Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs ${ }^{2 / 2}$

Flavia Bonomo ${ }^{\text {a, }}$, Maria Chudnovsky ${ }^{\text {b,c, }, 2}$, Guillermo Durán ${ }^{\text {d, } 3}$
${ }^{\text {a }}$ Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{\mathrm{b}}$ Department of IEOR, Columbia University, New York, NY, USA
${ }^{\text {c }}$ Department of Mathematics, Columbia University, New York, NY, USA
${ }^{\mathrm{d}}$ Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

Abstract

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.

Keywords: Claw-free graphs; Clique-perfect graphs; Hereditary clique-Helly graphs; Line graphs; Perfect graphs

1. Introduction

Let G be a graph, with vertex set $V(G)$ and edge set $E(G)$. Denote by \bar{G}, the complement of G. Given two graphs G and G^{\prime} we say that G^{\prime} is smaller than G if $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, and that G contains G^{\prime} if G^{\prime} is isomorphic to an induced subgraph of G. When we need to refer to the non-induced subgraph containment relation, we will say so explicitly. A claw is the graph isomorphic to $K_{1,3}$. A graph is claw-free if it does not contain a claw. The line graph $L(G)$ of G is the intersection graph of the edges of G. A graph F is a line graph if there exists a graph H such that $L(H)=F$. Clearly, line graphs are a subclass of claw-free graphs.

[^0]The neighborhood of a vertex v is the set $N(v)$ consisting of all the vertices which are adjacent to v. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. A vertex v of G is universal if $N[v]=V(G)$. Two vertices v and w are twins if $N[v]=N[w]$; and u dominates v if $N(v) \subseteq N[u]$.
A complete set or just a complete of G is a subset of vertices pairwise adjacent. (In particular, an empty set is a complete set.) We denote by K_{n} the graph induced by a complete set of size n. A clique is a complete set not properly contained in any other. We may also use the term clique to refer to the corresponding complete subgraph. Let X and Y be two sets of vertices of G. We say that X is complete to Y if every vertex in X is adjacent to every vertex in Y, and that X is anticomplete to Y if no vertex of X is adjacent to a vertex of Y. A stable set in a graph G is a subset of pairwise non-adjacent vertices of G. The stability number $\alpha(G)$ is the cardinality of a maximum stable set of G.

A complete of three vertices is called a triangle, and a stable set of three vertices is called a triad. Let A be a set of vertices of G, and v a vertex of G not in A. Then v is A-complete if it is adjacent to every vertex in A, and A-anticomplete if it has no neighbor in A.

A vertex is called simplicial if its neighbors induce a complete, and singular if its non-neighbors induce a complete. Equivalently, a vertex is singular if it is in no stable set of size three. The core of G is the subgraph induced on G by the set of non-singular vertices.

Let G be a graph and X be a subset of vertices of G. Denote by $G \mid X$ the subgraph of G induced by X and by $G \backslash X$ the subgraph of G induced by $V(G) \backslash X$. X is connected, if there is no partition of X into two non-empty sets Y and Z, such that no edge has one end in Y and the other one in Z. In this case the graph $G \mid X$ is also connected. X is anticonnected if it is connected in \bar{G}. In this case the graph $G \mid X$ is also anticonnected.

The set X is a cutset if $G \backslash X$ has more connected components than G. Let G be a connected graph, X a cutset of G, and M_{1}, M_{2} a partition of $V(G) \backslash X$ such that M_{1}, M_{2} are non-empty and M_{1} is anticomplete to M_{2} in G. In this case we say that $G=M_{1}+M_{2}+X$, and $M_{i}+X$ denotes $G \mid\left(M_{i} \cup X\right)$, for $i=1,2$. When $X=\{v\}$, we simplify the notation to $M_{1}+M_{2}+v$ and $M_{i}+v$, respectively.

Let X be a cutset of G. If $X=\{v\}$ we say that v is a cutpoint. If X is complete, it is called a clique cutset. A clique cutset X is internal if $G=M_{1}+M_{2}+X$ and each M_{i} contains at least two vertices that are not twins.

Let G be a graph and H a subgraph of G (not necessarily induced). The graph H is a clique subgraph of G if every clique of H is a clique of G.

A clique cover of a graph G is a subset of cliques covering all the vertices of G. The clique-covering number $k(G)$ is the cardinality of a minimum clique cover of G. The chromatic number of a graph G is the smallest number of colors that can be assigned to the vertices of G in such a way that no two adjacent vertices receive the same color, and is denoted by $\chi(G)$. An obvious lower bound is the maximum cardinality of the cliques of G, the clique number of G, denoted by $\omega(G)$.

A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. Perfect graphs are interesting from the algorithmic point of view, see [16]. While determining the clique-covering number, the independence number, the chromatic number, and the clique number of a graph are NP-complete problems, they are solvable in polynomial time for perfect graphs [17].

The clique graph $K(G)$ of G is the intersection graph of the cliques of G. A graph G is K-perfect if $K(G)$ is perfect.
A graph is bipartite if its vertex set can be partitioned into two stable sets. A graph is split if its vertex set can be partitioned into a stable set and a complete. Bipartite and split graphs are perfect.

A hole is a chordless cycle of length at least 4. An antihole is the complement of a hole. A hole or antihole is said to be odd if it consists of an odd number of vertices. A hole of length n is denoted by C_{n}.

A graph is chordal if it does not contain a hole. Chordal graphs can be recognized in polynomial time [25].
An r-sun, $r \geqslant 3$, is a chordal graph of $2 r$ vertices whose vertex set can be partitioned into two sets: $W=\left\{w_{1}, \ldots, w_{r}\right\}$ and $U=\left\{u_{1}, \ldots, u_{r}\right\}$, such that W is a stable set and, for each i and j, w_{j} is adjacent to u_{i} if and only if $i=j$ or $i \equiv j+1(\bmod r)$. Please note that, since an r-sun is a chordal graph, it follows that U induces a cycle with no holes. An r-sun is said to be odd if r is odd.

A graph is balanced if its vertex-clique incidence matrix is balanced. A $0-1$ matrix is balanced if it does not contain the incidence matrix of an odd cycle as a submatrix.

A family of sets S is said to satisfy the Helly property if every subfamily of it, consisting of pairwise intersecting sets, has a common element. A graph is clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary clique-Helly (HCH) if H is CH for every induced subgraph H of G.

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G, denoted by $\tau_{C}(G)$ and $\alpha_{C}(G)$, are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. It is easy to see that $\tau_{C}(G) \geqslant \alpha_{C}(G)$ for any graph G. A graph G is clique-perfect if $\tau_{C}(H)=\alpha_{C}(H)$ for every induced subgraph H of G. Clique-perfect graphs have been implicitly studied in [1,3,6,4,7,14,18,19]. The terminology "clique-perfect" has been introduced in [18]. There are two main open problems concerning this class of graphs:

- find all minimal forbidden induced subgraphs for the class of clique-perfect graphs, and
- is there a polynomial time recognition algorithm for this class of graphs?

In this paper, we present some results related to these problems. We characterize clique-perfect graphs by forbidden subgraphs when the graph belongs to a certain class. Both classes studied are subclasses of claw-free graphs: line graphs and HCH claw-free graphs. As corollaries of these partial characterizations, we can immediately deduce polynomial time algorithms to recognize clique-perfect graphs in these classes of graphs.

2. Preliminaries

It has been proved recently that perfect graphs can be characterized by two families of minimal forbidden induced subgraphs [9] and recognized in polynomial time [8].

Theorem 1 (Strong perfect graph theorem, Chudnovsky et al. [9]). Let G be a graph. Then the following are equivalent:
(i) no induced subgraph of G is an odd hole or an odd antihole.
(ii) G is perfect.

On the other hand, the problem of recognition of clique-perfect chordal graphs can be reduced to the recognition of balanced graphs, which is solvable in polynomial time [5,13].

Theorem 2 (Lehel and Tuza [19]). Let G be a chordal graph. Then the following are equivalent:
(i) G does not contain odd suns.
(ii) G is balanced.
(iii) G is clique-perfect.

Next we define the family of the so-called "generalized suns" [4]. Let G be a graph and C be a cycle of G not necessarily induced. An edge of C is non-proper (or improper) if it forms a triangle with some vertex of C. An r generalized sun, $r \geqslant 3$, is a graph G whose vertex set can be partitioned into two sets: a cycle C of r vertices, with all its non-proper edges $\left\{e_{j}\right\}_{j \in J}$ (J is permitted to be an empty set) and a stable set $U=\left\{u_{j}\right\}_{j \in J}$, such that, for each $j \in J$, u_{j} is adjacent only to the endpoints of e_{j}. An r-generalized sun is said to be odd if r is odd. Clearly, an odd hole is an odd generalized sun, with the set of non-proper edges J being empty. Odd suns are also odd generalized suns, since every edge of the cycle in an r-sun is a non-proper edge.

Theorem 3 (Bonomo et al. [4]). Odd generalized suns and antiholes of length $t=1,2 \bmod 3(t \geqslant 5)$ are not cliqueperfect.

Unfortunately, odd generalized suns are not necessarily minimal (with respect to taking induced subgraphs) and besides there are other minimal non-clique-perfect graphs, for example, the following family of graphs. Define the graph $S_{k}, k \geqslant 2$, as follows: $V\left(S_{k}\right)=\left\{v_{1}, \ldots, v_{2 k}, v, v^{\prime}, w, w^{\prime}\right\}$ where $v_{1}, \ldots, v_{2 k}$ induce a path; v is adjacent to v^{\prime}, v_{1}, v_{2}, and $v_{2 k} ; v^{\prime}$ is adjacent to $v, v_{1}, v_{2 k-1}$, and $v_{2 k} ; w$ is adjacent only to v_{1} and v_{2}; and w^{\prime} is adjacent only to $v_{2 k-1}$ and $v_{2 k}$ (Fig. 1).

Fig. 1. The graph S_{k}.

Fig. 2. Forbidden induced subgraphs for hereditary clique-Helly graphs: (left to right) 3-sun (or 0-pyramid), 1-pyramid, 2-pyramid, and 3-pyramid.

Every clique of S_{k} contains at least two of the vertices $v_{1}, \ldots, v_{2 k}, v$, so $\alpha_{C}\left(S_{k}\right) \leqslant k$. On the other hand, consider the following family of cliques of $S_{k}:\left\{v_{2 k-1}, v_{2 k}, w^{\prime}\right\},\left\{v_{2 k}, v, v^{\prime}\right\},\left\{v, v_{1}, v^{\prime}\right\},\left\{v_{1}, v_{2}, w\right\}$, and either $\left\{v_{2}, v_{2 k-1}\right\}$, if $k=2$, or $\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{2 k-2}, v_{2 k-1}\right\}$, if $k>2$. No vertex of S_{k} belongs to more than two of these $2 k+1$ cliques, so $\tau_{\mathrm{C}}\left(S_{k}\right) \geqslant k+1$.

At this time we do not know whether the list of all such forbidden graphs has a nice description. However, if we restrict our attention to certain classes of graphs (that can be described by forbidding certain induced subgraphs), we can describe all the minimal forbidden induced subgraphs.

HCH graphs are of particular interest because in this case it follows from [4] that if $K(H)$ is perfect for every induced subgraph H of G, then G is clique-perfect (the converse is not necessarily true). On the other hand, the class of HCH graphs can be characterized by forbidden induced subgraphs.

Theorem 4 (Prisner [23]). A graph G is HCH if and only if it does not contain the graphs of Fig. 2 as induced subgraphs.

One of our main results in this paper is a characterization of clique-perfect HCH claw-free graphs by forbidden induced subgraphs. To prove this characterization we use a recent structure theorem for claw-free graphs [11]. In order to state that theorem we need to introduce some definitions.
A graph G is prismatic if for every triangle T of G, every vertex of G not in T has a unique neighbor in T. A graph G is antiprismatic if its complement graph \bar{G} is prismatic.

Construct a graph G as follows. Take a circle C, and let $V(G)$ be a finite set of points of C. Take a set of intervals from C (an interval means a proper subset of C homeomorphic to $[0,1]$) such that there are not three intervals covering C; and say that $u, v \in V(G)$ are adjacent in G if the set of points $\{u, v\}$ of C is a subset of one of the intervals. Such a graph is called circular interval graph. When the set of intervals does not cover C, the graph is called linear interval graph (Fig. 3).

Let G be a graph and A, B be disjoint subsets of $V(G)$. The pair (A, B) is called a homogeneous pair in G if for every vertex $v \in V(G) \backslash(A \cup B), v$ is either A-complete or A-anticomplete and either B-complete or B-anticomplete. If, in addition, B is empty, then A is called a homogeneous set. Let (A, B) be a homogeneous pair, such that A, B are both completes, and A is neither complete nor anticomplete to B. In these circumstances the pair (A, B) is called a W-join. Note that there is no requirement that $A \cup B \neq V(G)$. The pair (A, B) is non-dominating if some vertex of $G \backslash(A \cup B)$ has no neighbor in $A \cup B$, and it is coherent if the set of all $(A \cup B)$-complete vertices in $V(G) \backslash(A \cup B)$ is a complete.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$ such that V_{1}, V_{2} are non-empty and there are no edges between V_{1} and V_{2}. The pair $\left(V_{1}, V_{2}\right)$ is called a 0 -join in G. Thus G admits a 0 -join if and only if it is not connected.

Fig. 3. Example of a circular interval graph and its circular interval representation.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- for $i=1,2, A_{i}$ is a complete, and $A_{i}, V_{i} \backslash A_{i}$ are both non-empty,
- A_{1} is complete to A_{2},
- every edge between V_{1} and V_{2} is between A_{1} and A_{2}.

In these circumstances, the pair $\left(V_{1}, V_{2}\right)$ is a 1-join.
Now, suppose that V_{0}, V_{1}, V_{2} are disjoint subsets with union $V(G)$, and for $i=1,2$ there are subsets A_{i}, B_{i} of V_{i} satisfying the following:

- for $i=1,2, A_{i}, B_{i}$ are completes, $A_{i} \cap B_{i}=\emptyset$, and A_{i}, B_{i}, and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all non-empty,
- A_{1} is complete to A_{2}, and B_{1} is complete to B_{2}, and there are no other edges between V_{1} and V_{2},
- V_{0} is a complete, and, for $i=1,2, V_{0}$ is complete to $A_{i} \cup B_{i}$ and anticomplete to $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$.

The triple $\left(V_{0}, V_{1}, V_{2}\right)$ is called a generalized 2-join, and, if $V_{0}=\emptyset$, the pair (V_{1}, V_{2}) is called a 2-join. This is closely related to, but not the same as, what has been called a 2-join in other papers like [8].

The last decomposition is the following. Let $\left(V_{1}, V_{2}\right)$ be a partition of $V(G)$, such that for $i=1,2$ there are completes $A_{i}, B_{i}, C_{i} \subseteq V_{i}$ with the following properties:

- for $i=1,2$ the sets A_{i}, B_{i}, C_{i} are pairwise disjoint and have union V_{i},
- V_{1} is complete to V_{2} except that there are no edges between A_{1} and A_{2}, between B_{1} and B_{2}, and between C_{1} and C_{2},
- V_{1}, V_{2} are both non-empty.

In these circumstances it is said that G is a hex-join of $G \mid V_{1}$ and $G \mid V_{2}$. Note that if G is expressible as a hex-join as above, then the sets $A_{1} \cup B_{2}, B_{1} \cup C_{2}$, and $C_{1} \cup A_{2}$ are three completes with union $V(G)$, and consequently no graph G with $\alpha(G)>3$ is expressible as a hex-join.

Now, define classes $\mathscr{S}_{0}, \ldots, \mathscr{S}_{6}$ as follows:

- \mathscr{S}_{0} is the class of all line graphs.
- The icosahedron is the unique planar graph with 12 vertices all of degree five. For $0 \leqslant k \leqslant 3$, icosa($-k$) denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. A graph $G \in \mathscr{S}_{1}$ if G is isomorphic to $i \operatorname{cosa} a(0)$, $i \operatorname{cosa}(-1)$, or $i \operatorname{cosa}(-2)$. As it can be seen in Fig. 4, all of them contain odd holes.
- Let H_{1} be the graph with vertex set $\left\{v_{1}, \ldots, v_{13}\right\}$, with adjacency as follows: $v_{1} v_{2} \ldots v_{6} v_{1}$ is a hole in G of length 6 ; v_{7} is adjacent to $v_{1}, v_{2} ; v_{8}$ is adjacent to v_{4}, v_{5} and possibly to $v_{7} ; v_{9}$ is adjacent to $v_{6}, v_{1}, v_{2}, v_{3} ; v_{10}$ is adjacent to $v_{3}, v_{4}, v_{5}, v_{6}, v_{9} ; v_{11}$ is adjacent to $v_{3}, v_{4}, v_{6}, v_{1}, v_{9}, v_{10} ; v_{12}$ is adjacent to $v_{2}, v_{3}, v_{5}, v_{6}, v_{9}, v_{10}$; and v_{13} is adjacent to $v_{1}, v_{2}, v_{4}, v_{5}, v_{7}, v_{8}$. A graph $G \in \mathscr{S}_{2}$ if G is isomorphic to $H_{1} \backslash X$, where $X \subseteq\left\{v_{11}, v_{12}, v_{13}\right\}$. Please note that vertices $v_{3} v_{4} v_{5} v_{6} v_{9} v_{3}$ induce a hole of length 5 in G (Fig. 5).
- \mathscr{S}_{3} is the class of all circular interval graphs.
- Let H_{2} be the graph with seven vertices h_{0}, \ldots, h_{6}, in which h_{1}, \ldots, h_{6} are pairwise adjacent and h_{0} is adjacent to h_{1}. Let H_{3} be the graph obtained from the line graph $L\left(H_{2}\right)$ of H_{2} by adding one new vertex, adjacent precisely to the members of $V\left(L\left(H_{2}\right)\right)=E\left(H_{2}\right)$ that are not incident with h_{1} in H_{2}. Then H_{3} is claw-free. Let \mathscr{S}_{4} be the class

Fig. 4. Graphs $i \cos a(0), i \cos a(-1)$, and $i \cos a(-2)$.

Fig. 5. Graph $H_{1} \backslash\left\{v_{11}, v_{12}, v_{13}\right\}$. Every graph in \mathscr{S}_{2} contains it as an induced subgraph.

Fig. 6. Graph H_{4}, for $n=2$.
of all graphs isomorphic to induced subgraphs of H_{3}. Note that the vertices of H_{3} corresponding to the members of $E\left(H_{2}\right)$ that are incident with h_{1} in H_{2} form a complete in H_{3}. So every graph in \mathscr{S}_{4} is either a line graph or it has a singular vertex.

- Let $n \geqslant 0$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three completes, pairwise disjoint. For $1 \leqslant i, j \leqslant n$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j$. Let d_{1}, d_{2}, d_{3}, d_{4}, d_{5} be five more vertices, where d_{1} is $(A \cup B \cup C)$-complete; d_{2} is complete to $A \cup B \cup\left\{d_{1}\right\} ; d_{3}$ is complete to $A \cup\left\{d_{2}\right\} ; d_{4}$ is complete to $B \cup\left\{d_{2}, d_{3}\right\} ; d_{5}$ is adjacent to d_{3}, d_{4}; and there are no more edges. Let the graph just constructed be H_{4}. A graph $G \in \mathscr{S}_{5}$ if (for some n) G is isomorphic to $H_{4} \backslash X$ for some $X \subseteq A \cup B \cup C$. Note that vertex d_{1} is adjacent to all the vertices but the triangle formed by d_{3}, d_{4}, and d_{5}, so it is a singular vertex in G (Fig. 6).
- Let $n \geqslant 0$. Let $A=\left\{a_{0}, \ldots, a_{n}\right\}, B=\left\{b_{0}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three completes, pairwise disjoint. For $0 \leqslant i, j \leqslant n$, let a_{i}, b_{j} be adjacent if and only if $i=j>0$, and for $1 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$ let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j \neq 0$. Let the graph just constructed be H_{5}. A graph $G \in \mathscr{S}_{6}$ if (for some n) G is isomorphic to $H_{5} \backslash X$ for some $X \subseteq\left(A \backslash\left\{a_{0}\right\}\right) \cup\left(B \backslash\left\{b_{0}\right\}\right) \cup C$, and then G is said to be 2-simplicial of antihat type (Fig. 7).

Fig. 7. Graph H_{5}, for $n=2$.

Fig. 8. Some graphs mentioned in the paper.

The structure theorem in [11] is the following:
Theorem 5 (Chudnovsky and Seymour [11]). Let G be a claw-free graph. Then either $G \in \mathscr{S}_{0} \cup \cdots \cup \mathscr{S}_{6}$, or G admits twins, or a non-dominating W-join, or a coherent W-join, or a 0 -join, or a 1 -join, or a generalized 2 -join, or a hex-join, or G is antiprismatic.

In the proofs in this paper we will mention some special graphs, shown in Fig. 8, and we will use the following results on perfect graphs, cutsets, and clique graphs (some of the results below are immediate, and in these cases we do not give a proof or a reference; we state these in order to make it more convenient to refer to them in the future).

Lemma 6. Let G be a graph and v be a simplicial vertex of G. Then G is perfect if and only if $G \backslash\{v\}$ is.
Theorem 7 (Berge [2]). Let G be a graph and X be a clique cutset of G such that $G=M_{1}+M_{2}+X$. Then the graph G is perfect if and only if the graphs $M_{1}+X$ and $M_{2}+X$ are .

Theorem 8 (Tucker [27]). Let G be a perfect graph and let $e=v_{1} v_{2}$ be an edge of G. Assume that no vertex of G is a common neighbor of v_{1} and v_{2}. Then $G \backslash e$ is perfect.

Let P be an induced path of a graph G. The length of P is the number of edges in P. The parity of P is the parity of its length. We say that P is even if its length is even, and odd otherwise.

Theorem 9. Let G be a graph, and let $u, v \in V(G)$ be non-adjacent such that $\{u, v\}$ is a cutset of $G, G=M_{1}+M_{2}+$ $\{u, v\}$. For $i=1,2$, let G_{i} be a graph obtained from $M_{i}+\{u, v\}$ by joining u and v by an even induced path. If G_{1} and G_{2} are perfect, then G is perfect.

Proof. Suppose G_{1} and G_{2} are perfect, and G contains an odd hole or an odd antihole; denote it by A. Since no odd antihole of length at least 7 has a one- or two-vertex cutset, if A is an odd antihole of length at least 7 , then A is contained either in G_{1} or in G_{2}, a contradiction. So A is an odd hole, and it is not contained in $M_{i}+\{u, v\}$ for $i=1,2$, thus $\{u, v\}$ is a cutset for A. Let A_{1}, A_{2} be the two subpaths of A joining u and v. Then both A_{1}, A_{2} have length at least 2 , and one of them, say A_{1}, is odd. But then, if A_{1} is contained in $M_{i}+\{u, v\}$, the graph G_{i} contains an odd hole, a contradiction.

Theorem 10 (Chvátal and Sbihi [12]). Let G be a graph and let U be a homogeneous set in G. Let G^{\prime} be the graph obtained from G by deleting all but one vertex of U. Then G is perfect if and only if both G^{\prime} and $G \mid U$ are.

Theorem 11. Let G be a graph, and let $u, v \in V(G)$ such that u dominates v. Then G is perfect if and only if both $G \backslash\{u\}$ and $G \backslash\{v\}$ are.

Proof. The "only if" part is clear, so it is enough to prove that if $G \backslash\{u\}$ and $G \backslash\{v\}$ are perfect, then so is G. Since neither odd holes nor odd antiholes contain a pair of vertices such that one of them dominates the other one, the result follows from Theorem 1.

Theorem 12 (Chudnovsky and Seymour [10]). Let G be a claw-free graph admitting an internal clique cutset. Then G is either a linear interval graph or G admits twins, or a 0 -join, or a 1 -join, or a coherent W-join.

Lemma 13. Let G be a graph and H a clique subgraph of G. Then $K(H)$ is an induced subgraph of $K(G)$.
Lemma 14. If G admits twins u, v, then $K(G)=K(G \backslash\{v\})$.
Lemma 15. If G is disconnected, then so is $K(G)$, and G is K-perfect if and only if each connected component is.
Theorem 16 (Maffray and Reed [22], Protti and Szwarcfiter [24]). Let G be a claw-free graph with no induced 3-fan, 4-wheel, or odd hole. Then $K(G)$ is bipartite.

Graphs whose line graph is perfect were characterized in [26,21].
Theorem 17 (Maffray [21], Trotter [26]). Let $G=L(H)$ be the line graph of a graph H. Then the following three conditions are equivalent:
(i) G is a perfect graph.
(ii) No subgraph of H is an odd cycle of length at least 5.
(iii) Any connected subgraph H^{\prime} of H satisfies at least one of the following properties:

- H^{\prime} is a bipartite graph;
- H^{\prime} is a complete of size four;
- H^{\prime} consists of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$;
- H^{\prime} has a cutpoint.

3. Partial characterizations

We say that a graph is interesting if no induced subgraph of it is an odd generalized sun or an antihole of length greater than 5 and equal to $1,2 \bmod 3$. Since odd generalized suns and antiholes of length greater than 5 and equal to $1,2 \bmod 3$ are not clique-perfect, it follows that every clique-perfect graph is interesting. We prove that for some subclasses of claw-free graphs, this necessary condition is also sufficient.

Our two main results are the following.
Theorem 18. Let G be a line graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd hole or a 3-sun.

Theorem 19. Let G be an HCH claw-free graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd hole or an antihole of length 7.

We observe the following:
Proposition 20. Let S be an odd generalized r-sun, and assume that S is claw-free. Then either S is an odd hole or $r=3$.

Proof. As in the definition of a generalized sun, let C be a cycle of S, and let $U=V(S) \backslash V(C)$ be a stable set, such that every vertex of U is complete to both ends of exactly one non-proper edge of C and has no other neighbor in $V(C)$.

Fig. 9. A clique-perfect graph that is not K-perfect.

We may assume that S is not an odd hole, and so C has at least one non-proper edge. Let $c_{1} c_{2}$ be a non-proper edge of C, let $c_{3} \in V(C) \backslash\left\{c_{1}, c_{2}\right\}$ be such that $\left\{c_{1}, c_{2}, c_{3}\right\}$ is a triangle, and let u be the vertex of U adjacent to c_{1} and c_{2}. We may assume $r>3$, and therefore, possibly with c_{1} and c_{2} switched, c_{1} has a neighbor c_{2}^{\prime} in C, different from c_{2} and c_{3}. Since $\left\{c_{1}, u, c_{3}, c_{2}^{\prime}\right\}$ does not induce a claw in S, it follows that c_{2}^{\prime} is adjacent to c_{3}, and therefore $c_{1} c_{2}^{\prime}$ is another non-proper edge of S. Let u^{\prime} be the vertex of U adjacent to c_{1} and c_{2}^{\prime}. Then $\left\{c_{1}, u, u^{\prime}, c_{3}\right\}$ is a claw, a contradiction.

Let us call a class of graphs \mathscr{C} hereditary if, for every $G \in \mathscr{C}$, every induced subgraph of G also belongs to \mathscr{C}. The following is a useful fact about HCH graphs:

Proposition 21. Let \mathscr{L} be a hereditary graph class, such that every graph in \mathscr{L} is $H C H$, and every interesting graph in \mathscr{L} is K-perfect. Then every interesting graph in \mathscr{L} is clique-perfect.

Proof. Let G be an interesting graph in \mathscr{L}. Let H be an induced subgraph of G. Since \mathscr{L} is hereditary, H is an interesting graph in \mathscr{L}, so it is K-perfect. Since every graph in \mathscr{L} is HCH , it follows that H is CH , and so $\alpha_{\mathrm{C}}(H)=\alpha(K(H))=$ $k(K(H))=\tau_{\mathrm{C}}(H)$ [4], and the result follows.

In general, the class of clique-perfect graphs is neither a subclass nor a superclass of the class of K-perfect graphs. It is not difficult to verify that the 3 -sun or 0 -pyramid (Fig. 8) is K-perfect but it is not clique-perfect and, on the other hand, the graph in Fig. 9 is clique-perfect but its clique graph contains a hole of length 5. However, we will prove that within the classes of graphs analyzed in this paper, clique-perfect graphs are also K-perfect.

3.1. Line graphs

First, we prove that interesting line graphs are K-perfect.
Proposition 22. A line graph is interesting if and only if it has no induced subgraph isomorphic to an odd hole or a 3-sun.

Proof. Since no line graph contains an antihole of length at least 7, and every line graph is claw-free, the result follows from Proposition 20.

Note that if $G=L(H)$ then G contains no odd hole if and only if H contains no odd cycle of length at least 5 as a subgraph. A trinity is the complement of the 3 -sun, and its line graph is also the 3 -sun. Moreover, the trinity is the only graph whose line graph is the 3-sun. Therefore, G does not contain a 3-sun if and only if H does not contain a trinity as a subgraph.

Theorem 23. If G is a line graph and G contains no odd holes, then $K(G)$ is perfect.
Proof. The proof is by induction on $|V(G)|$. The theorem holds for the graph with one vertex, and in each case we will reduce the K-perfection of G to the K-perfection of some proper induced subgraphs of G. Since every induced subgraph of a line graph with no odd holes is also a line graph with no odd holes, the result will then follow from the inductive hypothesis.

Let $G=L(H)$. By Lemma 15, we may assume H is connected. Since G has no odd holes, it follows that all the odd cycles of H are triangles. So by Theorem 17 either H is a bipartite graph, or H is a complete of size four, or H consists
of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$, or H has a cutpoint.

If H is bipartite then $G=K(H)$ and $K(G)=K^{2}(H)$ is an induced subgraph of H [15], so it is bipartite and hence perfect.

If H is a complete of size four, then $K(L(H))$ is the complement of $4 K_{2}$, and so it is perfect (it is the complement of a bipartite graph).

If H consists of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$, then all the cliques of G contain the vertex corresponding to the edge $a b$ of H, so $K(G)$ is a complete graph, and hence perfect.

Suppose H has a cutpoint x, and let M_{x} be the complete subgraph of G induced by the vertices corresponding to the edges of H incident with x. Since x is a cutpoint of H, M_{x} is a clique of G, and let v be the vertex of $K(G)$ corresponding to M_{x}.

If $H=H_{1}+H_{2}+x$ and both H_{1} and H_{2} have at least one edge, then v is a cutpoint of $K(G)$, and $K(G)=M_{1}+M_{2}+v$, where M_{i} is the clique graph of the line graph of the subgraph of H formed by H_{i} and the edges incident with x with their respective endpoints. So the property follows from Theorem 7 by the inductive hypothesis.

Otherwise, x is adjacent to at least one vertex y of degree one in H. Let M_{x}^{\prime} be the complete subgraph of $L(H \backslash\{y\})$ induced by the vertices corresponding to the edges of $H-\{y\}$ incident with x. If M_{x}^{\prime} is still a clique of $L(H \backslash\{y\})$, then $K(G)=K(L(H \backslash\{y\}))$, and the property holds by the inductive hypothesis.

If M_{x}^{\prime} is not a clique in $L(H \backslash\{y\})$, then x has degree three in H, and the other two neighbors z and w of x in H are adjacent. The cliques meeting M_{x} in G pairwise intersect (all of them contain the vertex corresponding to the edge $w z$ of $H)$, so v is simplicial in $K(G)$. On the other hand, $K(L(H \backslash\{y\}))=K(G) \backslash\{v\}$, so the property follows from Lemma 6 by the inductive hypothesis.

Theorem 18 is an immediate corollary of the following:
Theorem 24. Let G be a line graph. Then the following are equivalent:
(i) No induced subgraph of G is an odd hole, or a 3-sun.
(ii) G is clique-perfect.
(iii) G is perfect and it does not contain a 3-sun.

Proof. The equivalence between (i) and (iii) is a corollary of Theorem 17. From Theorem 3 it follows that (ii) implies (i).

It therefore suffices to prove that (i) implies (ii). This proof is again by induction on $|V(G)|$. The class of line graphs with no odd holes or induced 3-suns is hereditary, so we only have to prove that for every graph in this class τ_{C} equals α_{C}. By Theorem 23 and Proposition 22, every such graph is K-perfect. So, by Proposition 21, an interesting HCH line graph is clique-perfect. Let $G=L(H)$ and suppose that G is not HCH. Then G contains a $0-, 1-, 2$-, or 3-pyramid (see Fig. 2).

A 0 -pyramid is a 3-sun. A 2-pyramid is not a line graph, and therefore is not an induced subgraph of G.
Suppose that G contains a 3-pyramid. This happens if and only if H contains a complete set of size four, say K. By Lemma 15 we may assume H is connected. We analyze how vertices of $V(H) \backslash K$ attach to K. If a vertex v is adjacent to two different vertices of K, then H contains an odd cycle as a subgraph and G contains an odd hole. If two different vertices v, w are adjacent to two different vertices of K, then H contains a trinity as a subgraph and so G contains a 3 -sun. These cases can be seen in Fig. 10.

So, only one of the four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ of K may have neighbors in $H \backslash K$, say x_{1}. Let $v, w, z_{1}, z_{2}, z_{3}$, and z_{4} be the vertices of G corresponding to the edges $x_{1} x_{2}, x_{3} x_{4}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}$, and $x_{2} x_{3}$ of H, respectively. The vertex w is adjacent in G only to z_{1}, z_{2}, z_{3}, and z_{4}. These four vertices induce a hole of length 4 and are adjacent also to v. So $G \backslash\{w\}$ is a clique subgraph of G (every clique of $G \backslash\{w\}$ is a clique of G). On the other hand, since x_{2} has no neighbors in $H \backslash K$, all the neighbors of v other than z_{3} and z_{4} are vertices corresponding to edges of H containing x_{1}, and they are a complete in G. This situation can be seen in Fig. 11.

By the inductive hypothesis, $G \backslash\{w\}$ is clique-perfect. Let A be a maximum clique-independent set and T be a minimum clique-transversal of $G \backslash\{w\}$. By maximality and by the structure of G, A has exactly one clique containing v.

Fig. 10. How the remaining vertices of H can be attached to the K_{4}.

Fig. 11. Structure of G when H has a K_{4}.

Fig. 12. Subgraph of H when H contains no K_{4} and G contains a 1-pyramid.

Adding w, four new cliques appear, each one disjoint from a different one of the four cliques containing v, and adding w to T we have a clique-transversal of G, so $\alpha_{\mathrm{C}}(G)=\alpha_{\mathrm{C}}(G \backslash\{w\})+1=\tau_{\mathrm{C}}(G \backslash\{w\})+1=\tau_{\mathrm{C}}(G)$. So we may assume that H contains no complete set of size four.

Suppose finally that G contains a 1-pyramid. Since G contains a 1-pyramid, H contains as a subgraph a graph on five vertices v_{1}, \ldots, v_{5} where v_{1} is adjacent to v_{2}, v_{3} and v_{4}, v_{2} is adjacent to v_{3} and v_{4}, and v_{3} is adjacent to v_{5} (Fig. 12). Moreover, v_{3} and v_{4} are not adjacent because H does not contain a complete set of size four; v_{1} and v_{2} are not adjacent to v_{5}, otherwise H contains an odd cycle as a subgraph; and v_{1} and v_{2} do not have other neighbors, otherwise H contains a trinity as a subgraph. Then v_{1} and v_{2} form a cutset in H, because if there is a path $v_{3} P v_{4}$ in $H \backslash\left\{v_{1}, v_{2}\right\}$, then either $v_{3} P v_{4} v_{1} v_{3}$ or $v_{3} P v_{4} v_{1} v_{2} v_{3}$ is an odd cycle in H.
Let w_{1}, \ldots, w_{5} be the vertices of G corresponding to the edges $v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{4}, v_{2} v_{4}$, and $v_{1} v_{2}$ of H, respectively. Then $w_{1} w_{2} w_{4} w_{3} w_{1}$ is a hole of length 4 in G, w_{5} is adjacent only to $w_{1}, w_{2}, w_{3}, w_{4}$, and w_{2}, w_{3}, w_{5} is a cutset of G. The remaining neighbors of w_{1} or w_{2} are adjacent to both w_{1} and w_{2}, and form a non-empty complete in G (they are the vertices corresponding to the edges of H containing v_{3} and not v_{1} or v_{2}, and there exists at least one such edge, namely the edge $v_{3} v_{5}$). Similarly, the remaining neighbors of w_{3} or w_{4} are adjacent to both w_{3} and w_{4}, and form a (possibly empty) complete in G. The structure of G in this case can be seen in Fig. 13.

We show that $\alpha_{\mathrm{C}}(G)=\alpha_{\mathrm{C}}\left(G^{\prime}\right)$ and $\tau_{\mathrm{C}}(G)=\tau_{\mathrm{C}}\left(G^{\prime}\right)$, where G^{\prime} is the line graph of the graph H^{\prime} obtained from H by deleting the edges $v_{2} v_{3}$ and $v_{1} v_{4}$. So $G^{\prime}=G \backslash\left\{w_{2}, w_{3}\right\}$.

Fig. 13. Structure of G when H has no K_{4}.

Since every clique-transversal of G^{\prime} either contains w_{5}, or contains both w_{1} and w_{4}, it follows that every cliquetransversal of G^{\prime} is a clique-transversal of G. On the other hand, starting with a clique-transversal T of G and replacing the vertices w_{2} and w_{3} by w_{1} and w_{4}, respectively, if w_{2} or w_{3} belong to T, produce a clique-transversal of G^{\prime}. Therefore $\tau_{\mathrm{C}}(G)=\tau_{\mathrm{C}}\left(G^{\prime}\right)$.

We claim that there is a maximum clique-independent set of G not containing either of the cliques $\left\{w_{1}, w_{3}, w_{5}\right\}$, $\left\{w_{2}, w_{4}, w_{5}\right\}$. Suppose the claim is false. Let I be a clique-independent set of G, we may assume I contains the clique $\left\{w_{1}, w_{3}, w_{5}\right\}$. Then I does not contain any other clique containing w_{1} or w_{5}; and since the only clique containing w_{2} and not w_{1} is $\left\{w_{2}, w_{4}, w_{5}\right\}$, it follows that every clique in I is disjoint from $\left\{w_{1}, w_{2}, w_{5}\right\}$. But now the set obtained from I by removing the clique $\left\{w_{1}, w_{3}, w_{5}\right\}$ and adding the clique $\left\{w_{1}, w_{2}, w_{5}\right\}$ has the desired property. This proves the claim.

Let I be a maximum clique-independent set of G not containing either of the cliques $\left\{w_{1}, w_{3}, w_{5}\right\},\left\{w_{2}, w_{4}, w_{5}\right\}$. Let I^{\prime} be a set of cliques of G^{\prime} obtained from I by replacing the clique $\left\{w_{1}, w_{2}, w_{5}\right\}$ by $\left\{w_{1}, w_{5}\right\}$ if $\left\{w_{1}, w_{2}, w_{5}\right\} \in I$, and the clique $\left\{w_{3}, w_{4}, w_{5}\right\}$ by $\left\{w_{4}, w_{5}\right\}$ if $\left\{w_{3}, w_{4}, w_{5}\right\} \in I$. On the other hand, clearly every clique-independent-set of G^{\prime} gives rise to a clique-independent set of G, and therefore $\alpha_{C}(G)=\alpha_{C}\left(G^{\prime}\right)$.

But now, since G^{\prime} is a proper induced subgraph of G, it follows inductively that $\alpha_{C}\left(G^{\prime}\right)=\tau_{\mathrm{C}}\left(G^{\prime}\right)$, and therefore $\alpha_{C}(G)=\tau_{C}(G)$. This completes the proof of Theorem 24.

The recognition of clique-perfect line graphs can be solved in linear time in the following way. Given a graph G, in linear time we can obtain a graph H such that $L(H)=G$, or deduce that such a graph does not exist [20]. Now, by Theorems 24 and 17, and since G contains a 3 -sun if and only if H contains a trinity as a subgraph, it suffices to check if H contains an odd cycle of length at least 5 or a trinity as a subgraph. It can be done in linear time in the number of edges of H, which is the number of vertices of G, combining the ideas in the proofs of Theorems 17 and 24.

3.2. HCH claw-free graphs

Let us first describe interesting HCH claw-free graphs.

Proposition 25. No HCH graph contains an antihole of length at least 8. An HCH claw-free graph is interesting if and only if it does not contain an odd hole or an antihole of length 7 .

Proof. Since by Theorem 4 an HCH graph contains no induced subgraph isomorphic to one of the graphs of Fig. 2, it follows that no HCH graph contains a 3 -sun. Since every antihole of length at least 8 contains a 2 -pyramid, it follows that no HCH graph contains an antihole of length at least 8 . Finally, since by Proposition 20, every claw-free odd generalized sun is either an odd hole or a 3-sun, it follows that an HCH claw-free graph is interesting if and only if it contains no odd hole and no antihole of length 7 .

We will use Proposition 21 to prove the characterization for HCH claw-free graphs, so first we need to prove the following.

Theorem 26. Let G be an interesting HCH claw-free graph. Then $K(G)$ is perfect.
In the remainder of this section we use the structure theorem for claw-free graphs (Theorem 5) to prove that every interesting HCH claw-free graph G is K-perfect. The proof is by induction on $|V(G)|$.

3.2.1. Circular interval graphs

First we prove that clique graphs of interesting HCH circular interval graphs are perfect.
Lemma 27. Let G be a circular interval graph. Then $K(G)$ is an induced subgraph of G.
Proof. Let G be a circular interval graph with vertices v_{1}, \ldots, v_{n} in clockwise order, say. We define a homomorphism v from $V(K(G))$ to $V(G)$ (meaning that for two distinct vertices $a, b \in V(K(G)), v(a) \neq v(b)$; and a is adjacent to b if and only if $v(a)$ is adjacent to $v(b)$). For every clique M of G, since no three intervals in the definition of a circular interval graph cover the circle, $M=\left\{v_{i}, \ldots, v_{i+t}\right\}$ (where the indices are taken mod n). In this case we say that v_{i} is the first vertex of M. We define $v(M)=v_{i}$. Since v_{i} is the first vertex of a unique clique, it follows that $v(M) \neq v\left(M^{\prime}\right)$ if M and M^{\prime} are distinct cliques of G. It remains to show that $v(M)$ is adjacent to $v\left(M^{\prime}\right)$ if and only if $M \cap M^{\prime} \neq \emptyset$. If M and M^{\prime} intersect at a vertex v_{k}, then the clockwise order of $v(M), v\left(M^{\prime}\right)$, and v_{k} is either $v(M), v\left(M^{\prime}\right), v_{k}$ or $v\left(M^{\prime}\right), v(M), v_{k}$, and in both cases $v(M)$ and $v\left(M^{\prime}\right)$ are adjacent. On the other hand, if there are two cliques such that $v(M)$ and $v\left(M^{\prime}\right)$ are adjacent, we may assume $v(M)$ appears first clockwise in the circular interval which contains both $v(M)$ and $v\left(M^{\prime}\right)$. Then since $v(M)$ is the first vertex of the clique M, it follows that $v\left(M^{\prime}\right)$ belongs to M, so M and M^{\prime} intersect.

Proposition 28. Let G be an HCH interesting circular interval graph. Then $K(G)$ is perfect.
Proof. By Lemma 27, $K(G)$ is an induced subgraph of G. Since G is HCH and interesting, it contains no odd hole and no antihole of length at least 7 , and therefore it is perfect by Theorem 1.

3.2.2. Decompositions

Now we show that if an interesting HCH claw-free graph admits one of the decompositions of Theorem 5, then either it is K-perfect or we can reduce the problem to a smaller one.

Theorem 29. Let G be an interesting HCH claw-free graph. If G admits a 1-join, then $K(G)$ has a cutpoint v, $K(G)=H_{1}+H_{2}+v$, and $H_{i}+v$ is the clique graph of a smaller interesting HCH claw-free graph.

Proof. Since G admits a 1-join, it follows that $V(G)$ is the disjoint union of two non-empty sets V_{1} and V_{2}; each V_{i} contains a complete M_{i}, such that $M_{1} \cup M_{2}$ is a complete, and there are no other edges from V_{1} to V_{2}. So $M_{1} \cup M_{2}$ is a clique in G. Let v be the vertex of $K(G)$ corresponding to $M_{1} \cup M_{2}$. Every other clique of G is either contained in V_{1} or in V_{2}, and no clique of the first type intersects a clique of the second type. So v is a cutpoint of $K(G)$, and $K(G)=H_{1}+H_{2}+v$, where $H_{1}\left(H_{2}\right)$ is the subgraph of $K(G)$ induced by the vertices corresponding to cliques of G of the first (second) type. Let G_{i} be the graph obtained from $G \mid V_{i}$ by adding a vertex v_{i} complete to M_{i} and with no
other neighbors in G_{i}. Then G_{i} is isomorphic to an induced subgraph of G, so it is interesting, HCH , and claw-free, and, for $i=1,2, H_{i}+v$ is isomorphic to $K\left(G_{i}\right)$ (where the vertex v is mapped to the vertex of $K\left(G_{i}\right)$ corresponding to the clique $M_{i} \cup\left\{v_{i}\right\}$ of $\left.G_{i}\right)$. This proves Theorem 29.

Theorem 30. Let G be an interesting HCH claw-free graph. If G admits a generalized 2 -join and no twins, 0 -join or 1-join, then there exist two clique graphs of smaller interesting HCH claw-free graphs, H_{1} and H_{2}, such that if H_{1} and H_{2} are perfect, then so is $K(G)$.

Proof. Since G admits a generalized 2-join, it follows that $V(G)$ is the disjoint union of three sets V_{0}, V_{1}, and V_{2}; for $i=1,2$ each V_{i} contains two disjoint completes A_{i}, B_{i}, such that A_{i}, B_{i}, and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all non-empty, $A_{1} \cup A_{2} \cup V_{0}$ and $B_{1} \cup B_{2} \cup V_{0}$ are completes, and there are no other edges from V_{1} to V_{2} or from V_{0} to $V_{1} \cup V_{2}$. Since G admits no twins, it follows that $\left|V_{0}\right| \leqslant 1$.

So $A_{1} \cup A_{2} \cup V_{0}$ and $B_{1} \cup B_{2} \cup V_{0}$ are cliques of G, and they correspond to vertices w_{1}, w_{2} of $K(G)$. Every other clique of G is either contained in V_{1} or in V_{2}, and no clique of the first type intersects a clique of the second type. So $\left\{w_{1}, w_{2}\right\}$ is a cutset in $K(G)$.

If V_{0} is non-empty, then w_{1} is adjacent to w_{2} and $\left\{w_{1}, w_{2}\right\}$ is a clique cutset in $K(G)$. Let $V_{0}=\left\{v_{0}\right\}$. Now $K(G)=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, where, for $i=1,2, H_{i}=M_{i}+\left\{w_{1}, w_{2}\right\}$ is the clique graph of the subgraph of G induced by $V_{i} \cup\left\{v_{0}\right\}$. By Theorem 7, $K(G)$ is perfect if and only if H_{1} and H_{2} are. So we may assume that V_{0} is empty, and therefore w_{1} is non-adjacent to w_{2}.

We start with the following easy observation:
(*) Let S be a graph which is either a claw, or an odd hole, or $\overline{C_{7}}$, or a $0-, 1-, 2$-, or 3-pyramid, and suppose there exists a vertex $s \in V(S)$, whose neighborhood is the union of two non-empty completes with no edges between them. Then S is an odd hole.

Since G admits no 0 -join or 1-join, for $i=1$, 2 there exist a_{i} in A_{i} and b_{i} in B_{i} joined by an induced path with interior in $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$. (The interior of a path is the set of vertices different from the endpoints; the interior may be empty, if a_{i} and b_{i} are adjacent.)

Then, since G contains no odd hole, for every a_{i} in A_{i} and b_{i} in B_{i}, all induced paths from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$ and all induced paths from a_{2} to b_{2} with interior in $V_{2} \backslash\left(A_{2} \cup B_{2}\right)$ have the same parity.

Case 1: This parity is even. Note that in this case A_{i} is anticomplete to B_{i}. Let H be the graph obtained from $K(G)$ by adding the edge $w_{1} w_{2}$. Since A_{i} is anticomplete to B_{i}, there is no clique in G intersecting both $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2}$. So w_{1} and w_{2} have no common neighbor in $K(G)$. By Theorem 8 , if H is perfect then $K(G)$ is.

Construct graphs G_{i} with vertex set $V_{i} \cup\left\{v_{i}\right\}$, where $G_{i}\left|V_{i}=G\right| V_{i}$ and v_{i} is complete to $A_{i} \cup B_{i}$ and has no other neighbors in G_{i}. Now, $H=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, with $M_{i}+\left\{w_{1}, w_{2}\right\}=K\left(G_{i}\right)$, and $\left\{w_{1}, w_{2}\right\}$ is a clique cutset in H. By Theorem 7, it follows that if $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are perfect then H is perfect and thus $K(G)$ is perfect.

We claim that for $i=1,2$ the graphs G_{i} are claw-free, HCH , and interesting. Suppose that G_{1}, say, is not. So G_{1} contains an induced subgraph S isomorphic to a claw, an odd hole, $\overline{C_{7}}$, or a $0-, 1-, 2-$, or 3 -pyramid. If $V(S)$ does not contain v_{1}, then S is isomorphic to an induced subgraph of G, a contradiction. If $V(S)$ contains v_{1} but has empty intersection with A_{1} or B_{1}, say B_{1}, then S is isomorphic to an induced subgraph of G, obtained by replacing v_{1} by any vertex of A_{2}, a contradiction. So $V(S)$ meets both A_{1} and B_{1}, and therefore the neighborhood of v_{1} in S can be partitioned into two non-empty completes A_{S}, B_{S}, such that A_{S} is anticomplete to B_{S}. By (${ }^{*}$), S is an odd hole. Let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ be the neighbors of v_{1} in S. Then $S \backslash\left\{v_{1}\right\}$ is an induced odd path from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$, a contradiction.

Case 2: This parity is odd. Construct graphs G_{i} with vertex set $V_{i}+\left\{v_{A, i}, v_{B, i}\right\}$, where $G_{i}\left|V_{i}=G\right| V_{i}, v_{A, i}$ is complete to $A_{i}, v_{B, i}$ is complete to $B_{i}, v_{A, i}$ is adjacent to $v_{B, i}$, and there are no other edges in G_{i}.Now, $K(G)=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, and $K\left(G_{i}\right)$ is obtained from $M_{i}+\left\{w_{1}, w_{2}\right\}$ by joining w_{1} and w_{2} by an induced path of length 2 . By Theorem 9 , if $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are perfect, so is $K(G)$.

We claim that both G_{i} are claw-free, interesting, and HCH. Suppose that G_{1} contains an induced subgraph S isomorphic to a claw, an odd hole, $\overline{C_{7}}$, or a $0-, 1-, 2-$, or 3-pyramid.

If $V(S)$ does not contain $v_{A, 1}$ or $v_{B, 1}$, say $v_{B, 1}$, then S is isomorphic to an induced subgraph of G, obtained by replacing $v_{A, 1}$ by any vertex of A_{2}, a contradiction. If $V(S)$ contains $v_{A, 1}$ and $v_{B, 1}$ but has empty intersection with A_{1}
or B_{1}, say B_{1}, then S is isomorphic to an induced subgraph of G, obtained by replacing $v_{A, 1}$ and $v_{B, 1}$ by two adjacent vertices a_{2}, c_{2} of V_{2} such that $a_{2} \in A_{2}$ and $c_{2} \in V_{2} \backslash A_{2}$ (such a pair of vertices exist because there is at least one path from A_{2} to B_{2} in $\left.G\right)$, a contradiction. So $V(S)$ meets both A_{1} and B_{1}, and the neighborhood of $v_{A, 1}$ in S can be partitioned into two non-empty completes with no edges between them, namely $A_{S}=A_{1} \cap V(S)$ and $\left\{v_{B, 1}\right\}$. By (*) S is an odd hole. Let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ be the neighbors of $v_{A, 1}$ and $v_{B, 1}$ in $V(S) \cap V_{1}$, respectively. Then $S \backslash\left\{v_{A, 1}, v_{B, 1}\right\}$ is an induced even path from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$, a contradiction. This concludes the proof of Theorem 30.

Lemma 31. Let G be an HCH graph such that \bar{G} is a bipartite graph. Then $K(G)$ is perfect.
Proof. In this proof we use the vertices of $K(G)$ and the cliques of G interchangeably. By Theorem 1 , if $K(G)$ is not perfect then it contains an odd hole or an odd antihole.

Let A, B be two disjoint completes of G such that $A \cup B=V(G)$. If there exists a vertex v of G adjacent to every other vertex in G, then v belongs to every clique of G and $K(G)$ is a complete graph, and therefore perfect. So we may assume that no vertex of A is complete to B and no vertex of B is complete to A. Then A and B are cliques of G, and every other clique of G meets both A and B. The degree of A and B in $K(G)$ is $|V(K(G))|-1$, so they cannot be part of an odd hole or an odd antihole in $K(G)$.

It is therefore enough to show that there is no odd hole or antihole in the graph obtained from $K(G)$ by deleting the vertices A and B. We prove a stronger statement, namely that there is no induced path of length 2 in this graph. Since every hole and antihole of length at least 5 contains a two-edge path, the result follows.

Suppose for a contradiction that there are three cliques X, Y, and Z in G, each meeting both A and B, and such that X is disjoint from Z, and both $X \cap Y$ and $Y \cap Z$ are non-empty. From the symmetry we may assume that $X \cap Y$ contains a vertex $a_{x y} \in A$.

Suppose first that there is a vertex $a_{y z} \in A \cap Y \cap Z$. Let b_{y} be a vertex in $Y \cap B$. Since no vertex of B is complete to A, there is a vertex a in A non-adjacent to b_{y}. Since $a_{y z}$ does not belong to X, there is a vertex b_{x} in X non-adjacent to $a_{y z}$, and since A is a complete, b_{x} belongs to B. Analogously, since $a_{x y}$ does not belong to Z, there is a vertex b_{z} in $B \cap Z$ non-adjacent to $a_{x y}$. But now $\left\{a_{x y}, a_{y z}, b_{y}, b_{z}, b_{x}, a\right\}$ induce a 1-, 2-, or 3-pyramid, a contradiction.

So $A \cap Y \cap Z$ is empty, and therefore $B \cap Y \cap Z$ is non-empty, and, by the argument of the previous paragraph with A and B exchanged, $B \cap X \cap Y$ is empty. Choose $b_{y z}$ in $B \cap Y \cap Z$. Choose a_{z} in $Z \cap A$, then $a_{z} \notin X \cup Y$. Since a_{z} does not belong to X, there is a vertex $b_{x} \in X$ non-adjacent to a_{z}, and, since A is a complete, b_{x} is in B. Since $b_{y z}$ does not belong to X and B is a complete, there is a vertex $a_{x} \in A \cap X$ non-adjacent to $b_{y z}$; and since $a_{x y}$ does not belong to Z and A is a complete, there is a vertex $b_{z} \in B \cap Z$ non-adjacent to $a_{x y}$. But now $\left\{a_{z}, a_{x y}, b_{y z}, a_{x}, b_{x}, b_{z}\right\}$ induces a 2- or a 3-pyramid, a contradiction. This proves Lemma 31.

Theorem 32. Let G be a connected interesting HCH claw-free graph, and suppose G admits no twins. Assume that G admits a coherent or a non-dominating W-join (A, B). Then either $K(G)$ is perfect, or there exist induced subgraphs G_{1}, \ldots, G_{k} of G, each smaller than G, such that if G_{i} is K-perfect for every $i=1, \ldots, k$, then so is G.

Proof. Choose a coherent or non-dominating W-join (A, B) with $A \cup B$ minimal. Let C be the vertices complete to A and anticomplete to B, D be the vertices complete to B and anticomplete to A, E be the vertices complete to $A \cup B$, and F be the vertices anticomplete to $A \cup B$. Since the W-join (A, B) is either coherent or non-dominating, it follows that either E is a complete, or F is non-empty.
32.1. $A \cup C, B \cup D$ are both completes, and E is anticomplete to F.

Suppose not. Assume first that there exist two non-adjacent vertices c_{1}, c_{2} in C. Choose a in A and b in B such that a is adjacent to b; now $\left\{a, c_{1}, c_{2}, b\right\}$ is a claw, a contradiction. So C is a complete, and since A is a complete, it follows that $A \cup C$ is a complete. From the symmetry it follows that $B \cup D$ is a complete.

Next assume that there are two adjacent vertices e in E and f in F. Choose a in A and b in B such that a is not adjacent to b. Then $\{e, a, b, f\}$ is a claw, a contradiction. This proves 32.1

Let E_{1} be a clique of $G \mid E$. Let \mathscr{L} be the set of all cliques of $G \mid(A \cup B)$. Let

$$
U=\left\{E_{1} \cup L: L \in \mathscr{L} \text { and } L \neq A, B\right\}
$$

Since E is anticomplete to F, and every member of U meets both A and B, it follows that the members of U are cliques of G.
32.2. We may assume that $|U| \geqslant 2$.

Suppose $|U| \leqslant 1$. Since in G there is at least one edge between A and B, it follows that there is a unique clique L in $G \mid(A \cup B)$ meeting both A and B, and $|U|=1$. Let $A^{\prime}=A \cap L, B^{\prime}=B \cap L$. Then A^{\prime} is complete to $B^{\prime}, A \backslash A^{\prime}$ is anticomplete to B, and $B \backslash B^{\prime}$ is anticomplete to A. Since G does not admit twins, each of $A^{\prime}, A \backslash A^{\prime}, B^{\prime}, B \backslash B^{\prime}$ has size at most one, and by the minimality of $A \cup B$ at most one of $A \backslash A^{\prime}, B \backslash B^{\prime}$ is non-empty. By the symmetry, we may assume that $B \backslash B^{\prime}$ is empty and $\left|A^{\prime}\right|=\left|B^{\prime}\right|=\left|A \backslash A^{\prime}\right|=1$. Let $A^{\prime}=\left\{a_{1}\right\}, B^{\prime}=\left\{b_{1}\right\}$, and $A \backslash A^{\prime}=\left\{a_{2}\right\}$.

If $K\left(G \backslash\left\{a_{2}\right\}\right)=K(G)$ then the theorem holds, so we may assume not. Therefore, there exists a subset E^{\prime} of E such that $M=A \cup E^{\prime}$ is a clique of G. It follows, in particular, that no vertex of C is complete to E.

If $G \mid E$ is complete, consider the cliques $M_{1}=\left\{a_{1}, b_{1}\right\} \cup E$ and $M_{2}=\left\{a_{1}, a_{2}\right\} \cup E$ of G. Since every clique of G containing a_{2} also contains a_{1}, then every clique of G, that has a non-empty intersection with M_{2}, meets M_{1}. Therefore, the vertex w_{1} of $K(G)$, corresponding to M_{1}, dominates the vertex w_{2} of $K(G)$, corresponding to M_{2}. Since $K(G) \backslash\left\{w_{1}\right\}$ is an induced subgraph of $K\left(G \backslash\left\{a_{1}\right\}\right)$ and $K(G) \backslash\left\{w_{2}\right\}=K\left(G \backslash\left\{a_{2}\right\}\right)$, by Theorem 11, $K(G)$ is perfect if $K\left(G \backslash\left\{a_{1}\right\}\right)$ and $K\left(G \backslash\left\{a_{2}\right\}\right)$ are and the theorem holds. So we may assume that E is not a complete.

Next we claim that D is empty. Since E is not a complete, there are two non-adjacent vertices e_{1}, e_{2} in E, and let d in D. If d is non-adjacent to both of e_{1} and e_{2}, then $\left\{b_{1}, e_{1}, e_{2}, d\right\}$ is a claw, a contradiction. Otherwise, $\left\{b_{1}, e_{1}, e_{2}, d, a_{1}, a_{2}\right\}$ induces a 1 - or 2-pyramid, a contradiction. This proves that D is empty.

Since D is empty, every clique disjoint from F contains the vertex a_{1}, and, since every clique containing a vertex of F is disjoint from A, B, and E, it follows that the vertices of $K(G)$ corresponding to the cliques $\left\{a_{1}, b_{1}\right\} \cup E^{\prime}$, with E^{\prime} a clique of $G \mid E$, are simplicial in $K(G)$. By Lemma $6, K(G)$ is perfect if and only if $K\left(G \backslash\left\{b_{1}\right\}\right)$ is. This proves 32.2.
32.3. We may assume that no vertex of B is complete to A, and no vertex of A is complete to B.

Suppose there is a vertex $b \in B$ complete to A. Since A is not complete to B, there is a vertex $b^{\prime} \in B \backslash\{b\}$. By 32.2 , $|A|>1$. But now $(A, B \backslash\{b\})$ is a coherent or non-dominating W-join in G, contrary to the minimality of $A \cup B$. This proves 32.3.

In view of 32.2 and 32.3 , we henceforth assume that $|U| \geqslant 2$, no vertex of A is complete to B, and no vertex of B is complete to A.

32.4. $G \mid E$ is complete.

Since no vertex of B is complete to A, and there is at least one edge between A and B, there is a vertex $a_{1} \in A$ with a neighbor b_{1} and a non-neighbor b_{2} in B. Since b_{1} is not complete to A, there is a vertex $a_{2} \in A$, non-adjacent to b_{1}. Since A, B are both cliques, a_{1} is adjacent to a_{2} and b_{1} to b_{2}. If there exist two non-adjacent vertices e_{1} and e_{2} in E, then $\left\{a_{1}, a_{2}, b_{1}, b_{2}, e_{1}, e_{2}\right\}$ induces a 2 - or a 3 -pyramid in G, a contradiction. This proves 32.4.
32.5. Every vertex of $K(G) \backslash U$ with a neighbor in U is complete to U.

Throughout the proof of 32.5 we use cliques of G and vertices of $K(G)$ interchangeably.
It follows from 32.4 that $E_{1}=E$. Let w be a vertex of $K(G) \backslash U$ with a neighbor in U. Since w has a neighbor in U, it follows that w meets one of A, B, E. If w meets E, then w is complete to U and the result follows. If w includes one of A, B, then since every member of U meets each of A, B, we again deduce that w is complete to U and the result follows. So we may assume that w is disjoint from E, and the sets $w \cap(A \cup B), A \backslash\{w\}$, and $B \backslash\{w\}$ are all non-empty.

Assume first that w meets both A and B. Since w is a clique of $G, C \cup F$ is anticomplete to B, and $D \cup F$ is anticomplete to B, it follows that $w \subseteq A \cup B \cup E$. But now, since w is a clique, it follows that w includes E and w belongs to U, a contradiction. So we may assume that w is disjoint from at least one of A and B.

By the symmetry we may assume that w is disjoint from B, and therefore w meets A. Since $F \cup D$ is anticomplete to A, it follows that w is a subset of $A \cup C \cup E$, and, since w is a clique, w includes A, a contradiction. This proves 32.5 .
32.6. U is a homogeneous set in $K(G)$ and the graph $K(G) \mid U$ is perfect.

It follows from 32.5 that U is a homogeneous set in $K(G)$. The graph $K(G) \mid U$ is isomorphic to the graph obtained from $K(G \mid(A \cup B \cup E))$ by deleting the vertices corresponding to the cliques $A \cup E$ and $B \cup E$. Since $\overline{G \mid(A \cup B \cup E)}$ is bipartite, it follows from Lemma 31 that $K(G) \mid U$ is perfect. This proves 32.6.

Choose $u \in U$.
32.7. If there exist $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$ such that a_{1} is adjacent to b_{1} and not to b_{2}, and a_{2} is adjacent to b_{2} and not to b_{1}, then either $K(G)$ is perfect, or there is an induced subgraph G^{\prime} of G such that $K(G) \backslash(U \backslash\{u\})=K\left(G^{\prime}\right)$.

If there exist non-adjacent $c \in C$ and $e \in E$, then $\left\{a_{1}, a_{2}, e, c, b_{1}, b_{2}\right\}$ induces a 1-pyramid, a contradiction, so C is complete to E, and similarly D is complete to E. By $32.4, G \mid E$ is complete. Since G admits no twins, $|E| \leqslant 1$. If $C \cup D$ is empty, then, since G is connected, F is empty, and G is the complement of a bipartite graph. By Lemma 31, $K(G)$ is perfect. So we may assume that C is non-empty, and, in particular, $A \cup E$ is not a clique of G. But now $K(G) \backslash(U \backslash\{u\})=K\left(G \backslash\left((A \cup B) \backslash\left\{a_{1}, b_{1}, b_{2}\right\}\right)\right)$. This proves 32.7.
To finish the proof, let $a_{1} \in A$ and $b_{1} \in B$ be adjacent. By 32.3, there exist a vertex $b_{2} \in B$, non-adjacent to a_{1} and a vertex $a_{2} \in A$ non-adjacent to b_{1}. If a_{2} is adjacent to b_{2}, then the theorem follows from 32.6, 32.7, and Theorem 10 . So we may assume that a_{2} is non-adjacent to b_{2}. Let $G^{\prime}=G \backslash\left((A \cup B) \backslash\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}\right)$. We deduce from 32.2 that G^{\prime} is smaller than G. Moreover, G^{\prime} is an induced subgraph of G. But $K(G) \backslash(U \backslash\{u\})=K\left(G^{\prime}\right)$, and, together with 32.6 and Theorem 10, this implies that the theorem holds. This proves Theorem 32.

Theorem 33. Let G be an interesting HCH claw-free graph. Suppose G admits a hex-join and no twins and every vertex of G is in a triad. Then $G=C_{6}$.

Proof. Since G admits a hex-join, there exist six completes $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ in G such that A_{1} is anticomplete to A_{2} and complete to B_{2} and $C_{2} ; B_{1}$ is anticomplete to B_{2} and complete to A_{2} and $C_{2} ; C_{1}$ is anticomplete to C_{2} and complete to A_{2} and $B_{2} ; A_{1} \cup B_{1} \cup C_{1}$ and $A_{2} \cup B_{2} \cup C_{2}$ are non-empty; and $V(G)=A_{1} \cup B_{1} \cup C_{1} \cup A_{2} \cup B_{2} \cup C_{2}$. Since every vertex of G is in a triad and no stable set of size three meets both $A_{1} \cup B_{1} \cup C_{1}$ and $A_{2} \cup B_{2} \cup C_{2}$, it follows that A_{i}, B_{i}, C_{i} are all non-empty.

Suppose there is an edge $a_{1} b_{1}^{\prime}$ with a_{1} in A_{1} and b_{1}^{\prime} in B_{1}. Since every vertex is in a triad, there exists a stable set $\left\{a_{2}, b_{2}, c_{2}\right\}$ with a_{2} in A_{2}, b_{2} in B_{2}, and c_{2} in C_{2}, and a stable set $\left\{a_{1}, b_{1}, c_{1}\right\}$ with a_{1} in A_{1}, b_{1} in B_{1}, and c_{1} in C_{1}. Since G is interesting, $a_{1} b_{1}^{\prime} a_{2} c_{1} b_{2} a_{1}$ is not a hole in G, so b_{1}^{\prime} is adjacent to c_{1}. But now $\left\{b_{1}^{\prime}, a_{1}, b_{1}, c_{1}\right\}$ is a claw in G, a contradiction. So A_{1} is anticomplete to B_{1}, C_{1}. Since the vertices of A_{1} are not twins in G, it follows that $\left|A_{1}\right|=1$. From the symmetry, $\left|A_{i}\right|=\left|B_{i}\right|=\left|C_{i}\right|=1$ for $i=1,2$, and $G=C_{6}$. This proves Theorem 33 .

Theorem 34. Let G be an interesting HCH graph. Assume that G admits no twins and no coherent or non-dominating W-join, and contains no stable set of size three. Then $K(G)$ is perfect.

Proof. Since G is claw-free, we may assume G contains either a 4-wheel or a 3-fan, otherwise, by Theorem $16, K(G)$ is bipartite.

Case 1: G contains a 4 -wheel. Let $a_{1} a_{2} a_{3} a_{4} a_{1}$ be a hole and let c be adjacent to all a_{i}. We claim every vertex in G is adjacent to c. Suppose v is non-adjacent to c. Then since G contains no stable set of size three, from the symmetry we may assume v is adjacent to a_{1}, a_{2}. But now $\left\{a_{1}, a_{2}, a_{3}, a_{4}, c, v\right\}$ induces a 1-, 2-, or 3-pyramid, a contradiction. So every clique in G contains c; then $K(G)$ is a complete graph and the result follows. This proves Case 1.

Case 2: G contains a 3-fan and no 4 -wheel. Let A_{1}, \ldots, A_{k} be anticonnected sets in G, pairwise complete to each other, with $k>2,\left|A_{1}\right|>1$, and subject to that with maximal union, say A. (Such sets exist because there is a 3 -fan. Let $c_{1} c_{2} c_{3} c_{4}$ be a path and let c be adjacent to all c_{i}. Then $A_{1}=\left\{c_{1}, c_{3}\right\}, A_{2}=\left\{c_{2}\right\}, A_{3}=\{c\}$ make a family of sets with the desired properties.)

Suppose $\left|A_{2}\right|>1$. Then, since A_{1}, A_{2} are both anticonnected, each of A_{1}, A_{2} contains a non-edge, say $a_{i} b_{i}$. Choose a_{3} in A_{3}. Now $\left\{a_{1}, a_{2}, b_{1}, b_{2}, a_{3}\right\}$ is a 4 -wheel, a contradiction. So for $2 \leqslant i \leqslant k,\left|A_{i}\right|=1$, and let $A_{i}=\left\{a_{i}\right\}$.
(*) No vertex in $V(G) \backslash A$ is complete to more than one of A_{1}, \ldots, A_{k}.

Let v be a vertex in $V(G) \backslash A$ and define $I=\left\{i: 1 \leqslant i \leqslant k\right.$ and v is complete to $\left.A_{i}\right\}$ and $J=\{j: 1 \leqslant j \leqslant k$ and v has a non-neighbor in $\left.A_{j}\right\}$. Suppose $|I|>1$. Define $A_{t}^{\prime}=A_{t}$ for $t \in I$ and $A_{J}^{\prime}=\bigcup_{j \in J} A_{j} \cup\{v\}$. Then $\left\{A_{i}^{\prime}\right\}_{i \in I}, A_{J}^{\prime}$ is a collection of at least three anticonnected sets, pairwise complete to each other, but their union is a proper superset of A, contrary to the maximality of A. This proves (*).
(**) There is no C_{4} in A_{1}.
Otherwise, G contains a 4 -wheel with center a_{2}, a contradiction. This proves $\left({ }^{*} *\right)$.
Since $\left|A_{1}\right|>1$ and A_{1} is anticonnected, A_{1} contains a non-edge, and so, since there is no stable set of size three in G, every vertex of $V(G) \backslash A$ has a neighbor in A_{1}. Let $A^{\prime}=A \backslash A_{1}$. If no vertex of $V(G) \backslash A$ has a neighbor in A^{\prime}, then the vertices of A^{\prime} are twins (they are pairwise adjacent, complete to A_{1}, and anticomplete to $V(G) \backslash A$), a contradiction.

So there exists v in $V(G) \backslash A$ with a neighbor in A_{1} and a neighbor a^{\prime} in A^{\prime}. By $\left(^{*}\right) v$ has a non-neighbor $a^{\prime \prime}$ in A^{\prime}. If v has two non-adjacent neighbors in A_{1}, say x, y, then $x v y a^{\prime \prime} x$ is a 4-hole and a^{\prime} is complete to it, so G contains a 4 -wheel, a contradiction. So the neighbors of v in A_{1} are a complete. Since G has no stable set of size three, the non-neighbors of v in A_{1} are a complete. Thus, $G \mid A_{1}$ is the union of two completes (complement bipartite), and since it is anticonnected the bipartition is unique, say X, Y, both X and Y are non-empty, and every vertex of $V(G) \backslash A$ with a neighbor in A^{\prime} is either complete to X and anticomplete to Y, or complete to Y and anticomplete to X. Let X^{\prime} be the vertices with a neighbor in A^{\prime} and complete to X, Y^{\prime} be the vertices with a neighbor in A^{\prime} and complete to Y. Then, $X^{\prime} \cup Y^{\prime}$ is non-empty, and since there is no stable set of size three in $G, X^{\prime}, Y^{\prime}$ are both completes.

For $i=2, \ldots, k$ let X_{i} be the vertices of X^{\prime} adjacent to a_{i}, and let Y_{i} be defined similarly. By (*), $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$, and the same holds for Y_{i}, Y_{j}. If there is an edge from X to Y then there is no edge from X_{i} to Y_{i}, or else G contains a 4-wheel with center a_{i}.
34.1. $k \leqslant 4$ and $X^{\prime}=X_{i}, Y^{\prime}=Y_{j}$ for some i different from j.

Suppose both X_{2}, X_{3} are non-empty, choose x_{2} in X_{2} and x_{3} in X_{3}. Then $a_{2} x_{2} x_{3} a_{3} a_{2}$ is a hole of length 4, and every x in X is complete to it, so G contains a 4 -wheel, a contradiction. So we may assume that $X^{\prime}=X_{2}$ and, similarly, $Y^{\prime}=Y_{j}$ for some j. If Y_{2} is non-empty, then since x_{2}, y_{2}, a_{3} is not a stable set of size three, x_{2} is adjacent to y_{2}. Since A_{1} is anticonnected, there exist non-adjacent vertices $x \in X$ and $y \in Y$. But now $x x_{2} y_{2} y a_{3} x$ is a hole of length 5 , a contradiction. So Y_{2} is empty and therefore i is different from j, say $j=3$. Since a_{4}, a_{5} are not twins, $k \leqslant 4$. This proves 34.1 .

By 34.1 we may assume that $X^{\prime}=X_{2}, Y^{\prime}=Y_{3}$. Let Z be the vertices of G with no neighbor in A^{\prime}. Then, since G contains no triad, Z is a complete.
34.2. Every vertex in Z is complete to $X^{\prime} \cup Y^{\prime}$ and to one of X, Y.

If some vertex z in Z has a non-neighbor x_{2} in X_{2}, then z, x_{2}, a_{3} is a stable set of size three, a contradiction, so Z is complete to X^{\prime}, and similarly to Y^{\prime}. Next suppose some vertex z in Z has a non-neighbor x in X and a non-neighbor y in Y. Then x is adjacent to y, and there is an odd antipath Q from x to y in $X \cup Y$. By ($\left.{ }^{* *}\right) X \cup Y$ contains no C_{4}, so Q has length 3, say $Q=x y^{\prime} x^{\prime} y$. Since there is no stable set of size three, z is adjacent to y^{\prime} and x^{\prime}. But then $z x^{\prime} x y y^{\prime} z$ is a hole of length 5 , a contradiction. This proves 34.2.

Let Z_{x} be the vertices of Z complete to X, and let $Z_{y}=Z \backslash Z_{x}$.
34.3. If $Z, X^{\prime}, Y^{\prime}$ are all non-empty then the theorem holds.

We may assume Z_{x} is non-empty. Since $a_{2} x_{2} z y_{3} a_{3} a_{2}$ (where $z \in Z, x_{2} \in X_{2}$, and $y_{3} \in Y_{3}$) is not a hole of length 5, X_{2} is complete to Y_{3}. Suppose z in Z_{x} has a neighbor y in Y. Since A_{1} is anticonnected, y has a non-neighbor x in X. But now $a_{3} z a_{2} y_{3} x y x_{2} a_{3}$ (with x_{2} in X_{2} and y_{3} in Y_{3}) is an antihole of length 7, a contradiction. So Z_{x} is anticomplete to Y. Choose z in Z_{x} and non-adjacent x in X and y in Y. Then $z x a_{2} y y_{3} z$ is a hole of length 5, a contradiction. This proves 34.3.
34.4. If Z is empty then the theorem holds.

The pairs (X, Y) and $\left(X_{2}, Y_{3}\right)$ are coherent homogeneous pairs, and, since G does not admit twins or a coherent W-join, all four of these sets have size $\leqslant 1$. Every vertex of G is adjacent to a_{3}, except the vertex x_{2} of X_{2}, if X^{\prime} is non-empty. So every clique of G contains either a_{3} or x_{2}, and therefore $K(G)$ is perfect (it is either a complete graph, or the complement of a bipartite graph). This proves 34.4.

In view of 34.4 , we henceforth assume that $Z \neq \emptyset$. By 34.3 we may assume X^{\prime} is empty, and so Y^{\prime} is non-empty. By 34.1 we may assume $Y^{\prime}=Y_{3}$. Since the vertices of Y_{3} are not twins, $Y_{3}=\left\{y_{3}\right\}$.

34.5. Z is complete to Y.

Suppose not. Choose z in Z, with a non-neighbor y in Y. Then z in Z_{x}. Since A_{1} is anticonnected, y has a non-neighbor x in X. But now $z x a_{2} y y_{3} z$ is a hole of length 5 , a contradiction. This proves 34.5 .

Let M be the set of vertices in X with a neighbor in Z. Suppose some z in Z has adjacent neighbors x in X and y in Y. Then $z x a_{3} y_{3} z$ is a hole of length 4 , and y is complete to it, so G contains a 4 -wheel, a contradiction. This proves that M is anticomplete to Y. Now (Z, M) is a coherent homogeneous pair, and the same for $(X \backslash M, Y)$. Since G admits no twins and no coherent W-join, all four of these sets have size $\leqslant 1$. Also, since a_{2} and a_{4} are not twins, $k=3$. Let $Z=\{z\}$. Every vertex of G different from z is adjacent to a_{3}. So every clique of G contains either a_{3} or z, and then $K(G)$ is perfect (it is the complement of a bipartite graph). This completes the proof of Theorem 34.

Theorem 35. Let G be an interesting HCH claw-free graph, and suppose that G is connected, does not admit a coherent or non-dominating W-join, or a 1 -join, or twins. If G contains a stable set of size three and a singular vertex, then $K(G)$ is perfect.

Proof. The proof is by induction on $|V(G)|$. Assume that, for every smaller graph G^{\prime} satisfying the hypotheses of the theorem, $K\left(G^{\prime}\right)$ is perfect. Let v be a singular vertex in G with maximum number of neighbors (there exists at least one singular vertex in G, by hypothesis). Let A be the set of neighbors of v and B be the set of its non-neighbors. Since v is singular, B is a complete.

Since G contains a stable set of size three, and every such set meets both A and B (because B is a complete, and G is claw-free), there exist vertices in B that are non-singular. Let U be the set of all such vertices.
35.1. If U is anticomplete to A then $K(G)$ is perfect.

Let $B_{2}=B \backslash U$, so every vertex of B_{2} is singular, and, since G is connected, B_{2} is non-empty. Let a_{1}, a_{2} be two non-adjacent vertices in A. If $b \in B_{2}$ is non-adjacent to both a_{1}, a_{2}, then $\left\{b, a_{1}, a_{2}\right\}$ is a stable set of size three, and if b is adjacent to both a_{1}, a_{2} then $\left\{b, a_{1}, a_{2}, u\right\}$ is a claw for every $u \in U$; in both cases we get a contradiction. So every vertex in B_{2} is adjacent to exactly one of a_{1}, a_{2}. Suppose there exist v_{1}, v_{2} in B_{2} with v_{i} adjacent to a_{i}. Then $v_{1} v_{2} a_{2} v a_{1} v_{1}$ is a hole of length 5 , a contradiction. So one of a_{1}, a_{2} is anticomplete to B_{2}, and therefore the other one is complete to B_{2}. Let A_{1} be the vertices in A complete to B_{2}, A_{2} be the vertices in A anticomplete to B_{2}, and $A_{3}=A \backslash\left(A_{1} \cup A_{2}\right)$. It follows from the previous argument that $A_{1} \cup A_{3}$ and $A_{2} \cup A_{3}$ are both completes. If A_{3} is non-empty, then $\left|B_{2}\right|>1$ and $\left(A_{3}, B_{2}\right)$ is a coherent W-join, a contradiction. So we may assume A_{3} is empty. Now $\left(A_{1}, A_{2}\right)$ is a coherent homogeneous pair, and all the vertices of each of U, B_{2} are twins. So all these sets have size at most one and $K(G)$ is the clique graph of an induced subgraph of a four-edge path, and hence perfect. This proves 35.1 .

So we may assume that there exists a non-singular vertex u in B with a neighbor in A. Let M be the set of neighbors of u in A, N the set of non-neighbors. Since u is non-singular, N contains two non-adjacent vertices x, y. Choose m in M. If m is adjacent to both x, y then $\{m, x, y, u\}$ is a claw. If m is non-adjacent to both x, y then $\{v, x, y, m\}$ is a claw. So every vertex in M is adjacent to exactly one of x, y. So there is no complement of an odd cycle in $G \mid N$, and therefore the complement of $G \mid N$ is bipartite and N is the union of two completes.

Let M_{1} be the vertices in M adjacent to x, M_{2} those adjacent to y, then $M_{1} \cup M_{2}=M$ and $M_{1} \cap M_{2}=\emptyset$.
If there exist m_{1} in M_{1} and m_{2} in M_{2} such that m_{1} is adjacent to m_{2}, then the graph induced by $\left\{m_{1}, m_{2}, v, x, y, u\right\}$ is 3 -sun, a contradiction. So there are no edges between M_{1} and M_{2}, M_{1} is anticomplete to y, and M_{2} is anticomplete to x. Since $\left\{v, m, m^{\prime}, y\right\}$ is not a claw for m, m^{\prime} in M_{1}, it follows that M_{1} is a complete, and the same holds for M_{2}.

Case 1: M_{1} and M_{2} are both non-empty. Since A contains no stable set of size three (for otherwise there would be a claw in G), every vertex in N is complete to one of M_{1}, M_{2}. Let N_{3} be the vertices complete to $M_{1} \cup M_{2}, N_{1}$
the vertices of $N \backslash N_{3}$ complete to M_{1}, and N_{2} the vertices of $N \backslash N_{3}$ complete to M_{2}. So $x \in N_{1}$ and $y \in N_{2}$. Since $\left\{m, n, n^{\prime}, u\right\}$ is not a claw for m in M_{1} and n, n^{\prime} in $N_{1} \cup N_{3}$, it follows that $N_{1} \cup N_{3}$ is a complete. Similarly, $N_{2} \cup N_{3}$ is a complete. Suppose N_{3} is non-empty, and choose $n \in N_{3}$. Then n is complete to $(A \cup\{v\}) \backslash\{n\}$, and therefore is singular (for its non-neighbors are a subset of B); and by the choice of v, n and v are twins. Since G admits no twins, it follows that N_{3} is empty. Suppose some n_{1} in N_{1} is adjacent to n_{2} in N_{2}. Choose m_{1}^{\prime} in M_{1} non-adjacent to n_{2} and m_{2}^{\prime} in M_{2} non-adjacent to n_{1}. Then $m_{1}^{\prime} n_{1} n_{2} m_{2}^{\prime} u m_{1}^{\prime}$ is a hole of length 5 , a contradiction. So N_{1} is anticomplete to N_{2}. Suppose n_{1} in N_{1} has a neighbor m_{2}^{\prime} in M_{2}. Then $\left\{m_{2}^{\prime}, n_{1}, y, u\right\}$ is a claw, a contradiction. So N_{1} is anticomplete to M_{2}, and, similarly, N_{2} is anticomplete to M_{1}.

For $i=1,2$ choose m_{i}^{\prime} in M_{i}, and assume that m_{i}^{\prime} has a non-neighbor b_{i} in B. If m_{1}^{\prime} and m_{2}^{\prime} have a common nonneighbor $b \in B$, then $\left\{u, m_{1}^{\prime}, m_{2}^{\prime}, b\right\}$ is a claw, a contradiction. So there are two vertices b_{1} and b_{2} in B such that b_{1} is non-adjacent to m_{1}^{\prime} and adjacent to m_{2}^{\prime}, and b_{2} is non-adjacent to m_{2}^{\prime} and adjacent to m_{1}^{\prime}. But then $m_{1}^{\prime} b_{2} b_{1} m_{2}^{\prime} v m_{1}^{\prime}$ is a hole of length 5 , again a contradiction. So, exchanging M_{1} and M_{2} if necessary, we may assume that M_{1} is complete to B, and, since G admits no twins, $\left|M_{1}\right|=1$, say $M_{1}=\left\{m_{1}\right\}$.

Let b be a vertex of B with a neighbor n_{1} in N_{1}. We claim that b is complete to M_{2} and anticomplete to N_{2}. If b has a non-neighbor m_{2} in M_{2}, then $n_{1} b u m_{2} v n_{1}$ is a hole of length 5 ; and, if b has a neighbor n_{2} in N_{2}, then $\left\{b, n_{1}, n_{2}, u\right\}$ is a claw; in both cases there is a contradiction. This proves the claim.

So every vertex of B is either anticomplete to N_{1}, or complete to M_{2} and anticomplete to N_{2}. Let B_{1} be the set of vertices of B with a neighbor in N_{1}. Then (B_{1}, N_{1}) is a non-dominating homogeneous pair, and, since G does not admit a non-dominating W-join or twins, it follows that $\left|B_{1}\right| \leqslant 1$ and $\left|N_{1}\right|=1$, say $N_{1}=\{x\}$.

Assume that B_{1} is non-empty, let $B_{1}=\left\{b_{1}\right\}$. Let $B_{2}=B \backslash B_{1}$. We claim that in this case B_{2} is complete to M_{2}. If b_{2} in B_{2} has a non-neighbor m_{2} in M_{2}, then $b_{2} \neq b_{1}$ and $\left\{b_{1}, x, m_{2}, b_{2}\right\}$ is a claw, a contradiction. This proves the claim. But now the vertices of M_{2} are all twins, and, since G does not admit twins, $\left|M_{2}\right|=1$. Moreover, (B_{2}, N_{2}) is a non-dominating homogeneous pair, and, since G does not admit a non-dominating W-join or twins, it follows that $\left|B_{2}\right|=\left|N_{2}\right|=1$, so $B_{2}=\{u\}$ and $N_{2}=\{y\}$. But now every clique of G contains either v or b_{1}, and hence $K(G)$ is the complement of a bipartite graph, and therefore perfect. This finishes the case when B_{1} is non-empty.

If B_{1} is empty, $\left(B, M_{2} \cup N_{2}\right)$ is a non-dominating homogeneous pair, and, since G does not admit a non-dominating W-join or twins, it follows that $|B|=\left|M_{2} \cup N_{2}\right|=1$, a contradiction because both M_{2} and N_{2} are non-empty. This finishes the case when both M_{1} and M_{2} are non-empty.

Case 2: One of M_{1}, M_{2} is empty. We may assume that M_{2} is empty, and so M is complete to x and anticomplete to y. Let N_{1} be the set of vertices in N complete to M, N_{2} the set of vertices in N that are anticomplete to M, and let $N_{3}=N \backslash\left(N_{1} \cup N_{2}\right)$.

We claim that $N_{1} \cup N_{3}$ and $N_{2} \cup N_{3}$ are both completes. Choose two different vertices n_{3} in $N_{3} \cup N_{1}$ and n_{1} in N_{1}, and let m be a neighbor of n_{3} in M. Since $\left\{m, u, n_{1}, n_{3}\right\}$ is not a claw, n_{1} is adjacent to n_{3}, and therefore N_{1} is a complete and N_{1} is complete to N_{3}. Next, choose two different vertices n_{3} in $N_{3} \cup N_{2}$ and n_{2} in N_{2}, and let m be a non-neighbor of n_{3} in M. Since $\left\{v, m, n_{2}, n_{3}\right\}$ is not a claw, n_{2} is adjacent to n_{3}, and therefore N_{2} is a complete and N_{2} is complete to N_{3}. Finally, suppose there exist two non-adjacent vertices n_{3} and n_{3}^{\prime} in N_{3}. Since $\left\{m, u, n_{3}, n_{3}^{\prime}\right\}$ is not a claw for any $m \in M$, it follows that no vertex of M is adjacent to both n_{3} and n_{3}^{\prime}. Let m be a neighbor of n_{3} in M and m^{\prime} be a neighbor of n_{3}^{\prime} in M. Then m is non-adjacent to n_{3}^{\prime} and m^{\prime} is non-adjacent to n_{3}, and the graph induced by $\left\{v, m, m^{\prime}, u, n_{3}, n_{3}^{\prime}\right\}$ is a 3 -sun, a contradiction. So N_{3} is a complete. This proves the claim. Since there exist two non-adjacent vertices in N, both N_{1} and N_{2} are non-empty.

35.2. Let b in B be adjacent to n_{3} in N_{3} and to m in M. Then n_{3} is non-adjacent to m.

Suppose they are adjacent. Let m^{\prime} be a non-neighbor of n_{3} in M, and let n_{2} be in N_{2}. Then $n_{3} m v$ is a triangle, b is adjacent to n_{3}, m, n_{2} is adjacent to v and n_{3}, m^{\prime} is adjacent to v and m, and this is a 0 -, 1 -, or 2-pyramid, a contradiction. This proves 35.2.
35.3. Every vertex in N_{1} has a non-neighbor in N_{2}.

Suppose some vertex n_{1} of N_{1} is complete to N_{2}. Then the set of non-neighbors of n_{1} is included in B, and therefore n_{1} is singular, and it is complete to $A \backslash\left\{n_{1}\right\}$. From the choice of v, n_{1} has no neighbor in B, but now n_{1} and v are twins, a contradiction. This proves 35.3.
35.4. M is complete to B.

Let B_{1} be the set of vertices in B that are complete to M. Suppose there exists b_{2} in $B \backslash B_{1}$, and let m be a non-neighbor of b_{2} in M.
35.4.1. $\left|N_{2}\right|=1$ and N_{2} is anticomplete to B.

Let n be in N_{2}. Since $n b_{2} u m v n$ is not a hole of length 5 , it follows that n is non-adjacent to b_{2}, and the same holds for every vertex of $B \backslash B_{1}$. So n is anticomplete to $B \backslash B_{1}$. Since $\left\{b_{1}, b_{2}, m, n\right\}$ is not a claw for $b_{1} \in B_{1}$, it follows that n is anticomplete to B_{1}, and the same holds for every vertex of N_{2}. Therefore N_{2} is anticomplete to B. But now $\{v\} \cup N_{1} \cup N_{3}$ is a clique cutset separating N_{2} from $M \cup B$. By Theorem $12, G$ is either a linear interval graph or G admits twins, or a 0 -join, or a 1-join, or a coherent W-join, or it is not an internal clique cutset; and it follows from the hypotheses of the theorem and from Proposition 28 that we may assume that the last alternative holds, and $\left|N_{2}\right|=1$, say $N_{2}=\left\{n_{2}\right\}$. This proves 35.4.1.
35.4.2. B is anticomplete to N_{3}.

Suppose a vertex $b \in B$ has a neighbor $n \in N_{3}$. By the definition of N_{3}, n has a neighbor m^{\prime} in M. By $35.2, m^{\prime}$ is non-adjacent to b. But now $\left\{n, n_{2}, b, m^{\prime}\right\}$ is a claw, a contradiction. This proves 35.4.2.

Now $M \cup N_{1}$ is a clique cutset separating $\{v\} \cup N_{2} \cup N_{3}$ from B. Since $|B|>1$ and $\left|\{v\} \cup N_{2} \cup N_{3}\right|>1$, it follows from Theorem 12 that G is a linear interval graph, and therefore $K(G)$ is perfect by Proposition 28. This completes the proof of 35.4 .

By 35.4, for every non-singular vertex in B, the set of its neighbors in A is complete to B.
35.5. B is anticomplete to N_{3}.

Suppose some vertex b in B has a neighbor n_{3} in N_{3}. By the definition of N_{3}, n_{3} has a neighbor in M, and this contradicts 35.2. This proves 35.5 .
35.6. N_{3} is empty and $|M|=1$.

If N_{3} is non-empty then $|M|>1$ and $\left(N_{3}, M\right)$ is a coherent homogeneous pair. So N_{3} is empty, but now the vertices of M are twins, so $|M|=1$. This proves 35.6.

It follows from 35.6 that every non-singular vertex in B has at most one neighbor in A, and, since M is complete to B and has size one, every non-singular vertex in B is complete to M and anticomplete to $A \backslash M$. Therefore, the vertices of U are all twins, and, since G admits no twins, $U=\{u\}$. Let $B_{2}=B \backslash U$.
35.7. B_{2} is non-empty.

Otherwise $\left(N_{1}, N_{2}\right)$ is a coherent homogeneous pair, so each of them has size one and $K(G)$ is a three-edge path. This proves 35.7.
35.8. If n_{1} in N_{1} is non-adjacent to n_{2} in N_{2}, then every b in B_{2} is adjacent to exactly one of n_{1}, n_{2}.

Let b_{2} in B_{2}. Since b_{2} in B_{2} is singular, b_{2} is adjacent to at least one of n_{1}, n_{2}. Since $\left\{b_{2}, n_{1}, n_{2}, u\right\}$ is not a claw, b_{2} is non-adjacent to at least one of n_{1}, n_{2}. This proves 35.8.
35.9. No vertex of N_{1} has a neighbor and a non-neighbor in B_{2}.

Suppose n_{1} in N_{1} has a neighbor b_{1} in B_{2} and a non-neighbor b_{2} in B_{2}. By $35.3 n_{1}$ has a non-neighbor n_{2} in N_{2}. By $35.8 n_{2}$ is adjacent to b_{2} and not to b_{1}. But now $b_{1} n_{1} v n_{2} b_{2} b_{1}$ is a hole of length 5, a contradiction. This proves 35.9.

Let N_{11} be the vertices of N_{1} complete to $B_{2}, N_{12}=N_{1} \backslash N_{11}$. So N_{12} is anticomplete to B. It follows from 35.8 that every vertex of N_{2} is either complete to N_{11} or to N_{12}. Let N_{22} be the set of vertices in N_{2} with a non-neighbor in N_{11}.

Then N_{22} is complete to N_{12}. Let N_{21} be the vertices in N_{2} with a non-neighbor in N_{12}. Then N_{21} is complete to N_{11}. Let $N_{23}=N_{2} \backslash\left(N_{21} \cup N_{22}\right)$. So N_{23} is complete to N_{1}. By $35.8 B_{2}$ is anticomplete to N_{22} and complete to N_{21}. Now $\left(B_{2}, N_{23}\right)$ is a coherent homogeneous pair, and all the vertices of $N_{11}, N_{12}, N_{22}, N_{21}$ are twins, so all these sets have size at most one.

Now, every clique of G contains either v or b_{2}, so $K(G)$ is the complement of a bipartite graph, and hence it is perfect. This completes the proof of Theorem 35.

3.2.3. Basic classes

Finally, we show that, if an interesting HCH claw-free graph belongs to one of the basic classes of Theorem 5, then its clique graph is perfect.

Theorem 36. If G is interesting HCH, antiprismatic, and every vertex of G is in a triad, then $K(G)$ is perfect.
Proof. We prove that G contains no 4-wheel or 3-fan, and, then, by Theorem $16, K(G)$ is bipartite.
Suppose G contains a 4 -wheel. Let $a_{1} a_{2} a_{3} a_{4} a_{1}$ be a hole and let c be adjacent to all a_{i}. Since every vertex is in a triad, there are two vertices c_{1}, c_{2} different from $a_{1}, a_{2}, a_{3}, a_{4}$ such that $\left\{c, c_{1}, c_{2}\right\}$ is a stable set. Since G is antiprismatic, every other vertex in G is adjacent exactly to two of $\left\{c, c_{1}, c_{2}\right\}$. In particular, each a_{i} is adjacent either to c_{1} or to c_{2}. If two consecutive vertices of the hole, for instance, a_{1}, a_{2}, are adjacent to the same c_{j}, then $\left\{a_{1}, a_{3}, a_{2}, a_{4}, c, c_{j}\right\}$ induces a 1-, 2-, or 3-pyramid, a contradiction because G is HCH . So, without loss of generality, we may assume that a_{1} and a_{3} are adjacent to c_{1} and not to c_{2}, while a_{2} and a_{4} are adjacent to c_{2}, and not to c_{1}. But then $\left\{a_{1}, a_{2}, a_{3}, c_{2}\right\}$ induces a claw, a contradiction. This proves that G does not contain a 4-wheel.

Suppose now that G contains a 3-fan. Let $a_{1} a_{2} a_{3} a_{4}$ be an induced path and let c be adjacent to all a_{i}. Since every vertex is in a triad, there are two vertices c_{1}, c_{2} different from $a_{1}, a_{2}, a_{3}, a_{4}$ such that $\left\{c, c_{1}, c_{2}\right\}$ is a stable set. Since G is antiprismatic, each a_{i} is adjacent either to c_{1} or to c_{2}. If a_{2} and a_{3} are adjacent to the same c_{j}, then $\left\{a_{1}, a_{3}, a_{2}\right.$, $\left.a_{4}, c, c_{j}\right\}$ induces a $0-, 1-$, or 2-pyramid, a contradiction because G is HCH . So, without loss of generality, we may assume that a_{2} is adjacent to c_{1} and not c_{2}, while a_{3} is adjacent to c_{2} and not c_{1}. Since $\left\{a_{3}, a_{2}, c_{2}, a_{4}\right\}$ is not a claw, a_{4} is adjacent to c_{2}, and, analogously, a_{1} is adjacent to c_{1}. By the same argument applied to the 3-fan induced by the path $a_{2} c a_{4} c_{2}$ and the vertex a_{3}, there is a vertex d adjacent to a_{4} and c_{2} but not adjacent to a_{2}, c, or a_{3}, and so $d \notin\left\{a_{1}, a_{2}, a_{3}, a_{4}, c, c_{1}, c_{2}\right\}$ (see Fig. 14).

Since $c_{1} a_{2} a_{2} a_{4} d c_{1}$ is not a hole of length $5, d$ is non-adjacent to c_{1}. Thus, c_{1}, c, and d form a triad, but the vertex c_{2} is adjacent only to one of them, a contradiction because G is antiprismatic. This concludes the proof of Theorem 36.

Theorem 37. Let $G \in \mathscr{S}_{6}$ be a connected interesting HCH graph such that every vertex of G is in a triad. Then $K(G)$ is perfect.

Proof. Let A, B, and C be the sets of vertices of the graph H_{5} in the definition of the class \mathscr{S}_{6}, and let A_{G}, B_{G}, and C_{G} be those sets intersected with $V(G)$. We remind the reader that $a_{0} \in A_{G}$ and $b_{0} \in B_{G}$ by the definition of \mathscr{S}_{6}. Every triad in G is of the form $\left\{a_{i}, b_{j}, c_{k}\right\}$, since A_{G}, B_{G} and C_{G} are complete sets. Moreover, either $i=j=0$ or $k=i$ and $j=0$ or $k=j$ and $i=0$. Since every vertex of G is in a triad, it follows that A_{G}, B_{G}, and C_{G} are non-empty and if $i \neq 0$ and $a_{i} \in A_{G}$, then $c_{i} \in C_{G}$. Analogously, if $i \neq 0$ and $b_{i} \in A_{G}$, then $c_{i} \in C_{G}$. Let $I_{A}=\left\{i>0: a_{i} \in A_{G}\right\}$, $I_{B}=\left\{i>0: b_{i} \in B_{G}\right\}$, and $I_{C}=\left\{i>0: c_{i} \in C_{G}\right\}$. Then $I_{A} \cup I_{B} \subseteq I_{C}$.

Fig. 14. Situation for the second part of the proof of Theorem 36.

Fig. 15. Last three cases for the proof of Theorem 37.

Assume first that $I_{C} \backslash\left(I_{A} \cup I_{B}\right)$ is non-empty. Since the set $C^{\prime}=\left\{c_{i}: i \in C \backslash\left(I_{A} \cup I_{B}\right)\right\}$ is complete to $V(G) \backslash\left(C^{\prime} \cup\right.$ $\left\{a_{0}, b_{0}\right\}$), and the only cliques containing a_{0} or b_{0} are A_{G} and B_{G}, respectively, it follows that every pair of cliques of G, except for the pair A_{G}, B_{G}, has non-empty intersection. Thus $K(G)$ is a split graph, hence perfect.
So we may assume that $I_{A} \cup I_{B}=I_{C}$. If $\left|I_{A} \cup I_{B}\right| \geqslant 3$, we may assume by switching A and B if necessary that $1,2 \in I_{A}$ and $3 \in I_{C}$, and then the graph induced by $\left\{a_{1}, a_{2}, c_{1}, c_{2}, c_{3}, a_{0}\right\}$ is a 1-pyramid, a contradiction because G is HCH. On the other hand, since G is connected, both I_{A} and I_{B} are non-empty and $\left|I_{A} \cup I_{B}\right| \geqslant 2$. So, without loss of generality, we consider three cases: $I_{A}=I_{B}=\{1,2\}, I_{A}=\{1,2\}$ and $I_{B}=\{2\}, I_{A}=\{1\}$ and $I_{B}=\{2\}$. Graphs obtained in each case are depicted in Fig. 15, with their corresponding clique graphs, which are all perfect. That concludes this proof.

3.2.4. Proof of Theorem 19

First we prove that the clique graph of an interesting HCH claw-free graph is perfect.
Proof of Theorem 26. Let G be an interesting HCH claw-free graph. The proof is by induction on $|V(G)|$, using the decomposition of Theorem 5 . Assume that for every smaller interesting HCH claw-free $G^{\prime}, K\left(G^{\prime}\right)$ is perfect. We show that $K(G)$ is perfect.
If G admits twins, then $K(G)$ is perfect by Lemma 14, and, if G is not connected, then $K(G)$ is perfect by Lemma 15. If G is connected, admits a 1 -join and no twins, then $K(G)$ is perfect by Theorems 29 and 7. If G admits no twins, 0 -, or 1 -joins, but admits a 2 -join, then $K(G)$ is perfect by Theorem 30. If G admits a coherent or non-dominating W-join and no twins, then $K(G)$ is perfect by Theorem 32. If G contains a singular vertex, then $K(G)$ is perfect by Theorems 34 and 35 . So we may assume not. If G admits a hex-join and no twins, then by Theorem 33 $G=K(G)=C_{6}$, and therefore $K(G)$ is perfect.

So we may assume that G admits none of the decompositions of the previous paragraph, and, by Theorem 5, G is antiprismatic, or belongs to $\mathscr{S}_{0} \cup \cdots \cup \mathscr{S}_{6}$.

If $G \in \mathscr{S}_{0}$, then $K(G)$ is perfect by Theorem 23. The graphs icosa(-2), icosa(-1), and icosa(0) contain holes of length 5 , and therefore are not interesting, so $G \notin \mathscr{S}_{1} . G \notin \mathscr{S}_{2}$, because vertices $v_{3}, v_{4}, v_{5}, v_{6}, v_{9}$ induce a hole of length 5 in H_{1} (Fig. 5). If $G \in \mathscr{S}_{3}$, then, by Proposition 28, $K(G)$ is perfect. If $G \in \mathscr{S}_{4}$ then, since G does not contain a singular vertex, G is a line graph and $K(G)$ is perfect by Theorem 23. $G \notin \mathscr{S}_{5}$, because the vertex d_{1} in the definition of the class \mathscr{S}_{5} is singular. If $G \in \mathscr{S}_{6}$, then $K(G)$ is perfect by Theorem 37, and, finally, if G is antiprismatic, then $K(G)$ is perfect by Theorem 36. This completes the proof of Theorem 26.

Now, Theorem 19 is an immediate corollary of the following:
Theorem 38. Let G be claw-free and assume that G is HCH. Then the following are equivalent:
(i) No induced subgraph of G is an odd hole, or $\overline{C_{7}}$.
(ii) G is clique-perfect.
(iii) G is perfect.

Table 1
Forbidden induced subgraphs for clique-perfect graphs in each studied class

Graph classes	Forbidden subgraphs	
HCH claw-free graphs	Odd holes	Theorem 19
	$\overline{C_{7}}$	Theorem 18
Line graphs	Odd holes	$3-$-sun

Proof. The equivalence between (i) and (iii) is a corollary of Theorem 1, because by Proposition 25 HCH graphs contain no antiholes of length at least 8. From Theorem 3 it follows that (ii) implies (i). Finally, by Theorem 26 and Propositions 21 and 25, we deduce that (i) implies (ii), and this completes the proof.

The recognition of clique-perfect HCH claw-free graphs can be reduced to the recognition of perfect graphs, which is solvable in polynomial time [8].

4. Summary

These results allow us to formulate partial characterizations of clique-perfect graphs by forbidden subgraphs, as is shown in Table 1.

Note that in both cases all the forbidden induced subgraphs are minimal.

Acknowledgment

We are grateful to both anonymous referees for their careful reading of the paper and for many helpful remarks. In particular, one of them pointed out to us the linear time recognition algorithm for clique-perfect line graphs, and suggested ideas that allowed us to simplify some of our original proofs.

References

[1] V. Balachandhran, P. Nagavamsi, C. Pandu Rangan, Clique-transversal and clique-independence on comparability graphs, Inform. Process. Lett. 58 (1996) 181-184.
[2] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1985.
[3] C. Berge, M. Las Vergnas, Sur un théorème du type König pour hypergraphes, Ann. New York Acad. Sci. 175 (1970) 32-40.
[4] F. Bonomo, G. Durán, M. Groshaus, J. Szwarcfiter, On clique-perfect and K-perfect graphs, Ars Combin. 80 (2006) 97-112.
[5] F. Bonomo, G. Durán, M. Lin, J. Szwarcfiter, On balanced graphs, Math. Programming Ser. B 105 (2006) 233-250.
[6] A. Brandstädt, V. Chepoi, F. Dragan, Clique r-domination and clique r-packing problems on dually chordal graphs, SIAM J. Discrete Math. 10 (1997) 109-127.
[7] M. Chang, M. Farber, Zs. Tuza, Algorithmic aspects of neighbourhood numbers, SIAM J. Discrete Math. 6 (1993) 24-29.
[8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) $143-187$.
[9] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229.
[10] M. Chudnovsky, P. Seymour, Claw-free graphs. III. Circular interval graphs, submitted for publication.
[11] M. Chudnovsky, P. Seymour, Claw-free graphs. IV. Decomposition theorem, J. Combin. Theory Ser. B, to appear.
[12] V. Chvátal, N. Sbihi, Bull-free berge graphs are perfect, Graphs Combin. 3 (1987) 127-139.
[13] M. Conforti, G. Cornuéjols, R. Rao, Decomposition of balanced matrices, J. Combin. Theory Ser. B 77 (1999) $292-406$.
[14] G. Durán, M. Lin, J. Szwarcfiter, On clique-transversal and clique-independent sets, Ann. Oper. Res. 116 (2002) 71-77.
[15] F. Escalante, Über iterierte clique-graphen, Abh. Math. Sem. Univ. Hamburg 39 (1973) 59-68.
[16] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[17] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169-197.
[18] V. Guruswami, C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Appl. Math. 100 (2000) 183-202.
[19] J. Lehel, Zs. Tuza, Neighborhood perfect graphs, Discrete Math. 61 (1986) 93-101.
[20] P. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (4) (1974) 569-575.
[21] F. Maffray, Kernels in perfect line-graphs, J. Combin. Theory Ser. B 55 (1992) 1-8.
[22] F. Maffray, B. Reed, A description of claw-free perfect graphs, J. Combin. Theory Ser. B 75 (1) (1999) 134-156.
[23] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.
[24] F. Protti, J. Szwarcfiter, Clique-inverse graphs of bipartite graphs, J. Combin. Math. Combin. Comput. 40 (2002) 193-203.
[25] D. Rose, R. Tarjan, G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266-283.
[26] L. Trotter, Line perfect graphs, Math. Programming 12 (1977) 255-259.
[27] A. Tucker, A reduction procedure for coloring perfect K_{4}-free graphs, J. Combin. Theory Ser. B 43 (1987) 151-172.

[^0]: ${ }^{2}$ An extended abstract of this paper was presented at GRACO 2005 (second Brazilian Symposium on Graphs, Algorithms, and Combinatorics) and appeared, under a different title, in Electronic Notes in Discrete Mathematics 19 (2005) 95-101.

 E-mail addresses: fbonomo@dm.uba.ar (F. Bonomo), mchudnov@columbia.edu (M. Chudnovsky), gduran@dii.uchile.cl (G. Durán).
 ${ }^{1}$ Partially supported by UBACyT Grant X184, PICT ANPCyT Grant 11-09112, Argentina, and CNPq under PROSUL Project Proc. 490333/ 2004-4, Brazil.
 ${ }^{2}$ This research was conducted during the period the author served as a Clay Mathematics Institute Research Fellow. The research was conducted in part at Princeton University.
 ${ }^{3}$ Partially supported by FONDECyT Grant 1050747, Millennium Science Nucleus "Complex Engineering Systems", Chile, and CNPq under PROSUL Project Proc. 490333/2004-4, Brazil.

