
 

 

  
Abstract—Results of Chilean wine classification based on the 

aroma information provided by an electronic nose are reported in this 
paper. The classification scheme consists of two parts; in the first 
stage, Principal Component Analysis is used as a feature extraction 
method to reduce the dimensionality of the original information, 
while in the second stage, Radial Basis Functions Neural Networks is 
used as pattern recognition technique to perform the classification.  
This study is aimed to classify wine samples from different years, 
valleys and vineyards of Chile, into one of the classes Cabernet 
Sauvignon, Merlot or Carménère. 
 

Keywords—Feature extraction techniques, Pattern recognition 
techniques, Principal component analysis, Radial basis functions 
neural networks, Wine classification 

I. INTRODUCTION 
URING the last decade several authors have reported 
results concerning wine classification using information 
supplied by an electronic nose. 

In [1] an aromatic classification of three wines of the same 
variety but different years (1995, 1996 and 1997) is presented. 
The input data for classification is obtained from an electronic 
nose [2] based on six sensors of conducting polymers. For 
classification purposes a Multilayer Perceptron (MLP) trained 
with the backpropagation algorithm (BP) [3] and a Time 
Delay Neural Networks (TDNN) trained with the Levenberg-
Marquadt algorithm [3] were used.  

In [4] wine classification is done using a NN with data 
provided by an electronic nose built by the authors using 
sensors commercially available. These sensors are of tin oxide 
and use the principle of resistance variations due to the 
adsorption of gas molecules on its surface. 

Recently, in [5] an electronic nose based on metal oxide 
semiconductor thin-film sensors has been used to characterize 
and classify four types of Spanish red wines of the same 
variety of grapes. Principal component analysis (PCA) and 
probabilistic neuronal network (PNN) were used to classify 
the wines. 
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In this paper a wine classification methodology based on a 
neural networks technique is proposed. We use as input data, 
gas chromatograms of Volatile Organic Components (VOC) 
of Chilean red wines samples belonging to the varieties 
Cabernet Sauvignon, Merlot and Carménère. The gas 
chromatograms are provided by an electronic nose Fast GC 
Analyzer 7100 supplied by Electronic Sensor Technology 
[13]. The sensor used by the instrument to detect the VOC is 
of the type surface acoustic wave (SAW). 

The first stage of the proposed methodology is concerned 
with the dimension reduction of the patterns preserving the 
original information from classification viewpoint. This is 
done using the feature extraction method Principal 
Component Analysis (PCA) [6]. Once the dimension of the 
input data has been reduced the information is processed in a 
classification stage based on a radial basis functions neural 
networks (RBFNN) [6, 7] technique. The general scheme of 
the proposed methodology is shown in Figure 1. 

In Section II a brief description of the feature extraction and 
the classification techniques used in this study are presented.  
Section III is devoted to explain the methodology used in this 
work. The results obtained together with a discussion are 
presented in Section IV.  Finally some conclusions are drawn 
in Section V.    
 
 
 
 
 
 
Fig. 1 Block diagram of the methodology used in this work for wine 

classification 

II. BRIEF DESCRIPTION OF THE FEATURE EXTRACTION AND 
CLASSIFICATION TECHNIQUES 

In this section we present a brief description of the feature 
extraction and classification (pattern recognition) techniques 
used in this study. The description of each technique is made 
only for completeness and for a more detailed description the 
reader is referred to the cited references.   

A. Principal Components Analysis (PCA) 
Principal Components Analysis (PCA) technique points to 

transform the original feature space into one in which the data 
is not correlated. This new space is obtained by projecting the 
original data onto a set of orthogonal axis in which the 
variance of the input data is maximized. This technique is 
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based on  the following theorem of the principal component 
analysis [6]. 

 
Fundamental Theorem for PCA 
Given a set of variables  xi 

m∈ℜ for i=1,2,...n  with a non 

singular covariance matrix m m
x

×Σ ∈ℜ , it is always possible 

to define a subset of non correlated variables yi 
p

iy ∈ℜ  for 
i=1,2,…n, by means of a linear transformation W, 
corresponding to a rigid rotation, whose  columns are  eigen-
vectors of xΣ . The covariance matrix of the new set of 

variables p p
y

×Σ ∈ℜ , is diagonal and contains the eigen-

values iλ  for i = 1,2 … of xΣ  associated to the eigen-vectors 
which are columns of W. 

Form the previous theorem the eigen-values iλ can be seen 
as the variance of the patterns in the transformed space, which 
are related to the range of the patterns of each axis of this 
space. On the other hand, the eigen-vectors iφ  associated to 

the eigen-values  λi, determine the direction of the axes of 
maximum variance. Thus selecting a subset of eigen-vectors a 
rotation will be performed that align the transformed axes  
with the direction of the maximum variance of data. The 
dimension reduction will be determined by the size of the set 
of eigen-vectors chosen. 

In Section III E a detailed explanation is presented, as to 
how the PCA methodology is used in this particular case to 
reduce the dimension of the input data to the classifier.  

B. Radial-Basis Functions Neural Networks (RBFNN) 
 Pattern recognition techniques based on neural networks 

have shown a great behavior for a wide range of applications 
[6, 8] and they are very attractive since a minimum knowledge 
on the patterns is required. The radial-basis functions neural 
networks (RBFNN) constitute the main alternative to the 
multi-layer perceptron (MLP) for data interpolation and 
pattern classification problems. They are characterized by 
using functions with symmetry around a center c in the n-
dimensional space of the input patterns instead of using a 
linear activation function. 

Each neuron in a RBFNN corresponds to a region in the n 
dimensional input space with center c. The activation level of 
a neuron in a RBFNN to an input x is a function of the 
Euclidean distance between  x and the center  c  of the neuron. 
The output of the neuron in a RBFNN is given by the general 
equation   

∑
=

=
M

j
jkjk xwxy

0

)()( φ                                   (1) 

where (·)jφ are the RBF  and kjw are the weights in the 

output layer (See Figure 3). The basis functions ( )j xφ  can be 

interpreted as the a posteriori probabilities ( / )p j x  

indicating the presence of certain characteristics in the input 
space. Similarly, the weights kjw  can be interpreted as the a 

posteriori probabilities ( / )kp C j  of the members of a class 
given certain input characteristics. That is the reason why it is 
natural to apply RBFNN to pattern classification problems [8].  
The basic unit of a RBFNN is shown in Figure 2. 
 
 
 
 
 
 
 
 

 
Fig. 2 Mathematical model of a neuron in a RBFNN 

 
 In this study basis functions )(xφ  for one neuron is of 

Gaussian type 
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where  c determines the center and  parameter σ determine the 
size of the receptive field . σ is also known as spread and 
defines the selectivity of the neuron as 

1selectivity
σ

=                                   (3) 

A small σ implies a high selectivity whereas a large value 
of σ makes the neuron less selective. 

A RBFNN is composed of two layers one containing the 
RBF and a linear output layer summing the multiplication of 
the outputs of the RBF with the vector of weights , as shown 
in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Two layer architecture of a RBFNN 
 
Then it is necessary to define the spread σ and the centers c 

of the neurons forming the receptive fields of the network. 
The usual way is to set the center c at each one of the training 
patterns of the problem. Thus, if we have p training patterns 
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the network has p neurons centered at each pattern. This 
strategy guarantee zero error in the training set and the 
freedom to choose σ that generates a controlled spatial 
overlapping to guarantee a good generalization. Depending on 
the computational implementation utilized, σ can be equal for 
all neurons or have different values for each unit. 

The next step is to choose the weight vector w mℜ∈ . To 
this extent the RBFNN is evaluated at the p training patterns 

 

)( jiji xx −= φφ      mji ...1. =∀                    (4) 

 
where || || corresponds to the Euclidean norm between two 
vectors. 

We define matrix Φ  composed by all the jiφ , as the 

interpolation Matrix of the problem [9], from which the 
weights can be obtained through the relationship  

Tw =Φ                                      (5) 

where w mℜ∈  is the weight vector  and  T mℜ∈  is the 
objective vector  (target) containing the desired outputs. 

Then if Φ  is nonsingular the weights are obtained as  
Tw 1−Φ=                                (6) 

The  Michelli`s Theorem [9] guarantee that if all vectors xi 
used to compute Φ  are all different, then Φ  will be 
nonsingular. 

III. EXPERIMENTAL SETUP 

A. Electronic Nose 
The electronic nose used in the study is the Fast GC 

Analyzer 7100 built by Electronic Sensor Technology [13] 
with surface acoustic wave (SAW) sensor. The most 
important operating parameters for the electronic nose are: 

 
Sensor     : Temperature of the SAW detector in ºC 
Column    : Temperature of the column GC in ºC 
Valve     : Temperature of the six position valve in ºC 
Inlet      : Temperature of the input gas in ºC 
Trap      : Temperature of the trap in ºC 
Ramp     : Value of the temperature ramp in ºC/sec 
Acquisition Time: Data acquisition time in sec 
Sampling Period : Rate at which the information is registered 

in sec  
  
This set of parameters defines the method under which 

operates the instrument. After a series of tests and experiments 
it was determined that the best values of the parameters for 
our study are those shown in Table I. These values were set on 
the instrument to perform all the analyses of the wine samples 
to generate the databases used in this study.  

Commercial Chilean wines samples, belonging to the 
varieties Cabernet Sauvignon, Merlot and Carménère were 
analyzed.  Data was obtained from 40 [ml] wine samples that 
were introduced into a 60 [ml] vials with septa caps that 

avoided the contact with oxygen from the environment. The 
measurements were done immediately after the bottle was 
opened, maintaining the room temperature at 20 ºC. Figure 4 
shows a photograph of the electronic nose during the 
measurement of a wine sample. 
 

TABLE I 
OPERATION PARAMETERS FOR THE ELECTRONIC NOSE 

 

 
 

Fig. 4 Electronic nose model Fast GC Analyzer 7100 from Electronic 
Sensor Technology  

B. Database 
The database used in the study is formed by 100 

commercial samples of Chilean wines of the type Cabernet 
Sauvignon, Merlot and Carménère. These wines belong to the 
vintages 1997-2003 and come from different valleys of the 
central part of Chile. The distribution of the samples is shown 
in Table II.  

 
TABLE II 

DISTRIBUTION OF WINE SAMPLES 
Class Type Number Percentage 

1 Cabernet Sauvignon 36 36% 
2 Merlot 44 44% 
3 Carménère 20 20% 

 Total 100 100 
 
The information from each sample was obtained setting the 

parameters shown in Table I for the instrument. 10 
measurements were carried out for each one of the 100 
samples obtaining in total 1000 profiles (chromatograms). 

Parameter Value Units 
Sensor 60 ºC 
Column 40 ºC 
Valve 140 ºC 
Inlet 175 ºC 
Trap 300 ºC 
Ramp 10 ºC/s 
Acquisition time 20 s 
Sampling rate 0,01 s 



 

 

C. Data Pre-Processing 
The chromatograms obtained from the electronic nose are 

curves of 12 sec. of duration with a sampling period of 0.02 
sec., containing 600 points in total. Figure 5 shows a typical 
profile corresponding to a Cabernet Sauvignon sample 
properly normalized. 

Normalization of each chromatogram was performed  to 
normalize the signal amplitudes in the interval [-1,1] and in 
this way minimize differences coming from sample 
temperature, column lifetime, and sensor load. To this extent 
the maximum amplitude was used to normalize the signal 
according to the following relationship: 

max

'

x
x

x i
i =                                      (7) 

where xmax is the maximum amplitude of all profiles.  
  

 
Fig. 5 Typical normalized chromatogram for a Cabernet 

Sauvignon (600 points and 12 s of duration) 

D. Methodology 
Profiles classification was done by using the classification 

technique Radial Basis Functions Neural Networks (RBFNN) 
described in Section II B. Because of the high data 
dimensionality, previous to the classification it was necessary 
to perform a feature extraction procedure of the original data 
using the Principal Component Analysis (PCA) technique 
described in Section II A. 

The total database of 1000 profiles (360 Cabernet 
Sauvignon or Class 1, 440 Merlot or Class 2 and 200 
Carménère or Class 3) was divided in two sets; one for 
training-validation (containing the 90 % of the samples) and 
other for Test (containing the 10% of the samples). The 
sample distribution is the following: 

 
Training-Validation Set: 900 profiles corresponding to 90 
wine samples, 330 profiles Cabernet Sauvignon (33 samples), 
390 profiles Merlot (39 samples), and 180 profiles Carménère 
(18 samples). 
Test Set: 100 profiles corresponding to 10 wine samples, 30 

profiles Cabernet Sauvignon (3 samples), 50 profiles Merlot 
(5 samples), and 20 profiles Carménère (2 samples). 

 
The samples for each set were randomly selected and based 

on the proportion of the samples of different kind contained in 
the original database. 

As a measure of the behavior and to obtain the optimal 
values of the parameters for each method, Cross-Validation 
was used [8, 10, 11]. The database was divided into n sets, 
using n-1 for training and the reminder for validation. The 
process is repeated n times so that all n sets are used once for 
validation. 

In the training-validation process it is used cross-validation 
with the aim to measure the behavior and to tune the optimal 
parameters for each classification feature extraction method. 
Then each classifier is evaluated with the Test set, using the 
whole training-validation set and the optimal parameters 
determined by cross validation. It should be pointed out  that 
the Test Set is never used in the training stage and therefore  it 
is completely unknown to the classifier what is a good 
performance measurement of each method. 

Since there are 10 profiles for each wine sample, the size of 
cross validation sets is 10 and then the training-validation base 
will be divided into 90 sub-sets of 10 elements, each one 
representing one wine sample. Thus, for each method the 
training is done using 890 profiles and one simulation for 
validation having 10 elements. The process is repeated 90 
times so that each subset of 10 elements is used once to 
validate the method. The measure of the behavior will be the 
average and the standard deviation of the percentage of 
correct classification in validation 

Finally, once cross validation is done and the optimal 
parameters are found for each method, one simulation is 
carried out with the Test Set to evaluate the performance of 
each method when unknown samples are presented. The 
behavior will be measured again in terms of the average and 
the standard deviation of the percentage of correct 
classification in the test set. 

E. Feature Extraction using Principal Components 
Analysis (PCA) 
The central idea of the PCA is to transform the input space 

of the variables P onto a space P’ where the data is not 
correlated i.e. the variance of the data is maximum. This is 
achieved by computing the eigen-values and the eigen-vectors 
of the of covariance matrix of the initial data and selecting 
those eigenvectors that have the largest eigen-values. These 
components represent the axes of the new transformed space. 
By projecting the initial data onto these axes the largest data 
variance is obtained. 

The profiles can be seen as characteristic vectors belonging 
to 600ℜ  and the database as a matrix of 600 x 1000, where 
the 1000 columns correspond to each profile and the 600 rows 
to the points that are going to be reduced. 

Considering the training-validation set we have a matrix of 
600 x 900 (900 profiles (columns) of 600 points (rows)), then 
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the covariance matrix of the  training-validation set is 
T

X XX *=Σ                              (8) 

with X the  training-validation matrix and XΣ  the covariance 
matrix of  X of 600 x 600. Then computing the eigen-values 
and the eigenvectors of X and selecting the eigen-vectors with 
the largest eigen-values the principal components 
transformation matrix will be determined. One way of 
choosing the eigen-values (and the eigenvectors associated) is 
considering the contribution to the global variance [8, 12] of 
each eigen-value, iγ ,  as:  

1

/
N

i i j
j

γ λ λ
=

= ∑                                          (9) 

being N =600 the total number of eigen-values of the 
covariance matrix X. 

Fig. 6 Detail of the last 25 eigen-values of the training-validation 
covariance matrix 

 
TABLE III 

CLASSIFICATION RESULTS USING PCA AND RBFNN, OBTAINED IN 
VALIDATION AND TEST SETS, EMPLOYING 20 PRINCIPAL 

COMPONENTS 

iγ  associates to each eigen-value (and each eigen-vector or 
principal component) a factor of relative importance 
considering its contribution to the total variance.  

 

When computing the eigen-values of the covariance matrix 
X, they are ordered in ascending order [11,19], thus the last 
components are those contributing the most to the information 
(in terms of the covariance) whereas the first can be 
considered as noise and therefore disregarded. In Figure 6 are 
plotted the last 25 eigen-values (of a total of 600) of the 
training-validation covariance matrix of  600 x 600. 

Figure 6 shows only the last 25 eigen-values of the values 
training-validation covariance matrix. It is clearly illustrated 
that practically all the information in terms of the covariance 
are kept in the last 25 eigen-values.. When computing the 
contribution of the last 20 eigen-values to the global 
covariance using (9), the contribution to the total information 
is 99.87% and the last 10 eigen-values contribute 99.46%. 
Therefore it was  chosen the matrix transformation composed 
by the 20 eigen-vectors associated to the last 20 eigen-values, 
generating a 600x20 matrix (the 600 rows represent the initial 
characteristics or points and the 20 columns the eigen-vectors 
or new characteristics). Multiplying each original profile by 
the transformation matrix a low dimension profile is obtained 
(dimension 20) which is used in the classification procedure. 

IV. RESULTS 
As explained in Section II B, in a RBFNN is necessary to 

define the centers of the neurons and the parameters σ known 
as spread, which define the selectivity of the neuron. For all 
simulations the neurons were located at each training pattern 
[28], thus when cross validation is carried out the networks 
has 890 neurons corresponding to each profile. Recall that the 
NN has two layers; the first has radial basis activation 
functions and the second linear activation functions. 

Simulations were carried out making cross validation with 
the training–validation set for different values of the 
selectivity σ, and computing the performance. The same was 
done for the test set.  

For this method 20 principal components containing the 
99.86% of the total information of the training-validation data 
were considered. That is to say the data dimension is reduced 
from 600 to only 20 points. 

Different values of the selectivity were considered in the 
interval [2-9, 10]. For higher values of the selectivity the 
results were poor in both validation and test sets. The results 
obtained are presented in Table III. 

Classification results given in Table III show that, the best 
case is 76% of correct classification using the test set. 

The simulations were carried out using Matlab 6.0, the 
Neural Network Toolbox and the Signal Processing Toolbox.  

The average processing time for each simulation are shown 
in Table IV as a function of the number of principal 
components chosen. The average is computed over three runs 
performed for each simulation.  

 
 
 
 

Selectivity 

% Correct 
Classification  
in validation 

Standard 
Deviation 

% Correct 
Classification   
in test 

10 39.8 0.4913 30 
1 36.6 0,4845 50 
0,1 60.8 0,4402 52 
0,02 35.3 0,3557 63 
0,01 53.5 0,3846 67 
0,0078125 61.3 0,3641 65 
0,00390625 66.1 0,3853 76 
0,00195313 71.4 0,3776 60 
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TABLE IV 

AVERAGE PROCESSING TIME USED IN THE SIMULATION OF THE 
METHOD PCA-RBFNN FOR DIFFERENT PATTERN SIZES 

 
 
 
 
 
 
 
 
 
 
The results shown in Table III were obtained with the 

aroma information of 100 wines coming from a database with 
an uneven class distribution.  Increasing the aroma 
information, this is, having a larger database and improving 
the distribution of the classes, the percentage in correct 
classification in test set might improve. 

For future studies it is suggested to analyze other feature 
extraction techniques like Wavelets and other classification 
techniques as Support Vector Machines (SVM). Currently we 
are working in incorporating more wine samples to the 
original database to complete 200 samples. The idea is to 
repeat this study with this new database these new techniques. 

The results obtained in this study are promising and the first 
on Chilean wines using gas chromatograms supplied by an 
electronic nose. They provide the basis for future work on 
classification of Chilean wines. Other work developed by the 
authors on this subject can be found in [14, 15, 16].  

V. CONCLUSIONS 
The classification of red Chilean wines of the type Cabernet 

Sauvignon, Merlot and Carménère, from different vintages 
and different valleys, was successfully performed based on the 
aroma information (Volatile Organic Compounds 
chromatograms) supplied by an electronic nose.  

Principal Component Analysis was used as feature 
extraction and Radial Basis Function Neural Networks as 
classification technique. The best parameters for each method 
were obtained from the cross validation process with the 
training-validation set.  

The RBFNN showed a discrete performance in the training-
validation set with classification rates about 71% (for 
σ=0.00195) and a 76% in the test set (for σ=0.00391). 

Finally, it is important to point out that the results of this 
study are promising and corroborate that in spite of the 
reduced dimension of the database it is indeed possible to 
classify wines according to the varieties using aroma 
information coming from an electronic nose. It should be 
highlighted that once the system is trained, a measurement to 
classify a sample takes a few minutes making of this system 
attractive for quality control process: Usually a conventional 
technique for the same purpose takes days and requires 
specialized laboratories.   
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Number of 
Principal 
Components       t[s] 

Standard 
Deviation 

5 891.82 4.517 
10 905.64 4.498 
15 968.37 4.209 
20 998.22 4.008 




