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a b s t r a c t

By analytical methods we study the large time properties of the solution of a simple
one-dimensional model of stochastic Stokes’ drift. Semi-explicit formulae allow us to
characterize the behaviour of the solutions and compute global quantities such as the
asymptotic speed of the center of mass or the effective diffusion coefficient. Using an
equivalent tilted ratchet model, we observe that the speed of the center of mass converges
exponentially to its limiting value. A diffuse, oscillating front attached to the center
of mass appears. The description of the front is given using an asymptotic expansion.
The asymptotic solution attracts all solutions at an algebraic rate which is determined
by the effective diffusion coefficient. The proof relies on an entropy estimate based on
homogenized logarithmic Sobolev inequalities. In the travelling frame, the macroscopic
profile obeys to an isotropic diffusion. Compared with the original diffusion, diffusion is
enhanced or reduced, depending on the regime. At least in the limit cases, the rate of
convergence to the effective profile is always decreased. All these considerations allow us
to define a notion of efficiency for coherent transport, characterized by a dimensionless
number, which is illustrated on two simple examples of travelling potentials with a
sinusoidal shape in the first case, and a sawtooth shape in the second case.

1. Introduction

The stochastic Stokes’ drift, see Ref. [1], is a simplemodel describing the diffusion of particles in the presence of a periodic,
wave-like potential. Particles suspended in a liquid and subject to diffusion experience a net drift due to the wave travelling
through the liquid. It can also be seen as a simple model of Brownian ratchet. When there is no diffusion, the net drift of
particles is proportional to ω when ω is small, but decays to 0 when ω is large. In the presence of a diffusion the situation is
different since, due to the Brownian motion, some particles will move in the direction opposite to the wave train. Our goal
is to study the net drift, or to be precise, the speed of the center of mass, the formation of the front and its diffusion, when
there are no spatial limitation for the solution, and to measure the efficiency in terms of coherent transport.

From the mathematical point of view, we shall primarily refer to Ref. [2] and references therein. In Ref. [2] we studied
the stochastic Stokes’ drift from a theoretical point of view. This paper is intended to give amore descriptive approach of the
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diffusive front bymethods of partial differential equations. Questions related to the stochastic Stokes’ drift have been studied
before in the context of diffusive turbulent flows, see Refs. [3,4]. Also see Ref. [5] for drift velocity related issues. The effective
diffusion coefficient is determined by the travelling potential. Similar effects are known in the context of homogenization
theory, see, e.g., Refs. [5,6]. The stochastic Stokes’ drift has the additional difficulty that it is an evolution problem in which
the small parameter and the time are not independent.Wewill provide some asymptotic expansionswhich are also inspired
by the homogenization theory, and put some emphasis on rates of convergence, which are a major pending question from
a numerical point of view.

The literature on the stochastic Stokes’ drift and Brownian ratchets is huge. We first refer to Ref. [7]: the drift velocity is
computed in the case of a sinusoidal travelling potential (also see Refs. [8,9]) and the diffuse travelling front is exhibited
on the basis of numerical results. Brownian ratchets generically refer to drift-diffusion models in which a time periodic
forcing coupled to some asymmetry induces a transport at large scale. The notion of travelling potential is explored in
Refs. [10,11]. We refer to Ref. [12] and references therein for the notion of tilted Smoluchowski–Feynman ratchet, which
makes an explicit connection between the stochastic Stokes’ drift and ratchet mechanisms. As we shall see later, a change
of variables indeed reduces the model to a simple tilted Brownian ratchet, with no more explicit time-dependence. An
historical perspective of the physics of ratchets and useful definitions are given in Refs. [11,13]. Many important issues, like
effects due to the asymmetry of the potential, the geometry of the domain in higher dimensional models, see for instance
Ref. [14], or applications of molecular motors in biology, see for instance Refs. [15–17], will not be addressed here.

In Refs. [18,19], the effective diffusion constant is computed by a method which differs from ours, based on statistical
fluctuations. Also see Ref. [20] for some earlier considerations, and Ref. [21] for the computation of a generalized Einstein
relation. The relation between the diffusion coefficient and the mobility of a Brownian particle in a tilted periodic potential
is studied in Ref. [22]. The ratio kBΘ of the diffusion constant κω to the differential mobilityµω is in general not equal to the
temperature of the environment (multiplied by Boltzmann’s constant kB). The physical meaning of Θ far from equilibrium
is analyzed in Ref. [23] and interpreted as an effective temperature in the large scale description of the system so that the
relation κω = µωkBΘ can be interpreted as an extension of Einstein’s relation. An interesting experiment for measuring the
violation of Einstein’s relation can be found in Ref. [24]. See Section 5.1 for more details.

Experimentalmeasurements of the drift velocity corresponding to the diffusion of colloidal particles in presence of optical
traps and a detailed explanation of the method can be found in Ref. [25], with abundant theoretical justifications. Some of
the qualitative features were at least partially known before, see, e.g., Ref. [26]. In Refs [27–29], the analysis of Ref. [25] is
refined and emphasis is put not only on the computation of the drift velocity, but also on the effective diffusion constant.
Interestingly, the authors of Ref. [30] favorably evaluate the possibility of using tilted ratchet mechanisms to implement
separation of two types of filaments of DNA.

The simplest version of the stochastic Stokes’ drift model describes a density f (t, x) of particles obeying to the equation

ft = fxx +
(
ψ ′(x − ωt)f

)
x (1)

where ft and fx denote derivativeswith respect to the time t ≥ 0 and the position x respectively, andψ ′(x−ωt) is a travelling
potential moving at constant speed ω. We assume that the function ψ is 1-periodic: ψ(x + 1) = ψ(x), and consider the
unbounded problem, x ∈ R. At t = 0, f (0, ·) = f0 is a given smooth probability distribution, so that, by conservation of
mass,

∫
R f (t, x)dx = 1 for any t ≥ 0. The question we investigate in this paper is the behavior of f for large values of t . Our

main results can be summarized as follows.
(1) Denote by x̄(t) :=

∫
R x f (t, x)dx the position of the center of mass. There exists a drift velocity cω which is

characterized in Section 2 such that, for some γ > 0,
∣∣ d
dt x̄(t)− cω

∣∣ = O
(
e−t/γ

)
as t → ∞.

(2) A diffusive travelling front appears. In the reference frame attached to the center of mass, the solution converges, in
self-similar variables, to a Gaussian, modified by a highly oscillating perturbation. If we introduce the scale R(t) :=

√
1 + 2t

and consider the change of variables

f (t, x) =
1

R(t)
u

(
log R(t),

x − cωt
R(t)

)
, (2)

then, in the new variables, with R = et and z = R x −
1
2 (R

2
− 1)(ω − cω), u is a solution of

ut = uxx + (xu)x + R
(
(ψ ′(z)+ cω)u

)
x (3)

and we shall prove by an asymptotic expansion, see Section 3, that

u(t, x) = gω(z)h −
1
R
g(1)ω (z)hx + O

(
R−2) .

Here gω is a periodic solution of a tilted ratchet problem, see Section 2, which depends on the fast oscillating variable z. The
profile h = h(t, x) is the solution of an effective Fokker–Planck equation

ht = κωhxx + (xh)x, (4)



where the diffusion coefficient κω is determined in terms of g(1)ω , which is again given by an ordinary differential equation.
Let h∞ be the unique stationary solution of (4) such that

∫
R h∞ dx = 1 and define u∞(t, x) := gω(z)h∞(x). For any δ > 0

arbitrarily small, there is a positive constant Cδ , depending on ψ and f0, such that∫
R

|u(t, x)− u∞(t, x)| dx ≤ Cδe−t/τ (5)

for any t ≥ 0, where τ ≥ 2κω/κ0 + δ. Moreover, we have good reasons to conjecture that the optimal possible value of τ is
2κω/κ0, and κω/κ0 > 1 for any ω > 0. At least we can prove this last property in the limiting regimes ω → 0 and ω → ∞.

We observe that in the original time scale the rate of convergence in (5) is like t− 1/τ , where in general we expect that
τ > 2. Thismeans that in the dynamics of the stochastic Stokes’ drift two time scales have to be distinguished. First, periodic
modulations over an initial profile appearwithout any appreciable drift – this process is very fast since themodulations settle
exponentially fast. Second, developed, modulated profiles evolve on amuch slower, algebraic time scale, approaching (from
a macroscopic point of view) a gaussian travelling front.

(3) We establish various properties of cω and κω in Sections 3 and 5. For instance, we prove that the front travels
asymptotically at speed cω and give a formula for cω/ω, for small values of ω. We also obtain that cω converges to 0 as
ω → ∞, hence showing that there is always a maximal value of cω for some finite value of ω. Even more interesting is
the characterization of the dynamics of the front, which has been observed only in Monte-Carlo simulations. Computations
are usually noisy while we provide exact identities, which turn out to be easy to study qualitatively and numerically. The
diffusion at large scale is governed by the effective diffusion coefficient κω . For small values of ω, κω is always less than 1,
thus showing a narrowing of the front, but in our examples we numerically observe that κω > κ0, hence inducing a slower
rate of convergence in self-similar variables. We strongly suspect that the smallest value of κω is always achieved forω = 0.
In the largeω regime, κω is anyway larger than 1, which results in a front expanding faster (or fatter in self-similar variables),
but also gives a lower rate of convergence of the relative entropy corresponding to 2/τ ≤ κ0/κω < 1.

(4) The efficiency of the transport has already been studied numerically in various contributions. We define a new
dimensionless number, the efficiency,

E :=
c2ω
ωκω

,

which is well adapted to our model and measures accurately the coherent transport at least in the two examples of this
paper. Details are given in Section 4.

2. From stochastic Stokes’ drift to a tilted ratchet model

We first observe that the stochastic Stokes’ drift is analogous to a simple Brownian ratchet mechanism. Actually, if f is a
solution of (1), we observe that f̃ (t, x) = f (t, x − ωt) is a solution of

f̃t = f̃xx +

(
(ω + ψ ′)f̃

)
x
,

a problemwhich is known as the tilted Smoluchowski–Feynman ratchet, see for instance Ref. [12]. Tilted Brownian ratchets
are actually much more general, since in the equation for f̃ , ψ may still depend on t . An important effect in such models
is the notion of flow reversals, see for instance Refs. [31–34,13,35]. In our case we conjecture that such a flow reversal is
impossible, a property that we shall observe on examples and which is reflected by the fact that ω and cω have the same
signs.

On large time scales, the constant drift term,ωf̃x, is responsible for a displacement of the center of mass, but the solution
is also spreading on a large number of periods of ψ . It is therefore natural to expect that the speed of the center of mass is
determined by the flux of mass through one cell of period ` = 1, supplemented with periodic conditions. This can be made
rigorous by the following folding transformation as follows. Consider the doubly periodic problemgt = gxx +

(
(ω + ψ ′)g

)
x ,

g(t = 0, x) = g0(x) =

∑
k∈Z

f0(x + k), (6)

for which we assume that g(t, x + 1) = g(t, x) for any x ∈ R and any t ≥ 0. By linearity of the equations (see Ref. [12] for
more details), we get

g(t, x) =

∑
k∈Z

f (t, x − ωt + k) ∀ (t, x) ∈ R+
× (0, 1).

Using either the Poincaré or the logarithmic Sobolev inequality, it is easy to prove that g converges exponentially fast (in L2
and L1 norms, respectively) to a stationary periodic solution gω of (6), which is unique by a contraction property, and solves

(gω)xx +
(
(ω + ψ ′)gω

)
x = 0, (7)



with periodic boundary conditions. If we take a primitive of (7), we get that x 7→ (gω)x + (ω + ψ ′)gω =: A(ω) is constant.
By taking one more integral, using the normalization condition

∫ 1
0 gω(x)dx = 1 and the definition of cω , we get that

ω − cω = ω

∫ 1

0
gω dx +

∫ 1

0
ψ ′gω dx = A(ω).

Eq. (7) can be semi-explicitly solved as

gω(x) = e−ωx−ψ(x)
(
B(ω)+ A(ω)

∫ x

0
eωy+ψ(y) dy

)
where B(ω) is determined by the conditions

∫ 1
0 gωdx = 1 and gω(0) = gω(1). More precisely, with

α(ω) := eω − 1 β(ω) :=

∫ 1

0
eωx+ψ(x) dx

γ (ω) :=

∫ 1

0
e−ωx−ψ(x) dx δ(ω) :=

∫ 1

0

∫ x

0
eωy+ψ(y)−ωx−ψ(x) dy dx

we obtain

A(ω) =
α(ω)

α(ω)δ(ω)+ β(ω)γ (ω)
and B(ω) =

β(ω)

α(ω)δ(ω)+ β(ω)γ (ω)
.

These results are classical, see for instanceRefs. [36–38] formore details. As a consequence,weobtain a semi-explicit formula
for cω , namely

cω = ω − A(ω).

We will now illustrate our results in the case of ψ(x) = sin(2πx) (sinusoidal case) and of an asymmetric smooth sawtooth
potential, see Fig. 1. Notice that in the tilted ratchet point of view, the current is A(ω). It is actually very interesting to

Fig. 1. Plots of the potentialψ in the sinusoidal case (left) and in the asymmetric smooth sawtooth potential (right), which is computed here as a truncated
Fourier series of x 7→ x/x0 if x < x0 and x 7→ (1 − x)/(1 − x0) if x > x0 , with x0 = 0.2.

compare cω with the asymptotic drift velocity c0ω when there is no diffusion. See Ref. [38] for similar considerations. The
solutions of ft =

(
ψ ′(x − ωt)f

)
x are easily solved by considering the equations of the characteristics, dx

dt = −ψ ′(x(t)−ωt).
Let y(t) := x(t)− ωt and consider the corresponding equation dy

dt = −ψ ′(y)− ω. For ω > 0, there are two main regimes:

(i) Case 0 < ω < max[0,1] ψ
′: any solution t 7→ y(t) converges to a local minimum of the function y 7→ ωy−ψ(y), and so

c0ω := lim
t→∞

x(t)
t

= ω.

(ii) Caseω > max[0,1] ψ
′: we observe that τ(ω) :=

∫ y(t)+1
y(t)

dx
ω+ψ ′(x) does not depend on t , and so y(t) ∼ −t/τ(ω) as t → ∞.

It follows that

τ(ω) =

∫ 1

0

dx
ω + ψ ′(x)

and c0ω := lim
t→∞

x(t)
t

= ω −
1

τ(ω)
.

A characteristic property of the curve ω 7→ c0ω is the critical tilt: the discontinuity of the derivative separates the two
regimes. The curve ω 7→ cω is a smoothed version of ω 7→ c0ω . When ψ is not symmetric, asymmetry effects are present
when ω is replaced by −ω, as shown in the case of the asymmetric smooth sawtooth potential. See Fig. 2.



Fig. 2. Plots of cω and c0ω as functions of ω in the sinusoidal case (left) and in the case of the asymmetric smooth sawtooth potential (right, in logarithmic
coordinates: ω 7→ log(1+ cω) for ω > 0). In the sinusoidal case, the symmetry is reflected by the fact that c−ω = −cω (values corresponding to ω < 0 are
not represented). This is not true in the sawtooth case.

3. The diffusive travelling front

Consider now a solution f of (1), with the normalization condition
∫

R f0 dx = 1 and let x̄(t) :=
∫

R x f (t, x)dx be the
position of the center of mass. An integration by parts and a change of variables show that

dx̄
dt

=

∫
R
x ft dx = −

∫
R
ψ ′(x − ωt)f (t, x) dx = −

∑
k∈Z

∫ 1

0
ψ ′(x − ωt)f (t, x + k) dx

= −

∫ 1

0
ψ ′(x)g(t, x) dx ∼

t→∞
−

∫ 1

0
ψ ′(x)gω(t, x) dx =: cω

and a more careful analysis of (6) even proves that dx̄
dt − cω converges at an exponential rate. Hence

x̄(t) ∼ cωt as t → ∞. (8)

Because of (8), it makes sense to introduce the change of coordinates (2), in order to understand the large time behaviour of
f . In the new variables, the equation for u is (3). Let us introduce a two-scale function U such that

u(t, x) = U(t, x; z)

with R = et and z = R x −
1
2 (R

2
− 1)(ω − cω), in order to investigate the large limit. Using the chain rule, we can write an

equation for U which is equivalent to (3), namely

R2L0U + RL1U + L2U = 0 (9)

with
L0U := Uzz +

(
(ω + ψ ′(z))U

)
z

L1U :=
(
2Uz + (ψ ′(z)+ cω)U

)
x

L2U := Uxx + (xU)x − Ut

and make a formal asymptotic expansion in which we solve the equation order by order in powers of R for a solution, for
whichwemake the ansatzU = U0+R−1U1+R−2U2. At orderR2, we find L0U0 = 0 that is solvedbyU0(t, x; z) = gω(z)h(t, x),
where gω is the stationary solution of the tilted ratchet equation (7). At order Rwe get

L0U1 + L1U0 = 0.

This gives U(1)(t, x; z) = g(1)ω (z)hx(t, x), where g(1)ω is a solution of

(g(1)ω )zz +
((
ω + ψ ′

)
g(1)ω

)
z = −2(gω)z −

(
ψ ′

+ cω
)
gω. (10)

Recall that we look for solutions that are periodic in the z variable. A necessary and sufficient condition for the existence of
a solution to the above equation is the fact that the average on (0, 1) of the right hand side of (10) is 0. Since all functions
are periodic and

∫ 1
0 gω(z)dz = 1, we recover the definition of cω . Notice that g(1)ω is unique up to the addition of a multiple

of gω , so we may further assume that
∫ 1
0 g(1)ω dz = 0. If we stop the expansion at order R0

= 1, we obtain

L0U2 + L1U1 + L2U0 +
1
R
(L1U2 + L2U1)+

1
R2

L2U2 = 0.

However, if we look at the terms of order R0
= 1, a solvability condition results from the integration of (9) with respect to

z. We obtain that
∫ 1
0 (L1U1 + L2U0)dz = 0, which shows that the function h solves the modified Fokker–Planck equation (4)

for the effective profile h, where the effective diffusion coefficient is given by

κω := 1 +

∫ 1

0
ψ ′(z)g(1)ω (z) dz. (11)



Any solution of (4) with
∫

R h(0, x)dx = 1 converges to a Gaussian, h∞, exponentially in L2 and L1 norms. Therefore, at first
order, u(t, x) behaves for large values of t like

u∞(t, x) = gω(z)h∞(x), h∞(x) :=
e−

|x|2
2κω

√
2πκω

,

where z = etx −
1
2 (e

2t
− 1)(ω − cω). Using relative entropies and homogenized logarithmic Sobolev inequalities, one can

then prove (5). The function u∞ therefore describes the asymptotic regime of u, in self-similar, travelling variables. In the
original variables, f∞(t, x) =

1
Ru∞

(
log R, x−cωt

R

)
with R(t) :=

√
1 + 2t describes the intermediate asymptotics of the solution

of (1). It is highly oscillatory, with an effective profile given by F∞(t, x) :=
1

R(t) h∞

(
x−cωt
R(t)

)
, which is the diffuse, travelling

front. More details on this asymptotic expansion and rigorous proofs can be found in Ref. [2]. See Fig. 3.

Fig. 3. In the sinusoidal case, the limiting function u∞ is shown on the left, in self-similar-variables, while on the right, the diffuse, travelling front F∞ is
plotted in the original variables for t = 0, 1, . . . 20. Here we take ω = 5 and (left) u∞(t, x) is shown as a function of x for t = 2.

Fig. 4. Plot of the diffusion coefficient κω as a function of ω in the sinusoidal case (left) and in the smooth sawtooth potential case (right).

The effective diffusion coefficient κω (see Fig. 4) is a global, macroscopic quantity, which should not be confused with the
local effective diffusion constant which appears in some papers, see Refs. [37,39]. It plays two roles:

(1) The effective diffusion coefficient κω determines the variance of the Gaussian function h∞ and therefore controls the
size of the travelling font. A pure diffusion ft = fxx would give rise to a self-similar Gaussian function (4π t)−1/2 e−|x|2/(4t),
and so κω has to be compared with 1.When κω < 1, the front is more peaked than what wewould get from a pure diffusion,
while on the opposite, κω > 1 corresponds to a frontwhich is diffusing faster. See Section 5 for some partial, rigorous results.

(2) In (5), the functional inequality:∫
R
v log

(
v

u∞

)
dx ≤ C(t)

∫
R

∣∣∣∣vxv −
(u∞)x

u∞

∣∣∣∣2 v dx,
holds for any function v, for some C(t) > 0 such that limt→∞ C(t) = τ/2. It is known, see Ref. [2], that τ ≥ 2κω/κ0.
The above homogenized logarithmic Sobolev inequality is a limit case of a family of generalized Poincaré inequalities for which
the optimal constant converges as t → ∞ to 2κω/κ0. It is therefore natural to conjecture that the optimal possible value
of τ is also τ = 2κω/κ0, at least for a large class of potentials ψ , but the question is still mathematically open. Now, if
κω/κ0 ≥ 1, then τ = 2κω/κ0 governs the rate of convergence in (5). If κω/κ0 < 1, other terms of order e−t , which means
O(1/

√
t) in the original variables, would eventually dominate the convergence process. This last case is never observed

numerically.



4. Measuring the efficiency of coherent transport

Measuring the efficiency of Brownian motors is a tricky issue. It requires specific tools. We may refer for instance to Ref.
[35] for a recent reference in this direction, with some numerical simulations. Also see Ref. [7, Fig. 2] for an early result in
the context of the stochastic Stokes’ drift, Ref. [40] for recent simulations corresponding to a simple model, and Ref. [41] for
detailed considerations on transport coherence and values of the Péclet number. In the very simplemodel considered in this
paper, there are only few available parameters. As explained in Refs. [41,40], the Péclet number Pe describes the competition
between the directional drift and the stochastic diffusion of the particle. It is defined, with our notations, by

Pe :=
cω`
κω

where ` is a typical length scale. One can easily check that this is a dimensionless number. Larger Pe number means that
the drift predominates over diffusion and there is high transport coherence. In other words, the effective distribution is
transported far away from the original data and stays peaked around its maximum value, at least when the variance is
measured in the same units as the displacement of the center of mass. See Fig. 5.

Fig. 5. Plot of the Péclet number Pe as a function of ω in the sinusoidal case (left) and in the smooth sawtooth potential case (right).

In Refs. [41,40], the typical length scale is the period of the potential ψ , that is ` = 1 in our notations, and it is
suggested that a criterion for efficient transport, preserving simultaneously the coherence of the distribution and optimizing
its displacement, is Pe > 2. This criterion does not make much sense for a study of the large time behavior, as the variance
of the distribution, which is of diffusive nature and grows like

√
κωt , is always dominated by the displacement, which is

linear and of the order of cωt , when t is large. To remedy this, we can suggest the following analysis. We may first use the
Péclet number to define a characteristic length scale

L :=
`

Pe
.

Recall that with our notations, ` = 1. The value of L corresponds to the displacement of the center of mass for which
this displacement is equal to the variance of the effective distribution. If the effective distribution is originally centered
at zero and evolves according to (4) up to a translation at constant velocity cω , this occurs for t = T such that

√
κωT =

cωT = L, and at that time, the percentage of the initial distribution which is still in the x < 0 region is given by∫ 0
−∞

exp
[
−|x − L|2/(2κωT)

]
dx =

1
2Erf(1/

√
2) ≈ 16%. See Fig. 6.

Fig. 6. Definition of L and T can be understood as follow. If one starts with a Gaussian distribution centered at x = 0 and evolve it according to (4), T is the
time for which the solution (centered at L in the above plot) has a variance equal to L. The grey area represents 16% of the area below the solution at time
t = T.



Now we may observe that in the above discussion, we have also introduced a characteristic time scale T = κω/c2ω which
is related with the Péclet number by the formula

T =
`

cωPe
.

It turns out that the stochastic Stokes’ drift has a natural time scale, which is the time period of the potential T0 := `/ω.
Hence it is meaningful to consider

N :=
T
T0

=
ωκω

`c2ω
=

ω

cωPe
,

which measures the time in takes to achieve the equality
√
κωT = cωT in natural units, and to define the efficiency of the

transport by

E :=
1
N

=
`c2ω
ωκω

= Pe
cω
ω
.

See Figs. 7 and 8.

Fig. 7. Plot of the efficiency E as a function of ω in the sinusoidal case (left) and in the smooth sawtooth potential case (right). We observe that in both
cases, the maximum is extremely well defined. Dots (left) correspond (ω, E(ω)) taking the values (1, 0.210), (3, 0.385), (25, 0.021) and will be reused in
Fig. 8.

Fig. 8. The effective profile F∞ is represented for ω taking the values 1, 3 and 25, which correspond to the dots in Fig. 7 (left). Curves are plotted for ω = 1
(left), 3 (center), 25 (right) for t = 0, 5, 10, etc, as long as cωt ≤ 70. The curve corresponding to ω = 3 (center) is the most efficient, in the sense that
cωt ≈ 70 is reached for a smaller value of t than for the other curves and the solution is kept more peaked. Computations are done in the case of the
sinusoidal potential.

The strength of our approach is that by our asymptotic expansion, we have been able to identify κω andwe have a formula
which allows us to plot it precisely, see Fig. 5. The shapes of the curves ω 7→ cω and ω 7→ κω combine well to define an
optimum of the efficiency, characterized by the dimensionless number E, which reflects the idea of coherent transport.

5. Drift velocity and homogenized diffusion coefficient: further results

In this last section, we list some qualitative properties that can be established analytically and are of general interest. We
also formulate a few conjectures which should be true for any type of potential ψ .



5.1. Mobility and Einstein’s relation

In the tilted ratchet picture, ω is proportional to the applied force F:

ω =
1
η
F

where η is the viscous friction coefficient, has the dimension of the inverse of a time, and takes value 1 in our units. The
mobility is defined by

µω :=
cω
F

=
cω
ηω

so we can write

E = Pe
cω
ω

= ηµωPe.

It has been argued that Einstein’s relation
κω

µω
= kBΘ

defines a notion of effective temperature Θ . Here kB is Boltzmann’s constant. As can be seen on Fig. 9, Θ is not constant in
terms of ω.

Fig. 9. Plot of the mobility µω (left) and the effective temperature Θ (measured in units of 1/kB) of the tilted Brownian ratchet for values of ω ranging
between 0 and 30 in the sinusoidal case.

5.2. The stationary solution of the tilted ratchet problem

The 1-periodic function gωwhich solves (7) and is normalized by the condition
∫ 1
0 gωdz = 1, has the following properties:

(1) gω is bounded from below by a positive constant, uniformly with respect to ω.
(2) In the limit case ω = 0, we have: g0 = e−ψ/

∫ 1
0 e−ψ dz.

(3) As ω → ∞, gω uniformly converges to 1, see Fig. 10.

Fig. 10. Plot of the stationary solution gω of the tilted Brownian ratchet for increasing values of ω ranging between 1 and 100 (logarithmic scale) in the
sinusoidal case (left) and in the smooth sawtooth potential case (right).



5.3. Drift velocity

When there is no diffusion, for large values of ω, an asymptotic expansion of c0ω as defined in Section 2 gives

c0ω =
1
ω

∫ 1

0
|ψ ′

|
2 dx + O

(
1
ω2

)
.

In presence of diffusion, for any ω > 0, we have cω < ω,

lim
ω↘0

cω
ω

= 1 −
1∫ 1

0 eψ dz
∫ 1
0 e−ψ dz

and lim
ω↗∞

cω = 0.

We numerically observe that cω is always positive for positive values of ω.

5.4. Effective diffusion coefficient

(1) We numerically observe that the smallest value of the effective diffusion coefficient is achieved at ω = 0: κω >

limω→0 κω = κ0 =

(∫ 1
0 eψ dz

∫ 1
0 e−ψ dz

)−1
.

(2) As ω → ∞, κω converges to 1 from above, and as a consequence, ω 7→ κω has a maximum, which is therefore always
strictly bigger than 1.

These properties are clearly observed in our two examples and we suspect that the first one is always true.

5.5. Rates of convergence

Rates of convergence is a difficult issue. Using functional inequalities, we have proved in Ref. [2] that they can be
estimated, but we suspect that much more could be done. Let us make the following conjectures:

(1) The rate of convergence is governed by the best constant in the logarithmic Sobolev inequality and not by the other
terms in the expansion, which could anyway be controlled by a higher order computation.

(2) The best constant in the logarithmic Sobolev inequality is the same as for the other generalized Poincaré inequalities
which interpolate between the logarithmic Sobolev inequality and the Poincaré inequality as already discussed in Section 2.

With these hypotheses, the sharp rate of convergence measured in L1 norm is 1/τ (or t−1/τ in the original variables),
with τ = 2 for ω = 0 and τ = 2κω/κ0 if ω > 0. As soon as we know that κω > κ0, we already know from Ref. [2] (also see
the discussion at the end of Section 3 and Section 5.4) that the above rate is an upper bound.

Numerically, understanding the rate of convergence is an extremely difficult question, corresponding to a stiff problem,
with no well adapted basis, as the oscillating (small scale) variable depends on t .

6. Conclusion

Our results are based on a very simple model, but show how to compute analytically and numerically various quantities
which are not easy to obtain by direct Monte-Carlo simulations. The main difficulty comes from the oscillatory behavior
of the potential, which is very clear in self-similar variables, and results in highly non-trivial attractors. Mathematically,
this can be handled with the tools of homogenization theory, which provide an equation for the macroscopic profile and
formulae for the two main parameters, the speed cω of the center of mass (or drift velocity) and the effective diffusion
coefficient κω . This should not hide a major mathematical difficulty: the time t is not independent of the small parameter
in the homogenization approach, namely 1/

√
t , in the original variables. Moreover, several length scales have to be taken

into account. The position of the center of mass is of the order of t , while the typical size of the front grows like
√
t . Typical

relaxation rates are exponential at small scale, but of the order of t−1/τ or 1/
√
t whenmeasured globally. Hence asymptotic

expansions are not at all easy to handle even at a formal level and quite hard to justify. The way out for such difficulties is
the homogenized logarithmic Sobolev inequality, with its own difficulties. The inequality anyway has the very nice feature
of connecting the rates of convergence with κω , somethingwhich definitely should be further investigated from a numerical
point of view.

However, knowing cω and κω accurately is a major step in the understanding of the asymptotic behavior of the solutions
of the stochastic Stokes’ drift. It gives solid grounds to a notion of effective diffusion. A striking consequence is that it gives
a new criterion for measuring the efficiency of coherent transport using the number E.

We hope that our contribution will contribute to more realistic models from a theoretical point of view and will be used
for benchmarking the numerous simulations that are being performed mostly with Monte-Carlo approaches.
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