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Abstract

We consider the Ginzbug–Landau energy in a cylinder in R
3, and a canonical approximation for

critical points with an assembly of n � 2 periodic vortex lines near the axis of the cylinder. We
find a formula for the energy which, up to a large additive constant and to leading order, is the
action functional of the n-body problem with a logarithmic potential in R

2, the axis variable
playing the role of time. A special family of rotating helicoidal critical points of the functional is
found to be non-degenerate up to the invariances of the problem, and therefore persistent under
small perturbations. Our analysis suggests the presence of very complex stationary configurations
for vortex filaments, potentially also involving intersecting filaments.

1. Introduction

Let Ω be a domain in R
N , N � 2. For a small parameter ε > 0, we consider the Ginzburg–

Landau functional

Jε(u) =
∫
Ω

1
2
|∇u|2 +

1
4ε2

(1 − |u|2)2, u ∈ H1(Ω, C), (1.1)

with critical points corresponding to complex-valued solutions of the boundary value problem

ε2Δu + u(1 − |u|2) = 0 in Ω, (1.2)
∂u

∂ν
= 0 on ∂Ω. (1.3)

For N = 2, 3, functional (1.1) is often regarded as a model for the energy arising in the standard
Ginzburg–Landau theory of superconductivity [14] when no external applied magnetic field is
present. In that setting, the complex-valued state of the system u corresponds to a critical
point of Jε in which |u|2 represents the density of the superconductive property of the sample
Ω (Cooper pairs of electrons). The function u is expected to stay away from zero as ε →
0, except on a lower-dimensional zero set, the vortex set, corresponding to a region where
superconductivity is not present. The construction and asymptotic description of critical points
of this energy have been extensively studied following the work by Bethuel, Brezis and Helein
[6]. Among other results, they established the existence of a family of global minimizers of Jε

under the further constraint that u = g on ∂Ω, where g is a smooth function with values into
S1. When n := deg(g, ∂Ω) > 0, it is found in [6] that uε has exactly n zeros (vortices) of local
degree one, which approach, up to subsequences, n distinct points ξj . Moreover,

uε(x) −→ eiϕ(x,ξ)
n∏

j=1

x − ξj

|x − ξj |
=: w(x, ξ), (1.4)

where products are understood in the complex sense and ϕ(x, ξ) is the unique real-valued
harmonic function such that w(x, ξ) = g(x) on ∂Ω. Besides, ξ globally minimizes a renormalized



energy, W (ξ), characterized as the limit

W (ξ) ≡ lim
ρ→0

[ ∫
Ω\

⋃n

j=1
Bρ(ξj)

|∇xw|2 dx − kπ log
1
ρ

]
, (1.5)

for which an explicit expression in terms of Green’s functions is found in [6]. Actually there are
critical points of Jε with the behavior (1.4) developing vortices at other critical points of Wg;
see for instance [5, 22, 23, 26, 34–36]. The gradient flow of the renormalized energy also drives,
in an appropriate sense, the dynamics of vortices by heat flow; see for instance [16, 19, 24, 39].

In reality, the behavior of these solutions near the core of degree 1 vortices is also understood
[30, 34, 36, 43]. A better approximation than w(x, ξ) in (1.4) is actually

wε(x, ξ) = eiϕ(x)
n∏

j=1

wε(x − ξj), wε(x) = w
(x

ε

)
, (1.6)

where w(x) is the standard degree +1 solution of the equation

Δw + (1 − |w|2)w = 0 in R
2,

w(x) = U(r)eiθ, where r, θ designate the usual polar coordinates and U(r) is the unique solution
of the problem

U ′′ +
U ′

r
− U

r2
+ (1 − |U |2)U = 0 in (0,∞),

U(0) = 0, U(+∞) = 1.
(1.7)

For zero Neumann boundary data, a renormalized energy playing a similar role is present for
Jε; see [18, 19, 36, 40–42]. Evaluating the energy of the approximation wε(x, ξ), where in
the Neumann case ϕ is understood to be a harmonic and such that wε satisfies the Neumann
boundary condition, we find that

Jε(wε(·, ξ)) = kπ log
1
ε

+ W (ξ) + c0 + O(ε), (1.8)

where c0 is a constant. In this way, if for a certain ξ the function wε(x, ξ) is approximating an
actual critical point of Jε, we expect that this is in correspondence with a critical point of W .
For the zero Neumann case, an expression for W is given by

W (ξ) = π
∑
i�=j

G(ξi, ξj) − π

k∑
j=1

H(ξj , ξj) + b(ξ),

where G(x, y) is the Green’s function of −Δ in Ω with Dirichlet boundary conditions, H is its
regular part, H(x, y) = G(x, y) + (1/2π) log |x − y|, and b is a smooth function in Ω̄k that is
zero if the domain is simply connected. In this expression we recognize the vortex interaction
term G(ξi, ξj), which raises the energy to +∞ if any two vortices get very close, while −H(ξj , ξj)
pulls the energy to −∞ if the point approaches the boundary. If Ω is an annular domain, this
intuitively yields an equilibrium, min-max situation for points as distant as possible from one
another, as well as from the boundary. It is proved in [36] that an n-vortex solution, an actual
critical point of Jε, exists for any n � 1, with vortices associated to such an equilibrium.

The purpose of this paper is to address the issue of understanding the mechanism analogous
to renormalized energy which drives the energy equilibrium of multiple vortex lines in three
dimensions. In R

3, the concentration of zero sets of solutions with properly bounded energy is
no longer expected to take place at points but, rather, along one-dimensional sets. Of course
the simplest way of obtaining a single vortex line is by considering, for x′ ∈ R

2, z ∈ R, the
solution

wε(x′, z) = w

(
x′ − ξ

ε

)
, ξ ∈ R

2,



which exhibits a vortex filament of sectional degree one along the line x′ = ξ. If this line
intersects the domain Ω exactly on a segment Γ then we easily compute that

Jε(wε) = π|Γ| log
1
ε

+ O(1),

where |Γ| is the length of the segment. Montero, Sternberg and Ziemer [31] proved that,
associated to a segment that orthogonally intersects the boundary that strictly minimizes the
length of curves with endpoints on the boundary, there indeed exists a local minimizer of Jε in
H1(Ω) at this energy level. Their construction is based on Γ-convergence methods developed
in [3, 17]. See also [2, 15] for related results. The asymptotic vortex set for critical points
with energy O(log ε) in dimensions N = 3 or higher has been analysed via geometric measure
theory tools in [4, 7, 27], mostly under Dirichlet boundary conditions: they turn out to be, in a
generalized sense, minimal submanifolds of dimension N − 2 or less. In the context of rotating
Bose–Einstein condensates, a related variational problem for concentration on curves has been
investigated in [1].

Rather puzzlingly, the existence result in [31] asserts that for each n � 1 there exists a local
minimizer uε of Jε with energy at leading order given by nπ|Γ| log(1/ε). One would speculate
that these solutions actually exhibit multiple vortex lines with degree one collapsing onto the
segment, rather than, say, a single line with a higher degree, since, as has been known for some
time, two-dimensional higher-degree vortices are in general unstable.

In this paper we shall derive an expression for the renormalized energy of an assembly of n
vortex lines. Such a formula should take into account the short-range effect due to the repulsive
interaction of two-dimensional vortices of the same degree, and the long-range tendency of each
individual filament to shorten its total length. As we will see, achieving a balance between these
two effects requires the vortex lines to be allowed to approach each other as ε → 0. This aspect
of the problem is quite similar to a ‘clustering of interfaces’ phenomenon recently discovered
for the Allen–Cahn equation in [37]. To clearly isolate the features of the problem that make
it possible for multiple filaments to exist, we shall restrict ourselves to a very simple geometric
situation: that of an infinite cylinder, where we look for solutions of problem (1.2)–(1.3), which
are additionally periodic in the axial direction. In what follows, we fix a number R > 0 and
consider the cylinder in R

3: equations on lines 126, 136.

C = {(x, z) ∈ R
2 × R / |x| < R}.

Given 
 > 0, we are interested in the boundary value problem

ε2Δu + u(1 − |u|2) = 0 in C, (1.9)
∂u

∂ν
= 0 on ∂C, (1.10)

u(x, z + 
) = u(x, z) for all (x, z) ∈ C. (1.11)

Let H1
� (C, C) be the space of all complex-valued functions u defined on C with u(x, z) = u(x, z +


) for all (x, z) which are in H1(Ω, C), where Ω is the periodic cell

Ω = {(x, z) ∈ C / 0 < z < 
 }.

Solutions of this problem correspond to critical points in H1
� (C, C) of the energy Jε in (1.1).

Let us consider the space H1
� (R, R2) of locally H1, R

2-valued functions f with f(z + 
) = f(z).
We want to set up a family of approximate solutions to problem (1.9)–(1.11) in exact analogy

with wε(x, ξ) in (1.6), now in the three-dimensional case, where the parameters are chosen to
be n vortex lines, represented by functions fj ∈ H1

� (R, R2), j = 1, . . . , n. Thus we set

wε(x, z, f) = eiϕ(x,z,f)
n∏

j=1

wε(x − fj(z)), (1.12)



where ϕ =
∑n

j=1 ϕj and ϕj is the unique solution to the problem

Δϕj = 0 in C, (1.13)
∂ϕj

∂ν
= −∂ arg(x − fj(z))

∂ν
on ∂C, (1.14)

ϕj(x, z) = ϕj(x, z + 
) for all (x, z) ∈ C, (1.15)∫
Ω

ϕj = 0, (1.16)

such that, in particular, wε satisfies the zero Neumann boundary condition on ∂C. The mean
value on |x| = R of the right-hand side of (1.14) is actually zero for each z, such that this
problem is indeed solvable. The functions (1.12) represent a family of approximate solutions
to (1.2)–(1.3) parametrized by f ∈ H1

� (R, R2)n, which exhibit the n 
-periodic vortex lines
x = fj(z), z ∈ R.

Let us consider the functional

f ∈ H1
� (R, R2)n �−→ Jε(wε(·, f)). (1.17)

If an actual critical point of Jε in H1
� (C, C) lies close to one particular wε(·, f0), it is then

natural to expect that f0 is approximately stationary for this functional. Thus, it is important
to understand its dependence on f through an expansion similar to (1.8). To this end, we will
rewrite f in the convenient form

f(z) =
f̃(z)√
| log ε|

, (1.18)

and assume the following constraints on f̃ : there is a (large) fixed positive number M such that
for all j, and all k �= j, we have

‖f̃j‖H1(0,�) � M, |f̃k(z) − f̃j(z)| � M−1 for all z ∈ (0, 
). (1.19)

Our main result reads as follows.

Theorem 1.1. The following asymptotic formula holds:

Jε

(
wε

(
·, 1√

| log ε|
f̃

))
= nπ
 log

1
ε

+ I0(f̃) + cε +
1√

| log ε|
Θε(f̃), (1.20)

where

I0 [̃f ] =
1
2
π

n∑
j=1

∫ �

0

|f̃ ′
j |2 dz − π

∑
k �=j

∫ �

0

log |f̃k − f̃j | dz, (1.21)

cε = c1 log | log ε| + c2 for certain constants c1, c2, and the functions Θε(f̃), DΘε(f̃) and
D2Θε(f̃) are uniformly bounded for f̃ in H1

� (R, R2)n satisfying constraints (1.19) and all small
ε > 0.

The functional I0 is nothing but the action functional associated to the n-body problem for
a logarithmic gravitational potential in R

2 if the third spatial variable z is interpreted as time.
Its Euler–Lagrange equation becomes

f̃ ′′
k + 2

∑
j �=k

f̃k − f̃j

|f̃k − f̃j |2
= 0, k = 1, . . . , n. (1.22)

Thus, one may conjecture that there exists a critical point of Jε of the form (1.12), associated
to an 
-periodic solution f̃0 of (1.22). Such a critical point would have n vortex lines with



degree 1, close to the curves

x′ =
1√

| log ε|
f̃j0(z), j = 1, . . . , n,

which collapse, at a rather slow rate O(1/
√

| log ε|), onto the z-axis. Proving such a result is a
challenging problem. Its analog in the two-dimensional case, already known for renormalized
energy of points, requires considerable analysis. A simpler problem with a similar feature is
that of finding solutions with multiple interfaces in the Allen–Cahn equation in R

2, which have
been rigorously built in [37]. In that problem the location of the interfaces is determined by
the Toda system, describing (in its mechanical interpretation) an assembly of particles on a
line with an interaction of exponential forces between the nearest neighbors.

It is of course reasonable to ask for simple solutions of system (1.22) which have a chance
to represent vortex filaments. This system appears in a different fluid-dynamical setting, and
special helicoidal solutions were analysed for stability of the associated Schrödinger flow by
Klein, Majda and Damodaran [21], and by Kenig, Ponce and Vega [20]. We prove in § 2 that
in our setting there are indeed critical points of the functional

Iε(f̃) := Jε

(
wε

(
·, 1√

| log ε|
f̃

))
(1.23)

with this type of pattern. This makes it natural to conjecture then that, also, a critical point of
Jε close to wε(·, (1/

√
| log ε|)f̃n)) indeed exists. We postpone the proof of Theorem 1.1 to § 3.

2. Existence of helicoidal vortex-lines

For each n > 1, we see that the array f̃n with components in R
2, again identified with C,

given by

f̃n
k (z) = Rne 2πiz/�e 2πi(k−1)/n, k = 1, . . . , n,

Rn =


√

n − 1
2π

(2.1)

is an 
-periodic solution of system (1.22), the Euler–Lagrange equation for the functional I0.
These solutions can be simply described as an assembly of vortex lines located at the vertices of
a regular n-polygon and twisting around one another once over one period. Let us consider the
functional Iε(f̃) defined in (1.23), which according to Theorem 1.1 lies close in the C2-sense
(up to an additive constant) to I0 uniformly on functions f̃ that satisfy constraints (1.19).
Thus, it is expected that if f̃ is (in a suitable sense) a non-degenerate critical point of I0, then
there exists a critical point of Iε, f̃ε ≈ f̃ . The detailed statement is as follows.

Theorem 2.1. There exists a critical point f̃n
ε in H1

� (R, R2)n of the functional Iε given by
(1.23), such that

f̃n
ε = f̃n + o(1)

with o(1) → 0 in H1
� -sense as ε → 0.

Proof. As we will argue next, non-degeneracy of f̃n holds once we restrict the functional,
taking into account its natural invariances. If we restrict the space to the linear constraint
Re

∫�

0
f̃n′ ¯̃f dz = 0 then a critical point of Iε under this constraint will be such that

DIε(f̃n)[g] = λ Re
∫ �

0

f̃n′ḡ dz



for some Lagrange multiplier λ. However, since the functional is invariant under translations
of its argument in the z-variable, we see that DIε(f̃)[̃f ′] = 0, and hence a constrained critical
point close to fn is a full critical point. On the other hand, let us consider this functional
restricted to the subspace of functions f̃ with n-polygonal symmetry, namely such that

f̃k(z) = f̃1(z)e 2πi(k−1)/n, k = 1, . . . , n.

Critical points of the restriction of Iε to this space are unconstrained critical points because of
the natural rotation invariance of this functional inherited from the symmetries of the problem.
It is thus sufficient to analyse the non-degeneracy of the above critical points of I0 only for
perturbations subject to this space which are, in addition, L2-orthogonal to f̃n. This amounts
to considering the eigenvalue problem for the linearization of system (1.22) around f̃n,

Lφ = −μφ, (2.2)

where φ = (φ1, . . . , φn) and

(Lφ)k = φ′′
k + 2

∑
j �=k

φk − φj

|f̃n
k − f̃n

j |2
− 4

∑
j �=k

(f̃n
k − f̃n

j )Re [(φk − φj)(f̃n
k − f̃n

j )]

|f̃n
k − f̃n

j |4
, (2.3)

subject to φ of the form

φk = ϕe 2πi(k−1)/n, k = 1, . . . , n, (2.4)

where ϕ is an 
-periodic function, such that φ = (φ1, . . . , φn) in addition satisfies

Re
∫ �

0

fn′φ̄ dz = 0. (2.5)

Substituting φ of this form into (2.2) for any k yields the single equation for ϕ,

ϕ′′ + 2ϕ
∑
j �=k

1 − e 2πi(j−k)/n

|f̃n
k − f̃n

j |2
− 4

∑
j �=k

hn
kjRe [ϕgn

kj ]

|f̃n
k − f̃n

j |4
= −μϕ, (2.6)

where

hn
kj = (f̃n

k − f̃n
j )e−2πi(k−1)/n, gn

kj = (f̃n
k − f̃n

j )(e−2πi(k−1)/n − e−2πi(j−1)/n).

We notice that in general (that is, without assuming (2.4)), this eigenvalue problem is rather
delicate, as the stability analysis of these solutions in [20, 21] shows.

Writing ϕ in (2.6) in the form

ϕ = iRne 2πiz/�ψ, ψ = ψ1 + iψ2, (2.7)

with ψ1 and ψ2 real-valued, we get the following eigenvalue problem to solve:

ψ′′
1 − 2mψ′

2 = −μψ1, (2.8)

ψ′′
2 + 2mψ′

1 − 2m2ψ2 = −μψ2, (2.9)

where we have denoted m = 2π/
. The pair (ψ1, ψ2) will be an 
-periodic solution of this system
if and only if it corresponds to the real or imaginary part of a C

2-valued solution of the form

e 2πiβz/�(1, α), β ∈ Z, α ∈ C.

From (2.8)–(2.9) we get the following system for α, μ:

−β2 − 2iαβ = − μ

m2
,

−αβ2 + 2iβ − 2α = − μ

m2
,



and hence, given β ∈ Z, we have two solutions μβ,j , j = 1, 2:

μβ,1 =
(

2π




)2

[β2 + 1 +
√

4β2 + 1], (2.10)

μβ,2 =
(

2π




)2

[β2 + 1 −
√

4β2 + 1]. (2.11)

As functions of β, the eigenvalues μβ,1 are easily seen to be positive for each β ∈ Z. On the
other hand μβ,2 = 0 if and only if β = 0 or β =

√
2. In the latter case β is not an integer, while

in the former the eigenfunction corresponds to ψ1 = 1, ψ2 = 0. However, this is incompatible
with the orthogonality relation (2.5). In either case, μβ,2 �= 0, and hence (constrained to the
invariances assumed) the critical point f̃n of I0 is non-degenerate. C2-closeness thus implies
the presence of a critical point of Iε close to it.

Remark 2.1. We point out that these helicoidal solutions had been previously analysed for
vortex filaments derived formally from some limit in Navier–Stokes equations; see [20, 21]. In
that context, it has been established that the solutions f̃n are actually stable (for perturbations
in H1(R)n) for n = 2, 3 for the Hamiltonian flow associated to I0, namely as a stationary state
of the Shrödinger equation

−if̃kt = f̃ ′′
k + 2

∑
j �=k

f̃k − f̃j

|f̃k − f̃j |2
, k = 1, . . . , n.

It is interesting to mention that this is exactly the system arising formally from the Gross–
Pitaievski equation

−iut = Δu +
(1 − |u|2)u

ε2

when substituting the evolution of an n-vortex line array of the form (1.12). A single helicoidal
traveling vortex line was built rigorously in [12]. If, instead, heat flow is considered, then these
helicoidal patterns should be unstable, since the linearization being analysed always has a
negative eigenvalue. Analyses of evolution of vortex lines by heat flow are contained in [8, 25,
28, 38].

Remark 2.2. The simple solutions considered here are of course non-colliding. On the other
hand, system (1.22) does have colliding periodic solutions. Indeed, if we consider for instance
the case n = 2, and allow f1 = −f2 = ρ(z) with ρ real-valued, then the equation resulting for
ρ is just

ρ′′ +
2
ρ

= 0

such that along the solutions,
1
2
|ρ′|2 + 2 log ρ = E

for a constant E. Direct integration then yields the existence of a unique value of E such
that ρ(0) = 0, ρ′(
/2) = 0. Even reflections provide a weak, 
-periodic solution of the problem
with finite energy. It would be interesting to understand whether these colliding vortex lines
correspond in some sense to solutions of the Ginzburg–Landau equation. Even at the formal
level this problem has yet to be understood. Notice that a cross-section for each fixed z exhibits
two vortices of degree one when the filaments are ‘well’ separated and a vortex of degree two
when they merge.



In general, because of the analogy with the n-body problem, besides the helicoidal filaments
the functional I0 is expected to have quite an exotic set of critical points; see for instance
[11, 32]. Describing them in general and proving that they are non-degenerate and do not
have collisions seems a difficult problem. Some recent developments in the analysis of the
action functional under symmetries (see [13, 29]) could be applicable here. The real challenge
from the point of view of the original Ginzburg–Landau problem is to show that the critical
points of I give rise to critical points of Jε. This would mean carrying out a program similar to
that for the planar vortex problem that began with the formal argument in [33], which later
led to rigorous results starting with [6]. The method used in [37] to treat the phenomenon of
clustering of interfaces in the Allen–Cahn equation could be one possible way to justify the
formal results of the present paper. The main step in [37] is the analysis of the linearized
Allen–Cahn operator. It seems then that in the context of Ginzburg–Landau equation one
would have to start with analogous results.

3. Asymptotic expansion of the renormalized energy

In this section we will prove Theorem 1.1. In what follows we will often use various asymptotic
formulae for the solution of (1.7). They can be found, for example, in [10].

We consider an arrangement of n vortex filaments f = (f1, . . . , fn) with fk ∈ H1
� (R, R2),

k = 1, . . . , n, satisfying the estimates

|fk(z)| � M

| log ε|1/2
∀z ∈ (0, 
), (3.1)

|fk(z) − fj(z)| � M−1

| log ε|1/2
∀k �= j, z ∈ (0, 
) (3.2)

for a given positive number M . The main ingredient in the proof of Theorem 1.1 is the following
result.

Lemma 3.1. There is a constant c depending only on n and 
 such that for any f ∈ H1
� (R)n

satisfying (3.1)–(3.2) we have

Jε(wε(·, f)) = nπ
 log
1
ε

+ c + I(f),

where

I(f) =
1
2
π log

1
ε

∫ �

0

|f ′|2 dz − 2π
∑
k<m

∫ �

0

log |fk − fm| dz +
∫ �

0

N(f) dz, (3.3)

with ∫ �

0

|N(f)| dz � C[| log ε|1/2‖f‖2
H1

�
(R)n + ‖f‖H1

�
(R)n + ε| log ε|p]

+C

∫ �

0

(ε| log ε|p + |f ′|2)max
k �=m

∣∣ log |fk − fm|
∣∣.

Here C and p are constants independent of ε and f .

Proof. We will introduce the following notation:

w∗ = U∗e i(Θ+ϕ), where U∗ = |w∗|, ϕ =
n∑

k=1

ϕk, Θ =
n∑

k=1

arg (x − fk(z)).



For brevity we will also denote

Uk = U

(
|x − fk(z)|

ε

)
, θk = arg (x − fk(z)), Uǩ =

∏
j �=k

Uj .

With this notation we get
∫
C
|∇w∗|2 =

∫
C
|∇(Θ + ϕ)|2|U∗|2 +

∫
C
|∇U∗|2

= I[f ] +
∫
C
|∇U∗|2,

where we have made use of the definition of ϕ and, in particular, the fact that ∂(Θ + ϕ)/∂ν = 0
on ∂T . Let us set

I[f ] =
∫
C
|∇Θ|2|U∗|2 + 2

∫
C
∇Θ · ∇ϕ|U∗|2 +

∫
C
|∇ϕ|2|U∗|2

= I1[f ] + I2[f ] + I3[f ]. (3.4)

The main term in the expansion of Jε turns out to be the one related to I1[f ]. We will now
calculate its approximate formula. Observe that

I1[f ] =
∑
k,m

∫
C
∇⊥

x log |x − fk(z)| · ∇⊥
x log |x − fm(z)||U∗|2

+
∑
k,m

∫
C
(f ′

k(z) · ∇⊥
x log |x − fk(z)|)(f ′

m(z) · ∇⊥
x log |x − fm(z)|)|U∗|2

=
∑
k,m

Akm +
∑
k,m

Bkm, (3.5)

where we have denoted ∇⊥
x = (−∂/∂x2, ∂/∂x1). In computing Akm, Bkm we will consider two

cases.

Case 1. For k = m, we have

Akk =
∫
C
|∇x log |x − fk(z)||2|U∗|2 =

∫ �

0

dz

∫
Ωk(z)

|∇x log |x − fk(z)||2|U∗|2,

where Ω(z) = {x | (x, z) ∈ C}. Let us denote Γ(x − ξ) = log |x − ξ|. Integrating by parts we get
∫
Ω(z)

∣∣∇x log |x − fk(z)|
∣∣2|U∗|2

∣∣∇x log |x − fk(z)|
∣∣2|U∗|2

=
∫
∂Ω(z)

Γ(x − fk(z))
∂Γ(x − fk(z))

∂ν
|U∗|2 dS

−
∫
Ω(z)

Γ(x − fk(z))ΔΓ(x − fk(z))(U∗)2 dx

−
∫
Ω(z)

Γ(x − fk(z))∇Γ(x − fk(z))∇(U∗)2 dx. (3.6)

We have ∫
∂Ω(z)

Γ(x − fk(z))
∂Γ(x − fk(z))

∂ν
|U∗|2 dS = 2π log R + O(|fk(z)|).



The second integral in (3.6) is equal to 0. The last integral can be decomposed as follows:

−
∫
Ω(z)

Γ(x − fk(z))∇Γ(x − fk(z))∇(U∗)2

= −2
∫
Ω(z)

U∗UǩΓ(x − fk(z))∇Γ(x − fk(z)) · ∇Uk dx

− 2
∑
j �=k

∫
Ω(z)

U∗UǰΓ(x − fk(z))∇Γ(x − fk(z)) · ∇Uj dx.

Changing variables, we have

ξ =
x − fk(z)

ε
, (3.7)

and denoting the image of Ω(z) under this change of variables by Ωε(z), we get

− 2
∫
Ω(z)

U∗UǩΓ(x − fk(z))∇Γ(x − fk(z)) · ∇Uk dx

= −2
∫
Ωε(z)

U2
ǩ
(εξ + fk) log |εξ|UU ′

|ξ| dξ

= −2
∫
Ωε(z)

log |εξ|UU ′

|ξ| dξ − 2
∫
Ωε(z)

[U2
ǩ
(εξ + fk) − 1] log |εξ|UU ′

|ξ| dξ

= 2π log
1
ε
− 4π

∫∞

0

UU ′ log r dr + O(ε| log ε|p),

for f satisfying (3.1)–(3.2), with some p > 0. Finally, we get

Akk = 2π
 log
1
ε
− 4π


∫∞

0

UU ′ log r dr + 2π
 log R +
∫ �

0

Q1(f), (3.8)

where ∫ �

0

|Q1(f)| � C(‖f‖L2
�
(R) + ε| log ε|p).

To compute Bkk we will write

Bkk =
∫
C
[f ′

k · ∇⊥
x Γ(x − fk)]2(U∗)2

=
∫ �

0

dz

∫
Ω(z)

[f ′
k · ∇⊥

x Γ(x − fk)]2(U∗)2 dx,

and then decompose, denoting the unit tangent of ∂Ω(z) by τ ,∫
Ω(z)

[f ′
k · ∇⊥

x Γ(x − fk)]2(U∗)2 dx (3.9)

=
∫
∂Ω(z)

Γ(x − fk)[f ′
k · ∇⊥

x Γ(x − fk)(U∗)2](f ′
k · τ) dS

−
∫
Ω(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)](U∗)2 dx

− 2
∫
Ω(z)

Γ(x − fk)U∗[f ′
k · ∇⊥

x Γ(x − fk)]f ′
k · ∇⊥

x U∗. (3.10)

For the first integral above we get∫
∂Ω(z)

Γ(x − fk)[f ′
k · ∇⊥

x Γ(x − fk)(U∗)2](f ′
k · τ) dS = |f ′

k|2[2π log R + O(|fk|)].



Denoting Ck(z) = {|x| < R − 2|fk(z)|}, we can write the second integral as

∫
Ω(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)](U∗)2 dx

=
∫
Ck(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k dx

+
∫
Ω(z)\Ck(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k dx

+
∫
Ω(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k (U2

ǩ
− 1) dx. (3.11)

Changing variables as in (3.7) we get, by a direct calculation,

∫
Ck(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k dx

=
∫
|ξ|<(R−2|fk(z)|)/ε

U2 log |εξ|f ′
k · ∇⊥

ξ [f ′
k · ∇⊥

ξ log |ξ|] dξ

= 0.

Denoting by Ωε(z) the image of Ω(z) under the change of variables (3.7) and by Ckε(z) the set
{|ξ| < (R − 2|fk(z)|)/ε}, we obtain

∫
Ω(z)\Ck(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k dx

=
∫
Ωε(z)\Ckε(z)

U2 log |εξ|f ′
k · ∇⊥

ξ [f ′
k · ∇⊥

ξ log |ξ|] dξ

= Q2(fk), (3.12)

where Q2(fk) is a smooth function of fk, f ′
k such that

|Q2(fk)| � C|f ′
k|2|fk|. (3.13)

Finally, for f ∈ H1
� (R) satisfying (3.1)–(3.2), the last integral in (3.11) is estimated as follows:

∫
Ω(z)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k (U2

ǩ
− 1) dx

=
∫
B(fk,δε)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k (U2

ǩ
− 1)

+
∑
l �=k

∫
B(fl,δε)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k (U2

ǩ
− 1)

+
∫
Ω(z)\∪B(fl,δε)

Γ(x − fk)f ′
k · ∇⊥

x [f ′
k · ∇⊥

x Γ(x − fk)]U2
k (U2

ǩ
− 1)

= O(ε| log ε|p)|f ′
k|2,

where δε = 1/| log ε|4.



Now we will deal with the last integral in (3.10). We have

− 2
∫
Ω(z)

Γ(x − fk)U∗[f ′
k · ∇⊥

x Γ(x − fk)]f ′
k · ∇⊥

x U∗

= −2ε−1

∫
Ω(z)

Γ(x − fk)
[f ′

k · (x − fk)⊥]2

|x − fk|3
U ′

kUk

− 2ε−1

∫
Ω(z)

Γ(x − fk)
[f ′

k · (x − fk)⊥]2

|x − fk|3
U ′

kUk[U2
ǩ
− 1]

− 2ε−1
∑
j �=k

∫
Ω(z)

Γ(x − fk)
{

[f ′
k · (x − fk)⊥]
|x − fk|2

f ′
k · (x − fj)⊥

|x − fj |

}
U ′

jUjU
2
ǰ

=
{

π log
1
ε
− 2π

∫∞

0

UU ′ log r dr

}
|f ′

k|2 + Q3(f)O(ε| log ε|p),

for some p > 0, where Q3 is a smooth function of f , f ′ such that for f satisfying (3.1)–(3.2)
we have:

|Q3(f)| � C|f ′|2. (3.14)

Summarizing the above we get

Bkk = π
 log
1
ε

∫ �

0

|f ′
k|2 dz +

∫ �

0

Q4(f) dz, (3.15)

where ∫ �

0

|Q4(f)| � C‖f ′‖2
L2

�
(R)[1 + ‖f‖H1

�
(R) + O(ε| log ε|p)].

Continuing now the calculation of (3.5), we consider Case 2: k �= m.

Case 2. Fixing k �= m, we get

Akm =
∫
C
|U∗|2∇⊥

x Γ(x − fk) · ∇⊥
x Γ(x − fm(z))

=
∫ �

0

dz

∫
∂Ω(z)

|U∗|2Γ(x − fk)
∂Γ(x − fm)

∂ν
dS

−
∫ �

0

dz

∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇|U∗|2 dx.

The first integral above is estimated in a similar manner as in Case 1, namely
∫
∂Ω(z)

|U∗|2Γ(x − fk)
∂Γ(x − fm)

∂ν
dS = 2π log R + O(|f |). (3.16)

The second integral is decomposed as follows:

−
∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇|U∗|2 dx

= −
∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇U2
m dx

−
∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇(|U∗|2 − U2
m) dx. (3.17)



We have, using the change of variables (3.7),

−
∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇U2
m dx

= −2 log |fk − fm|
∫
Ωε(z)

UU ′

|ξ| dξ − 2
∫
Ωε(z)

log
( |εξ + fm − fk|

|fm − fk|
)UU ′

|ξ| dξ

= −2π log |fk − fm| + O(ε| log ε|p). (3.18)

The last integral in (3.17) is estimated as follows:

−
∫
Ω(z)

Γ(x − fk)∇Γ(x − fm) · ∇(|U∗|2 − U2
m) dx

= −2
∫
Ω(z)

[Um(U2
m̌ − 1)]Γ(x − fk)∇Γ(x − fm) · ∇Um dx

− 2
∫
Ω(z)

U2
mUm̌Γ(x − fk)∇Γ(x − fm) · ∇Um̌ dx

= O(ε| log ε|p).
Summarizing (3.15)–(3.18), we get

Akm = −2π

∫ �

0

log
(
|fk − fm|

R

)
+

∫ �

0

Q5(f), (3.19)

where ∫ �

0

|Q5(f)| � C(‖f‖L2
�
(R) + ε| log ε|p).

Now we will deal with Bkm, k �= m. We have

Bkm =
∫ �

0

dz

∫
Ω(z)

|U∗|2[(f ′
k)⊥ · ∇xΓ(x − fk)][(f ′

m)⊥ · ∇xΓ(x − fm)] dx.

Integrating by parts we get∫
Ω(z)

|U∗|2[(f ′
k)⊥ · ∇xΓ(x − fk)][(f ′

m)⊥ · ∇xΓ(x − fm)] dx

=
∫
∂Ω(z)

|U∗|2Γ(x − fk)[(f ′
m)⊥ · ∇xΓ(x − fm)](f ′

k)⊥ · ν dS

−
∫
Ω(z)

|U∗|2Γ(x − fk)(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

−
∫
Ω(z)

Γ(x − fk)[(f ′
m)⊥ · ∇xΓ(x − fm)](f ′

k)⊥ · ∇x|U∗|2 dx. (3.20)

The first integral in (3.20) is estimated in a similar way as in (3.16) except for the extra factor,
which is of the order O(|f ′|2). Thus we get∫ �

0

dz

∫
∂Ω(z)

|U∗|2Γ(x − fk)[(f ′
m)⊥ · ∇xΓ(x − fm)](f ′

k)⊥ · ν dS =
∫ �

0

Q6(f) dz, (3.21)

where ∫ �

0

|Q6(f)| � C‖f ′‖2
L2

�
(R).

To estimate the second integral in (3.20) we decompose the domain of integration Ω(z) into
three subsets as follows:

E1 = {|x − fm| � δε}, E2 = {|x − fk| � δε}, E3 = Ω(z) \ (E1 ∪ E2),



where δε = 1/| log ε|4. In E1 we will write

log |x − fk| = log
∣∣∣∣ x − fm

|fm − fk|
+

fm − fk

|fm − fk|

∣∣∣∣ + log |fm − fk|.

Notice that ∣∣∣∣log
∣∣∣∣ x − fm

|fm − fk|
+

fm − fk

|fm − fk|

∣∣∣∣
∣∣∣∣ � C

|x − fm|
|fm − fk|

.

Using this we can estimate∣∣∣∣
∫
E1

|U∗|2Γ(x − fk)(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

∣∣∣∣
�

∣∣∣∣
∫
E1

|U∗|2 log |fm − fk|(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

∣∣∣∣
+ C

∫
E1

|U∗|2 |x − fm|
|fm − fk|

|(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥| dx

� C|f ′|2 δε

|fm − fk|

� C
|f ′|2

| log ε|2 .

To estimate the integral over E2 we write∣∣∣∣
∫
E2

|U∗|2Γ(x − fk)(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

∣∣∣∣
� C

|f ′|2
|fm − fk|2

∫
E2

∣∣ log |x − fk|
∣∣ dx

� C|f ′|2 δ2
ε | log δε|

|fm − fk|2

� C
|f ′|2

| log ε|2 .

Finally in E3 we have∣∣∣∣
∫
E3

|U∗|2Γ(x − fk)(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

∣∣∣∣
� C| log δε||f ′|2

∫
{|x−fm|>δε}

|D2
xΓ(x − fm)| dx

� C| log δε||f ′|2
∫2R/ε

δε/ε

dr

r

� C log2 | log ε||f ′|2.

Thus for functions f ∈ H1
� (R)n satisfying (3.1)–(3.2) we get

∫ �

0

dz

∫
Ω(z)

|U∗|2Γ(x − fk)(f ′
k)⊥ · D2

xΓ(x − fm) · (f ′
m)⊥ dx

= O(log2 | log ε|)
∫ �

0

Q7(f) dz, (3.22)

where ∫ �

0

|Q7(f)| � C‖f ′‖2
L2

�
(R).



Finally, to find the asymptotic formula for the last integral in (3.20) we use the same approach
as in (3.17)–(3.19) to get∫ �

0

dz

∫
Ω(z)

Γ(x − fk)[(f ′
m)⊥ · ∇xΓ(x − fm)](f ′

k)⊥ · ∇x|U∗|2 dx

=
∫ �

0

P (f) log |fk − fm| dz, (3.23)

where
|P (f)| � C(|f ′|2 + O(ε| log ε|p). (3.24)

Summarizing, we have

Bkm = O(log | log ε|)
∫ �

0

Q8(f) dz +
∫ �

0

P (f) log |fk − fm| dz, (3.25)

where ∫ �

0

|Q8(f)| � C‖f ′‖2
L2

�
(R).

Let us go back to the expression for I1 in (3.5). We have just shown that

I1[f ] = 2nπ
 log
1
ε

+ c0 + π log
1
ε

∫ �

0

|f ′|2 dz − 4π
∑
k<m

∫ �

0

log |fk − fm| dz +
∫ �

0

N1(f), (3.26)

where the non-linear term N1(f) satisfies∫ �

0

|N1(f)| dz � C

[
‖f‖L2

�
(R) + O(log | log ε|)‖f ′‖2

H1
�
(R)

+
∫ �

0

P (f)max
k �=m

∣∣ log |fk − fm|
∣∣ dz + O(ε| log ε|p)

]
, (3.27)

with P (f) satisfying (3.24). From our argument it is seen that I1[f ] is a well-defined functional
for all functions f satisfying (3.1)–(3.2). Let us also observe that

Jε

(
wε

(
·; 1√

| log ε|
f̃

))
=

1
2
I1[f ] + . . . .

We will now consider functionals I2[f ] and I3[f ] defined in (3.4). We want to show that they
are also well defined in H1

� (R)n. To this end, given f ∈ H1
� (R) let us examine the function

ϕ(x, z; f) which is the unique solution of (1.13)–(1.16). We have

I2[f ] = 2
∫
C
∇Θ · ∇ϕ|U∗|2 = 2

n∑
k=1

∫
C
∇θk · ∇ϕ|U∗|2

= 2
n∑

k=1

∫ �

0

dz

∫
∂Ω(z)

ϕ|U∗|2 ∂θk

∂ν
dS

+ 2
n∑

k=1

∫ �

0

dz

∫
Ω(z)

ϕ∇xθk · ∇x|U∗|2 dx

+ 2
n∑

k=1

∫ �

0

dz

∫
Ω(z)

ϕz
(x − fk)⊥ · f ′

k

|x − fk|2
|U∗|2 dx

= 2
n∑

k=1

∫ �

0

Ck(z) dz + 2
n∑

k=1

∫ �

0

Dk(z) dz + 2
n∑

k=1

∫ �

0

Ek(z) dz.



Let us recall that ϕk satisfies

Δϕk = 0 in C,

∂ϕk

∂ν
= −∂θk

∂ν
in ∂C ∩ {|x| = R},∫

Ω

ϕk = 0,

and that we have denoted

ϕ =
n∑

k=1

ϕk.

Standard elliptic estimates imply that

‖ϕ‖H2
�
(C) � C‖f‖H1

�
(R)n , (3.28)

since on ∂C ∩ {|x| = R},
∂θk

∂ν
=

(x − fk)⊥

|x − fk|2
· x

R
= − f⊥

k · x
R|x − fk|2

. (3.29)

Then we get ∣∣∣∣∣
∫ �

0

|Ck(z)| dz

∣∣∣∣∣ � C‖f‖2
H1

�
dz. (3.30)

To estimate Dk(z) let us notice that for each fixed m = 1, . . . , n we have∫
Ω(z)

ϕm∇xθk · ∇x|U∗|2 dx =
∑
j �=k

∫
Ω(z)

ϕmU2
ǰ ∇xθk · ∇xU2

j dx.

Using (3.29) we obtain∣∣∣∣∣
∫
Ω(z)

ϕmU2
ǰ ∇θk · ∇U2

j dx

∣∣∣∣∣ � C‖ϕm‖H2(C)

∫
Ω(z)

|∇U2
j |U2

ǰ

|x − fk|
dx

� Cε| log ε|p‖f‖H1
�
(R),

and hence ∣∣∣∣∣
∫ �

0

Dk(z) dz

∣∣∣∣∣ � Cε| log ε|p‖f‖H1
�
(R). (3.31)

Finally, we have ∣∣∣∣∣
∫ �

0

Ek(z) dz

∣∣∣∣∣ � ‖ϕ‖H1(C)

(∫
C

|f ′
k|2|U∗|4

|x − fk|2
)1/2

� C| log ε|1/2‖ϕ‖H1(C)‖fk‖H1
�
(R)

� C| log ε|1/2‖f‖2
H1

�
(R). (3.32)

Combining (3.30)–(3.32) we find that I2[f ] is well defined and

|I2[f ]| � C| log ε|1/2‖f‖2
H1

�
(R) + Cε| log ε|p‖f‖H1

�
(R). (3.33)

Finally, we have

|I3[f ]| =
∣∣∣∣
∫
C
|∇ϕ|2|U∗|2

∣∣∣∣ � C‖f‖2
H1

�
(R). (3.34)

To estimate the rest of the functional Jε we set

I4[f ] =
1
2

∫
C
|∇U∗|2 +

1
4ε2

∫
C
(1 − |U∗|2)2.



It is a matter of rather straightforward calculations to show that

I4[f ] = c̃1 + O(‖f‖H1
�
(R)),

where c̃1 is a constant independent of f . Combining estimates for Ij [f ], j = 1, . . . , 4, ends the
proof.

Proof of Theorem 1.1. The C0-bound for Θε in formula (1.20) is an immediate consequence
of Lemma 3.1. The estimates for DΘε and D2Θε follow from asymptotic expressions for DI(f)
and D2I(f) where I is the functional defined by formula (3.3). On the one hand, we find that
for any test function h ∈ H1

� (R, R2)n the following asymptotic formula holds:

DI(f)(h) = π log
1
ε

∫ �

0

f ′ · h′ − 2π
∑
m �=k

∫ �

0

(fk − fm) · (hk − hm)
|fk − fm|2

+R(f)[h], (3.35)

where

R(f)[h] =
∫ �

0

F1(f , f ′) · hk +
∫ �

0

F2(f , f ′) · h′,

with Fj(f , f ′) j = 1, 2, satisfying the pointwise estimates

|F1(f , f ′)| � C[1 + log2 | log ε||f ′|2 + max
k �=j

{|fk − fj |−1}|f ′|2]. (3.36)

and

|F2k(f , f ′)| � C
[
1 + log2 | log ε| |f | |f ′| + max

k �=j

{∣∣ log |fk − fj |
∣∣}|f ′|2]. (3.37)

From here we find that the desired C0-estimate for DΘε(f) follows at once. Similarly, we obtain
that

D2I[f ](h,h) = π log
1
ε
‖h′‖2

L2(0,�)n

−2π
n∑

k=1

∑
m �=k

{∫ �

0

|hk|2
|fk − fm|2 + 2

∫ �

0

{
Re [(fk − fm)(hk − hm)]

}2

|fk − fm|4

}

+S(f)(h,h), (3.38)

where

|S(f)(h,h)| � C
√
| log ε|‖f‖2

H1
�
(R)n‖h‖2

H1
�
(R)n

+
C√
| log ε|

∫ �

0

|f ′|2|h|2 max
j �=l

{|fj − fl|−2}.

This gives the desired estimate on the second derivative of Θε in Theorem 1.1. The estimates
above also involve simple elliptic bounds for the first and second derivatives of the phase
function ϕ(·, f) with respect to f in H1

� . All these computations are rather lengthy, but they
proceed along the same lines as those in the proof of the previous lemma, so we omit the details
here.
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3. G. Alberti, S. Baldo and G. Orlandi, ‘Functions with prescribed singularities’, J. Eur. Math. Soc.
(JEMS) 5 (2003) 275–311.

4. G. Alberti, S.Baldo and G. Orlandi, ‘Variational convergence for functionals of Ginzburg–Landau type’,
Indiana Univ. Math. J. 54 (2005) 1411–1472.

5. L. Almeida and F. Bethuel, ‘Topological methods for the Ginzburg–Landau equations’, J. Math. Pures
Appl. (9) 77 (1998) 1–49.

6. F. Bethuel, H. Brezis and F. Helein, Ginzburg–Landau vortices, Progress in Nonlinear Differential
Equations and their Applications 13 (Birkhäuser Boston, Boston, MA, 1994).
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