is not necessarily a
measure of the social benefit of an increase in capacity
(Spence, 1975, provided this insight for a monopolist
selling a final good, and who had to choose price and
quality rather than price and capacity).

We would like now to compare the performances of
profit- and welfare-maximizing airports. Comparisons are
complex though, because quantity (prices) and capacities
are chosen simultaneously. A way to make comparisons
feasible is to assume first that capacities are fixed and to
compare just prices. As expected, profit maximization
would lead to allocative inefficiencies in the form of
reductions in traffic (the proof is in the Appendix):

Proposition 1. For given capacities, the profit-maxi-
mizing airports charge a higher price than welfare-
maximizing airports and consequently, they induce less
traffic.



19 We have that ∂QSPA(K) /∂K=−πQK /πQQ, but πQK=PQKQ+PKN0
(see Eq. (9)) and πQQb0.
20 A large profit-maximizing airport charge is in line with a previous
result: Morrison and Winston (1989) found that the difference
between the monopoly and the efficient per-passenger landing fee was
How can capacity decisions be compared? Since quan-
tity and capacity are defined simultaneously in a system of
equations, two cases can be distinguished. First, we can
compare actual capacities and quantities. Second, we can
examine what distortions, if any, arise on the capacity side
when themonopoly pricing distortion is taken into account;
in other words, whether capacity distortions are mere
byproducts of monopoly pricing or not. To analyze these
two questions, we first examine what happens withKwhen
Q is given (e.g. the airline market is frequency regulated).18

A proof in the Appendix shows that:

Proposition 2. For a given Q, the system of profit-
maximizing airports (SPA) will oversupply capacity with
respect to the first-best airports (W).

Thus, regarding actual capacities and quantities, from
Proposition 2 it is clear that, if for a given capacity the
output restriction of the system of profit-maximizing
airports is not too important, i.e. QSPA(K)≈QW(K)
(these denote quantity rules for given K), then these
airports' capacities will be higher than the W ones and
delays would be smaller. If the output restriction is
severe, QSPA(K)≪QW(K), then SPA capacities would
be smaller than W capacities. The second question
regarding capacity is, what distortions, if any, arise on the
capacity side when the monopoly pricing distortion is
taken into account. How would the SPA capacity
compare to constrained social welfare maximization
where monopoly pricing is taken as given? To analyze
optimal social welfare capacities under monopoly
pricing, consider the following constrained SW function,
CSW(K)≡SW(QSPA(K)), and maximize it with respect
to K (recall that K1=K2=K). How does the second
constrained social welfare capacity, KCW, compare to
KSPA? Differentiating and evaluating at KSPA we get

dCSW
dK






KSPA

¼ ∂SW
∂Q






QSPAðKSPAÞ;KSPA

d
∂QSPAðKÞ

∂K






KSPA

þ ∂SW
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QSPAðKSPAÞ;KSPA

: ð25Þ

We are interested on the sign of Eq. (25). If it is positive,
then constrained socialwelfare capacities are larger than the
SPA ones. The first derivative on the RHS is always
18 This analysis may seem similar to Spence (1975)'s examination of
the provision of quality by a monopolist, since under the current
modeling K can be seen as a measure of quality. However, Spence's
insights – although pervasive – do not apply directly because, here,
the firm that has to choose quality provides an input to a downstream
oligopoly, rather than a final product. Moreover, in the downstream
(final) market, there are externalities in both production and
consumption.
positive by Proposition 1; the second one also is.19 The
third derivative is negative because Proposition 2 shows
that, for any given Q (including QSPA), SPA airports
oversupply capacity with respect to social-welfare
maximizing airports. Therefore, the sign of (25) is not
determined a priori: we cannot say whether KCW is
below or above KSPA. However, if QSPA(K)≈QW(K),
then KSPANKCW because the first derivative on the right
hand side of Eq. (25) would be close to zero by first-
order condition in the (unrestricted) max SW case, and
Eq. (25) would be negative. Of course, we would also
have KSPANKW. So, if it was true that unregulated profit-
maximizing airports induce small allocative inefficien-
cies, as it has been argued, this would mean that private
capacities would be too large, even in a second best
sense. If QSPA(K)≪QW(K), then the positive terms in
Eq. (25) are more likely to dominate the negative one,
and KCW may be above KSPA. Hence, overall, we can
only say that, probably, the monopoly of private airports
does induce distortions in capacity, which are in addition
to pricing distortions. But, whether this distortion is under
or over-investment strongly depends on the size of the
allocative inefficiencies, something that we can unveil
through numerical examples.

Our fixed-capacities simulations show that the SPA
output restriction is severe, that is QSPA(K)≪QW(K),
because profit-maximizing airport charges are fairly
large and way above marginal cost. For fixed capacity
and N=3, output is diminished by 56% as compared to
the first-best. Hence, given the discussion above, the
actual SPA capacities would be smaller than the first-
best capacities and the second-best capacities, that is
KSPAbKW and KSPAbKCW. In fact, when chosen freely,
SPA capacities range between 31% and 48% of the first-
best capacities, when N goes from 1 to 10. And this,
together with their large prices, makes the SPA traffic to
be between 24% and 44% of the first-best traffic level.20

Now, by construction, profit-maximizing airports
$498.4. Multiplying this by the aircraft size we use in the numerical
examples, lead to a difference of $49,840 dollars per flight. Since
Morrison and Winston did not formally consider the airline market,
their results are valid only for perfect competition in the airline
market. In our case, the difference between SPA and W when N=10
is $43,505 per landing (recall that P is the sum of charges at both
airports), as can be seen in the Appendix. This airport charge is
comparable to theirs, despite the fact that they used a different delay
function (theirs was estimated and homogenous of degree one on Q
and K), and that their airport's demand was actually estimated.



induce dead-weight losses. The numerical examples put
these between 60% and 32% when N goes from 1 to 10.
Yet, for all values of N, the profit-maximizing airports
have smaller delays (from 34% to 5% smaller) which, as
it is now clear, are achieved at the cost of important
reductions in traffic. This may be seen as a warning sign:
congestion has been one of the main drivers of research
in this area and proponents of privatization and/or
deregulation have argued that private airports would
charge efficient congestion prices and would respond to
market incentives for capacity expansion. But measur-
ing the result of such policies only by its effects on
congestion, may lead to the wrong conclusions.

Finally, because dead-weight losses decrease with the
number of airlines, it is interesting too see whether the
SPA would prefer to have a large number or a small
number of airlines servicing the market. To examine
this, we totally differentiate profits with respect to N and
then apply the envelope theorem: dp=dN ¼ pQQSPA

N þP
pKhK

SPA
N þ pN ¼ pN ¼ QSPAPNN0. Hence, as N in-

creases, profits increases: the SPA would prefer to have
many airlines in the market.

3.3. Cost recovery of social welfare maximizing
airports

The comparison between profit-maximizing and
first-best airports is useful as a benchmark, yet airport
budget adequacy is evidently important for policy
making. The issue of budget adequacy was explicitly
considered by Zhang and Zhang (1997) and Oum et al.
(2004), but in models that only looked at the airport
market, with social welfare functions that are valid only
if the airline market is perfectly competitive. On the
other hand, in the airport pricing literature that takes into
account the vertical relation between airports and
airlines, airports profits are usually not considered in
the social welfare function. For example, Brueckner
(2002) and Pels and Verhoef (2004) were interested in
the toll that some airport authority has to charge to make
efficient use of installed capacity, so whether airport
revenues would cover costs or not was not examined.

The analysis in Section 3.1 shows that for N small,
first-best airports would run deficits because it would be
optimal to subsidize the airlines (the market power effect
Table 1
Division of SPA and CLR prices into congestion and market power compon

Type Q K P Congestion

SPA 42.55 81.31 84,249 819
CRL 71.11 81.31 26,867 18,473
dominates the congestion effect). Pels and Verhoef
(2004) argued that when subsidies are optimal but
unfeasible, then the toll should be set to zero, which in
this model is equivalent to airports charging marginal
cost. However, this would not be enough to cover
airports costs here – even if the marginal cost function is
flat – because airports have to pay for the capacity. To
ensure cost recovery, the restriction π≥0 needs to be
considered. This case, which we denote CRL (Cost
Recovery with Linear prices), is characterized by the
following pricing and capacity rules:

PCRL ¼ 2C Vþ 1
1þ k

PW þ k
1þ k

PSPA ; ð26Þ
�QðaS þ bÞ
1þ k

∂DðQ;KhÞ
∂Kh

þ k
1þ k

Q
∂P
∂Kh

¼ r; h ¼ 1; 2

ð27Þ

where λ≥0, the Lagrange multiplier of the restriction,
captures the severity of the constraint by balancing the
charge between the efficient first-best price and the SPA
price. Since the CRL case lies in between the Wand SPA
cases, it is evident that actual prices and capacities will lie
in between as well. The numerical examples show that
CRL capacities would be approximately 40% larger than
SPA capacities, while the CRL price would be less than a
third of the SPA price. The CRL traffic level would then
be approximately 2 times the SPA traffic level, inducing a
total social welfare that is between 74% to 44% larger than
in the SPA case, when N goes from 1 to 10. Importantly,
flight delay levels in the CRL case and the SPA case are
very close, with a 2% maximum difference for different
values of N. These results show that second-best airports
(budget constrained) perform quite better than their profit-
maximizing counterparts, both in terms of level of traffic
and in terms of congestion, showing that the large traffic
contraction that a private-unregulated airport would
induce is not really needed to manage congestion.

We saw before that the SPA price would be too high
because of two effects, overcharge for congestion and
market power. Given what we have just shown, and that
in the literature, some authors have argued that
privatization would be a way of handling increasing
congestion problems, it seems now reasonable to explore
ents

charge (CC) Market power charge (MP) CC/MP

79,430 0.01
4394 4.20



21 This is well-known in the vertical control literature and is
somewhat surprising that almost no author has mentioned it; the only
exception we are aware of is Borenstein (1992). The difference with
the usual two-parts tariff setting is that, here, the upstream company
has a quality (capacity) that matters.
22 This idea of an upstream firm running the cartel for the
downstream firms has been discussed in the vertical control literature
and, particularly, in the input joint-venture case. For example, Shapiro
and Willig (1990) conjecture that input joint-ventures can facilitate
collusion and push a market toward the monopoly outcome. Chen and
Ross (2003) formalize this. If airport provision was seen as an input
joint-venture by the airlines, our results show two things in addition to
what Chen and Ross found. First, that if there are externalities, the
input price is, additionally, used to force their internalization by
downstream competitors. Second, that when marginal costs are not
constant downstream, the outcome is not as in monopoly or a
downstream merger, but as in a cartel.
what percentage of the total SPA price, corresponds to
the congestion overcharge, and how does that compare to
the CLR case. To do this we use an example with N=3,
and divide the CLR and SPA prices, for given optimal
CLR capacities, into its two components (Table 1).

As can be seen, the total congestion charge of SPA
airports is a fairly small part of its total price. Hence, the
congestion overcharge is even smaller. This shows that
profit-maximizing airports would achieve low congestion
levels not because they ‘solve congestion’ per se, but just
because theywould exert market power. A possible lesson
of all this is that if private airports can be considered as
profit-maximizers, they would need to be regulated. The
problem of course would be how to regulate price while
getting the incentives for capacity expansions right. This
question, which may not seem to be new at all (e.g.
Spence, 1975), has in this context the added complexity of
the downstream (airlines) market and seems to be an
urgent area of further research. On the other hand, the
performance of CLR airports indicate that as long as a
non-subsidized public airport maximizes social welfare,
or a non-for profit organization has the incentives to do so,
it is possible to balance budget adequacy, good congestion
management and allocative efficiency.

4. Extensions

In this section, we look at other possible objective
functions airports may have, and which have potentially
important policy implications. We are brief for space
reasons, but some proofs and derivations may be found
in the supplementary appendix.

4.1. Maximization of joint profits: airlines and airports

Consider first the joint maximization of airlines' and
airports' profits (we denote this case by JP). Two
reasons why it is interesting to look at this case are: First,
it has been argued that regulation may be unnecessary –
in that airport charges may be kept down and capacity
investments may be more efficient – if, on one hand,
deeper collaboration between airlines and airports was
allowed and encouraged or, on the other hand, if airlines
had enough countervailing power (Beesley, 1999;
Condie, 2000; Forsyth, 1997, 2003; Starkie, 2001,
2005; Productivity Commission, 2002; Civil Aviation
Authority UK, 2004). The maximization of joint profits
emerges as an obvious first approach to analyze these
assertions. A second reason why it is interesting to look
at joint-profits maximization is two part tariffs. With
two-part tariffs, airports not only charge a per-flight
price but they also charge a fixed-fee to each airline.
Airlines then compete as in Section 2 but with this fee
added to the cost function, which does not affect their
quantity decisions but only whether they operate or not.
The outcome is exactly that of maximization of the sum
of profits but obtained in a non-cooperative fashion.21

Pricing and capacity rules in this joint-profits case are:

P ¼ 2C Vþ ðN � 1Þ
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The second term on the RHS of Eq. (28) shows that in
this case there is no overcharge for congestion yet, the
third term increases the price above the full marginal cost
of each flight. This component is put in place by the
airports to countervail the business-stealing effect, i.e.
that airlines do not take into account profits lost by
competitors when they expand their output. By increas-
ing airlines' marginal cost, the airports induce a total
output contraction that leads to a final outcome identical
to cooperation between competitors in the airline market.
The intuition of this result (which has not been obtained
in the airport pricing literature before), depends on why
the maximization of joint profits was the relevant case.
With two-part tariffs, the airports use the variable price to
destroy competition downstream in order to maximize
the profits of airlines, which are later captured through
the fixed fee. The process is known: the fixed fee allows
the marginal price to act only as an aligner of incentives,
relieving it from the duty of transferring surplus as well.
When the max joint profits case arises because of
collaboration between airlines and airports, what hap-
pens is that airlines ‘capture’ an input provider to run a
cartel for them. The upstream firm is rewarded with a
share of the profits.22 Now, despite the fact that the result



is as if airlines collude, this is not worse for social welfare
than the system of profit-maximizing airports charging
linear prices (SPA) because, here, vertical double
marginalizations are avoided. This shows up in the fact
the both the second and third terms in Eq. (28) are
smaller than their SPA counterparts, and that the capacity
rule (29) is the same as in the social-welfare maximizing
case. Analytical comparisons with previous cases are
summarized in the following proposition.

Proposition 3.

1) For a given K the JP airports will: (i) induce fewer
flights than the W ones (ii) induce more flights than
the SPA ones

2) For a given Q, the JP airports will: (i) have the same
capacity as W airports (ii) have less capacity than
SPA airports.

3) As for actual capacities and quantities, JP airports
will induce fewer flights and will have smaller
capacities than W airports.

4) The JP airports undersupply capacity with respect to
second-best social welfare capacities under JP
pricing (despite having the same capacity rule).23

Together with Proposition 3, the numerical examples
in the Appendix show that the proposal of increased
collaboration between airports and airlines could indeed
be an improvement. JP airports induce higher joint profits
and consumer surplus – and therefore social welfare –
more traffic, higher capacities and smaller airfares than
SPA airports. But, since JP airports manage to induce an
airline cartel, while in the first-base case W airlines,
market power is disabled through subsidies, JP airports'
performance still fall far away from the first-best. Yet, for
small values of N, their performance social-welfare wise
is quite close to CLR airports. This comparison however,
is not necessarily fair because, if airlines were asymmet-
ric, implementing collaboration or two part-tariffs would
be fairly complex. On the other hand, if the symmetry of
airlines can be exploited, then, JP airports should be
compared with airports that are budget constrained, but
that are also allowed to use two part tariffs. In that case the
airports may, in principle, establish negative marginal
23 It has been argued that a capacity rule such as the one JP airports
follow would be efficient because it is identical to the first-best one
so, for a given Q, capacity would be set efficiently (Oum et al.
2004). The question Proposition 3.4 answers is different: do JP
airports induce distortions in capacity that go beyond what is induced
only by pricing? This is analogous to what was done when looking a
second-best capacities under SPA pricing, in Section 3.2.

24 This mechanism has been also suggested for the access problem
to telecommunication networks (Laffont and Tirole, 2000). Since
there is no guarantee that two-part tariffs would enable cost recovery –
because airlines may not make enough money to actually cover the
airports' expenses – the restriction π+Φ≥0 needs to be considered.
,

t

prices while covering their costs through the fixed fee.24

This case, which in the numerical examples in the
Appendix is denoted by CRT (Cost Recovery with Two-
parts tariff), achieves, practically, the same result as the
first-best.

In equilibrium, the change of joint profits with N is
similar to the first-best case (see Eq. (21) and the
discussion therein). When substitutability is weak, joint
profits are maximized with a monopoly airline and hence
airports would have an incentive to let a single airline
dominate. This may be facilitated if airlines and airports
are encouraged to collaborate, as the airports may try to
deal with only one airline and, together, foreclose entry to
other airlines. What is remarkable is that for the SPA case,
the larger the N the better, irrespective of the degree of
substitutability. This was Borenstein's (1992, p.68)
warning: “without competition from other airports, an
operator's profits would probably be maximized by
permitting dominance of the airport by a single carrier and
then extracting the carrier's rents with high facility fees”.
His comment is supported by this result but, here, airport
domination is not necessarily harmful.With the JP pricing
scheme, airline competition is destroyed in any case and
irrespective of N, but a monopoly offers a higher
frequency than the one offered by each airline, thus
reducing schedule delay cost (which was assumed to be
airline dependent).When airports are relatively indifferent
between N=1 or higher, implementation problems may
play a role: it may be easier for them to coordinate actions
with only one airline. With two-part tariffs, however,
airports may still prefer to let a single airline dominate,
even if it is not the most profitable action, because their
pricing becomes simpler: they do not need to estimate the
second and third terms of the pricing rule and they would
need to worry about assessing the right fixed fee for only
one firm. This shows that recognizing the scope for
vertical control in airport pricing is important. Two-part
tariff is the simplest form of vertical control and even this
pricing mechanism has important and rather unexplored
consequences on the airline market.

4.2. Independent profit-maximizing airports

So far, there has been no apparent need to have two
airports in the model. We have them because in many
cases the idea is to privatize airports independently and



not in a system. We explore this situation by looking at
two independent profit-maximizing airports. We take
prices (rather than quantities) as tactical variables and
look first at the open-loop case in which prices and
capacities are chosen simultaneously. We denote this
case IPA. Each airport's program is:

max
Ph;Kh

ph ¼ QhðP1;P2;K1;K2ÞPh � CðQhÞ � Khr;

h ¼ 1; 2: ð30Þ

We look for symmetric equilibrium and calculate the
sum of equilibrium airport charges. We get

P ¼ 2C Vþ 2ðP=ePÞ: ð31Þ

The pricing Eq. (31) clearly shows the horizontal
double marginalization problem that arises in oligopoly
when outputs are complements, which is the case here.
In these cases, competition is harmful for social welfare.
Capacity rules are the same as in SPA (Eq. (24)), but
obviously actual capacities will be different. Hence, IPA
airports induce fewer flights and have smaller capacities
than the SPA. From Propositions 1–3, we have that:

– For given K, QW (K)NQJP (K)NQSPA (K)NQIPA (K).
– For given Q, we will have that, KJP (Q)=KW(Q)b
KSPA(Q)=KIPA(Q).

– For actual capacities and prices,QWNQJP,QSPANQIPA,
KJPbKW and KIPAbKSPA.

In the closed-loop game, where airports first choose
capacities (simultaneously) and then prices, airports
over-invest in capacity with respect to the open loop.
Qualitatively (a full derivation is in the supplementary
appendix), what happens is that, in the three-stage
game, investment in capacity makes an airport tough: it
leads to an own price increase, which hurts the other
airport. Since in addition prices are strategic substitutes,
increasing capacity increases own profits. Using the
terminology of Fudenberg and Tirole (1984), airports
over-invest in capacity following top-dog strategies.
This leads to higher prices than in the open loop.

Finally, if the independent profit-maximizing airports
collaborate with the airlines or each charges two-parts
tariffs (case denoted by IJP), the horizontal double
marginalization also arises (details in the supplementary
appendix): the airports jointly overcharge for congestion
and the business stealing effect. The numerical examples
in the Appendix show that the horizontal double margin-
alization is quite harmful for social welfare, particularly as
N grows.
5. Summary and conclusions

Privatization of airports has been argued for on the
grounds that private airports would implement more
efficient congestion pricing schemes and would have
better incentives to invest in capacity. Privatized airports
have been subject to economic regulation though, out of
the concern they would exert market power. But it has
been argued that regulation may be unnecessary because
a private-unregulated airport would not induce large
allocative inefficiencies, since price elasticities are low,
and because potential collaboration between airlines and
airports – or, alternatively, airlines countervailing
power – would put downward pressure on market
power. Because most of the literature on airport
privatization/deregulation has been essentially descrip-
tive and empirical analysis are unfeasible because of
absence of real data, the aim of this paper was to build an
analytical model where the potential impact of dereg-
ulation on pricing practices and capacity decisions of
airports could be examined. We use a model of vertical
relations between two congestible airports and an airline
oligopoly, to compare the performances of airports
under different objective functions. In this model, we
explicitly recognize that the demand for airports services
is a derived demand. We prove analytically that using
the airports demand to obtain a measure of consumer
surplus is incorrect if airline competition is not perfect.
This is an important result because, on one hand, several
papers have calculated consumer surplus by integration
of the airports demand and, on the other hand, because it
shows that optimal pricing policies require massive
amounts of information.

We find that unregulated profit-maximizing airports
would overcharge for the congestion externality. Analyt-
ical and numerical results showed that, when compared to
the first best, these airports would induce large allocative
inefficiencies and dead-weight losses. They would also
restrict capacity investments but, overall, would induce
fewer delays. This triggers a warning: the effects of
privatization/deregulation should not be assessed only in
terms of the effects on congestion. Next, because first-best
policies imply losses, we also compared the performance
of profit-maximizing airports against second-best air-
ports, i.e. welfare maximization subject to a budget
constraint. We found that these airports would perform
quite well, achieving congestion levels similar to a
private-unregulated airport, but without inducing such
large traffic contraction; this puts a question mark on the
desirability of deregulation of private airports. We also
found that increased cooperation between airlines and
airports induce some improvements, as vertical double



marginalizations – such as the congestion overcharge –
are avoided. Yet the outcome it is still closer to the profit-
maximizing case than to the first-best because the airport
adopts a pricing strategy that leads to a downstream airline
cartel.

It was also shown that under some objective functions
it may be better, social welfare wise, to have a single
airline dominating the airports. This case arises when
airports maximize the sum of their profits and those of the
airlines, or when they maximize social welfare and
schedule delay costs effects are strong and airline
differentiation is weak. However, it would be bold to
extract from here unconditional support for airport
domination by a single airline. The crux of the matter is
that a single airline is optimal only when the pricing
practice of the airport renders the number of airlines
irrelevant for competition. In the cases we saw, this
happened either in the form of elimination of market
power through subsidies, or in the form of cartel behavior.
But in the more likely case in which, despite the airport
pricing, competition is increased with the number of
airlines – as in the profit-maximizing case – a large
number of firms is still preferable.

We close by discussing what we think are important
areas of further research. First, it seems important to
examine what would be optimal regulation schemes for
profit-maximizing airports. What we need are mechan-
isms to regulate price and capacity of a congestible
upstream facility facing an oligopolistic downstream
(carriers') market, a problem which appears complex to
solve. Second, it seems urgent to look for practical
objective functions for budget-constraint airports, with the
specific feature of less information requirements. Third,
most of the papers on airport pricing – if not all – have
assumed some form of fixed-proportion assumptions, in
which aircraft size is fixed rather than being chosen by the
airlines. However it seems obvious that the airports'
pricing schemes will influence aircraft size decisions,
which will have effects both on congestion levels and
schedule delay costs. A model that considers aircraft size
as decision variable would be an important contribution to
the airport pricing literature. Finally, this and other papers
exploit symmetry and Cournot behavior at the airline
level, yet in a number of airports this is not the case; there
Table A.1
Parameter values for the numerical analysis

Demand

α 40 A 2000
β 3000 B 0.15
γ 4 E 0.13
is one large airline competing with a fringe of smaller
airlines. These cases may be better analyzed with
Stackelberg competition or competitive fringe models.
Important developments along these lines are already on
their way (seeMorrison andWinston, in press; Daniel and
Harback, in press; Brueckner and Van Dender, 2007).
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Appendix A

• Proof of proposition 1. From Eq. (18), we can write
SWðQ;Kh;NÞ ¼ pþ ðBþ ðN � 1ÞEÞS2Q2

2N

þ QS A� QS

N
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Q
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Differentiate this with respect to Q and evaluate the

result at QSPA(K), the optimal SPA quantity for given K.
This makes ∂π /∂Q nil. Using Eq. (7) to replace AS � c�
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, we get: ∂SW
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, we finally get ∂SW

∂Q jQSPAðKÞ ¼
Q2

N ðaS þ bÞPh D
h
QQ þ S2Qð3BþðN�1ÞEÞ

N jQSPAðKÞN0, which shows
that the SPA induces fewer flights. The equivalence
follows from the decreasing monotonicity of P with
respect to Q. □

• Proof of proposition 2. Eq. (A.1) and the envelope

theorem leads to ∂SW =∂K1jKSPAðQÞ ¼ �QðaS þ bÞ
DK1 � QPK1 . The first term is positive while the second
is negative. Replacing ∂P

∂K1
¼ �ðaS þ bÞ Q

N D
1
QK1

þ D1
K1

� 	
,

one finally obtains that ∂SW =∂K1jKSPAðQÞ ¼ Q2ðaS þ bÞ
DQK1=Nb0. □
Airlines Airports

S 100 r 10,000
N varies C′ 2000
c 36,000



• Numerical analyses
There are three reasons why they are needed. First,
dismantlement of regulation has not been imple-
mented at a large scale and, hence, there is no real
data to conduct empirical analyses. Second, in this
model comparative statics and analytical compar-
isons are not conclusive in all cases. And third, even
when analytical results are obtainable, they are
necessarily qualitative. We use the parameter values
in Table A.1, and solve numerically the fixed-point
system for P and Q, using the first order conditions of
each case, e.g. Eqs. (18) and (19) for the maximization
of social welfare case. All other parameters are then
obtained by simple substitution.

While certainly real aviation cases are more complex
that what is portrayed in this paper, we did try to be as
reasonable as possible with the parameterization, by
drawing data and values from other studies: For α,
Table A.2
Results of numerical analysis

N Type Q K P D t

1 W 92.18 100.18 −134,263 0.115 608
SPA 21.92 31.21 93,629 0.076 1665
CRL 42.92 53.71 29,024 0.074 1350
JP 45.85 51.48 4000 0.158 1300
CRT 91.09 99.05 −131,008 0.116 624
IPA 11.62 17.78 123,352 0.106 1817
IJP 45.85 51.48 4000 0.158 1300

3 W 101.23 109.62 −33,201 0.110 608
SPA 36.10 45.52 93,533 0.084 1500
CRL 71.11 81.31 26,867 0.086 1021
JP 50.36 56.27 61,129 0.152 1299
CRT 100.08 108.42 −31,065 0.111 623
IPA 19.80 26.23 123,174 0.117 1719
IJP 34.34 39.21 90,607 0.180 1516

10 W 104.83 113.37 6379 0.108 607
SPA 46.41 54.67 93,389 0.103 1378
CRL 91.84 100.71 25,934 0.103 779
JP 52.16 58.17 83,218 0.149 1299
CRT 103.64 112.13 8,121 0.109 623
IPA 25.87 31.67 122,926 0.141 1646
IJP 31.16 35.79 113,528 0.188 1572

Fixed capacity (at the socially optimal level)
3 W 101.23 109.62 −33,200.87 0.1100 607.66

SPA 42.76 109.62 84,054.67 0.0058 1,414.86
CRL 68.31 109.62 36,095.95 0.0151 1,065.09
JP 58.37 109.62 54,794.35 0.0104 1,201.25
CRT 100.05 109.62 −29,206.49 0.0954 624.85
IPA 28.53 109.62 110,686.70 0.0032 1,609.47
IJP 44.35 109.62 81,072.63 0.0062 1,393.08

W: system of social welfare-maximizing airports. SPA: system of profit-maxi
pricing). JP:maximization of joint profits: airports and airlines (or two-part tarif
IPA: independent profit-maximizing airports. IJP: independent airportsmaximi
Q: traffic. K: capacity. P: airport charges. D: delay. t: air ticket. PS: passenger
Morrison andWinston (1989 , p. 90) empirically found a
value of $45.55 an hour in 1988 dollars; for γ, they found
a value of $2.98 an hour in 1983 dollars (p. 66). For β,
Morrison (1987, p. 51 footnote 20), finds that the hourly
extra cost for an aircraft due to delays is approximately
$1700 (resulting from 3484-18*100) in 1980 dollars.
For S, recall that it reflects the product between aircraft
size and load factor. In North America, the average plane
size in 2000 was 159 (see Swan, 2002, Table 2); consi-
dering in addition an average load factor of 65% (see
Oum and Yu, 1997, p. 33) we obtain a value for S of
103.35. Regarding airlines' operational per flight cost c,
Brander and Zhang (1990) proposed the following
formula for the marginal cost per passenger in a direct
connection: cpm(D /AFL)−θD; where cpm is the cost per
passenger-mile, D is the origin-destination distance, AFL
is the average flight length of the airline and θ is the cost
sensitivity to distance. The following were the average
values for American and United Airlines in the period
PS Φ π π+Φ SW

6,372,189 14,599,332 −14,748,019 −148,686 100.00
360,368 798,224 1,340,397 2,138,621 40.15

1,381,798 2,985,054 0 2,985,054 70.17
1,576,519 4,080,700 −1,029,579 3,051,121 74.36
6,222,620 14,278,419 −14,278,419 0 99.99
101,304 252,124 822,021 1,283,695 22.25

1,576,519 4,080,700 −1,029,579 3,051,121 74.36
7,001,866 5,800,933 −5,958,055 −157,122 100.00
890,628 719,011 2,321,856 3,040,867 57.44

3,455,375 2,754,159 0 2,754,159 90.72
1,733,133 1,606,429 1,751,761 3,358,190 74.38
6,843,847 5,677,648 −5,677,648 0 99.99
267,820 238,905 1,518,049 2,073,541 34.21
805,821 820,940 2,189,990 3,010,930 55.76

7,252,401 1,855,122 −2,017,987 −162,865 100.00
1,421,451 363,240 3,055,011 3,418,251 68.27
5,566,250 1,410,818 0 1,410,818 98.41
1,795,457 509,499 2,968,472 3,477,971 74.38
7,088,606 1,815,514 −1,815,514 0 99.99
441,640 124,213 2,054,761 2,567,223 42.44
640,840 205,027 2,697,114 2,902,142 49.97

7,001,866 5,800,933 −5,958,055 −157,122 100.00
1,249,429 914,925 1,230,779 2,145,705 49.60
3,188,313 2,344,470 0 2,344,470 80.83
2,328,119 1,708,355 772,470 2,480,825 70.26
6,840,677 5,514,806 −5,514,806 0 99.94
556,042 406,238 850,949 1,257,186 26.49

1,344,236 984,543 1,226,018 2,210,560 51.93

mizing airports. CRL: welfare maximization with cost recovery (linear
f). CRT:welfaremaximizationwith cost recovery two-part tariff pricing.
zing own profit plus airlines' profits (or each airport with two-part tariff).
surplus. Φ: airlines profits. π: airports profits. SW: social welfare.



1981–1988 (see Oum et al., 1993): cpm=$0.12/pax/mile,
AFL=775 miles and θ=−0.43. If we use AFL=800,
cpm=$0.20 and D=1000 (e.g. Chicago–Austin), and
multiply the result by 2S to reflect the operational cost of a
return flight, we obtain a value for c of $36,340. For the
schedule delay cost, it is assumed that Assumptions (a) and
(b) in Section 2 hold, so that the schedule delay cost
function is only defined by γ and η; we impose η equal to
one.25 We consider a constant airport operational marginal
cost, implying that economies of scale (if any) arise from
the presence of fixed costs. We do not define a value for
these so that airports' profits in Table A.2 are net of the
fixed costs.

Table A.2 summarizes some of the results obtained. It
has both, variable- and fixed-capacity cases. When
capacity is fixed, it was set at the socially optimal level
but choosing it otherwise does not change the qualitative
conclusions. Second order conditions hold in all cases and
social welfare is presented in terms of percentages rather
than dollars. When airports are independent (IPA and IJP
cases), results are for open-loop games. Insights do not
qualitatively vary with changes in the value of the parame-
ters, although some numbers do. Specifically, different
values for the demand parameters (A, B and E) and for r
and for C′ were tried, since for these parameters we had
less information. It was found that the impact of changes in
r and C′ are quite small, while demand parameters impact
on the levels but not on the order of the results. For
example, taking A=5000 and B=1, as in Pels and Verhoef
(2004), and then taking E=0.8 and N=3, SPA traffic
decreases from 36 to 18 and SPA capacity decreases from
45 to 24, whileW traffic decreases from 101 to 50 andW
capacity decreases from 110 to 56.

Appendix B. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at doi:10.1016/j.
ijindorg.2007.09.002.
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