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Abstract

We consider the Allen–Cahn equation ε2�u + (1 − u2)u = 0 in a bounded,
smooth domain � in R

2, under zero Neumann boundary conditions, where ε > 0
is a small parameter. Let �0 be a segment contained in�, connecting orthogonally
the boundary. Under certain nondegeneracy and nonminimality assumptions for
�0, satisfied for instance by the short axis in an ellipse, we construct, for any
given N � 1, a solution exhibiting N transition layers whose mutual distances
are O(ε| log ε|) and which collapse onto �0 as ε → 0. Asymptotic location of
these interfaces is governed by a Toda-type system and yields in the limit broken
lines with an angle at a common height and at main order cutting orthogonally the
boundary.

1. Introduction

Let � be a bounded domain with smooth boundary in R
2. In this paper we

consider the elliptic problem:

ε2�u + (1 − u2) u = 0 in �, (1.1)

∂u

∂ν
= 0 on ∂�. (1.2)

Here ε > 0 is a small parameter and ν denotes unit outer normal to ∂�.
Equation (1.1)–(1.2) is known as the Allen–Cahn equation and was introduced in
[2] as a model describing the evolution of antiphase boundaries.

Problem (1.1)–(1.2) and its parabolic counterpart have been a subject of exten-
sive research for many years. Its solutions correspond to critical points in H1(�)

of the Allen–Cahn energy,

Jε(u) =
∫
�

[
ε

2
|∇u|2 + 1

4ε
(1 − u2)2

]
.



We observe that the states u = ±1 represent both global minimizers of the energy,
which in the Allen–Cahn model correspond to two phases of a material isolated in
the region �. We are interested in solutions which connect these states, leaving an
interface, a narrow region where the transition from one phase to the other takes
place. More precisely, we consider solutions uε to (1.1)–(1.2) for which J (uε)
remains uniformly bounded, which formally entails a uniform bound for the length
of the transition region. These solutions approach ±1 almost everywhere as ε → 0
while, at least for minimizers, the energy values approach the perimeter of the
limiting interface between the regions where values +1 and −1 are taken. In the
language of �-convergence, the �-limit of Jε corresponds precisely to the interface
perimeter, see [22,29,38].

In [22] Kohn and Sternberg constructed local minimizers using this fact. Asso-
ciated with a straight line segment�0 contained in�which locally minimizes length
among all curves nearby with endpoints lying on ∂�, they find a local minimizer
uε of Jε with asymptotic interface given by this segment. One has

Jε(uε) → c0|�0| (1.3)

for some universal constant c0 > 0. Other qualitative properties of minimizers can
be found in [5,6,16,35,39].

It is natural to ask for existence and asymptotic description of solutions other
than local minimizers. We recall for instance that no local minimizers other than
constants are present if the domain is convex [7,30]. On the other hand rich phe-
nomena should be observable even in this case, as heat flow for the Allen–Cahn
equation becomes, in the appropriate limit, mean curvature flow of interfaces, see
[3,8,9,15,18,21,36,37].

In [17,35,40] the authors have addressed the issue of understanding asymptotic
behavior of interfaces for general families of solutions of (1.1)–(1.2) with uniformly
bounded energy through a geometric measure theoretical approach. Roughly spea-
king, they have established that asymptotic interfaces must be locally stationary
for the perimeter. More generally, in higher dimensions, they correspond locally
to (generalized) minimal hypersurfaces. However, not many concrete cases where
such objects can be found have been known. Part of the reason is that, once mini-
mization is not available, traditional variational tools do not yield existence or fine
analysis easily.

Along these lines, it is natural to consider a situation like that of Kohn and Stern-
berg [22] for a critical, not necessarily minimizing segment. We assume in what
follows that � contains a straight line segment �0 which intersects orthogonally
the boundary at exactly two points P0, P1 ∈ ∂�.

We assume that �0 is nondegenerate in the sense that if κ(P), P ∈ ∂�, repre-
sents curvature of the boundary, then the following condition holds:

κ(P0)+ κ(P1)− κ(P0)κ(P1)|�0| �= 0. (1.4)

Let us explain the meaning of this condition. After translation and rotation we
may assume that �0 is given by

�0 = {(x1, x2) | x1 = 0, 0 < x2 < �}, (1.5)



where � = |�0|. Let us assume that near the endpoints of the segment, ∂�
is described as the graph of two smooth functions, respectively, x2 = G0(x1),
x2 = G1(x1), with G0(0) = 0, G1(0) = �, G ′

0(0) = 0 = G ′
1(0), so that

G ′′
0(0) = κ(P0), G ′′

1(0) = −κ(P1). Any curve C1-close to � with endpoints on ∂�
can be parameterized as

γ (t) = ( h(t), tG1(h(�))+ (�− t)G0(h(0)) ), t ∈ [0, �],
where h : [0, �] → R

2 represents a small function of class C1. The length of this
curve is then given by the functional on h,

|γ | = ρ(h) =
∫ �

0

√
[ G1(h(�))− G0(h(0)) ]2 + h′(t)2 dt

so that in particular its first variation Dρ(0) = 0. In fact, criticality of the straight
segment means just that it intersects orthogonally the boundary. A second variation
of length is then given by the quadratic form

D2ρ(0)[h]2 =
∫ �

0
h′(t)2 dt + G ′′

1(0)h(�)
2 − G ′′

0(0)h(0)
2.

Nondegeneracy of �0 means precisely that this quadratic form is nondegenerate in
its natural space H1(0, �). This is equivalent to the fact that the problem

−h′′ = λh, in (0, �),
κ(P0)h(0)+ h′(0) = 0,

−κ(P1)h(�)+ h′(�) = 0,
(1.6)

does not have λ = 0 as an eigenvalue. A direct computation shows that the latter fact
is equivalent to condition (1.4). Let us observe that if both curvatures are negative
the second variation is positive and we are in the minimizing situation of [22].

The segment �0 separates� into two subdomains�−,�+, respectively, to the
left and to the right of it. In [24] the second author has established that if (1.4)
holds then there exists a solution uε to (1.1)–(1.2) exhibiting a transition layer at
a distance O(ε) of �0. More precisely, if s is the signed distance to �0, then these
solutions are well approximated by U (s/ε) where U is the unique solution of the
problem

U ′′ + (1 − U 2)U = 0, in R,

U (±∞) = ±1, U (0) = 0.
(1.7)

One has for this solution Jε(uε) → c0|�0|, just as in the�-convergence situation
of Kohn and Sternberg (1.3) and

lim
ε→0

uε = ±1 in �±.

The purpose of this paper is to show that in the nonminimizing situation for the
segment �0 much richer phenomena are actually present.

Before stating our results, let us discuss a bit further the nondegeneracy condi-
tion (1.4). Let us assume that, opposite to the minimizing situation both curvatures



κ(P0), κ(P1), are positive, just as in the case of the short axis or the long axis of
an eccentric ellipse. In that case, parallel translation of the segment reduces the
length of its portion inside �. On the other hand, rotation of the short axis around
its center increases length inside �, while that of the short axis decreases it: this
translates into the fact that the short axis produces a nondegenerate critical point
of Morse index one for length (namely only one direction to decrease length is
present), while the long axis represents one of Morse index two.

In general, as direct computation of eigenvalues of problem (1.6) shows, when
both curvatures are positive, we have that exactly one eigenvalue is negative if

κ(P0) + κ(P1) − κ(P0) κ(P1) |�0| > 0, (1.8)

which we call the short axis situation, while exactly two of these eigenvalues are
negative if

κ(P0) + κ(P1) − κ(P0) κ(P1) |�0| < 0, (1.9)

the long axis situation. By definition the numbers

R0 = 1

κ(P0)
, R1 = 1

κ(P1)
(1.10)

correspond to the radii of the osculating circles to ∂�, respectively, at P0 and P1,
so that condition (1.8) becomes just

R1 + R2 > �. (1.11)

As we will see, under this condition and the additional assumption

|R1 − R2| < �, (1.12)

which in particular holds for the short axis of an ellipse, there exist solutions
with multiple interfaces. In fact, given N � 1, there is a solution uε to problem
(1.1)–(1.2) such that

Jε(uε) → Nc0|�0| as ε → 0, (1.13)

lim
ε→0

uε = −1 in �−, lim
ε→0

uε =
{

1 if N is odd
−1 if N is even

in �+. (1.14)

These are solutions exhibiting N transition layers, close and approximately
parallel to each other, which eventually collapse onto �0.

An interesting feature of these solutions is the role played by the Toda
system in the asymptotic location of their multiple interfaces. Let us recall that
the Toda system describes dynamics of N particles, arranged on a line and interac-
ting with their neighbors with a force proportional to the exponential of minus their
mutual distance. Considering interfaces, we observe that two nearly parallel inter-
faces attract, in the sense that as they get closer to one another, energy decreases
proportionally to the exponential of the negative of their mutual distance. On the
other hand, because of assumption (1.11), interfaces raise their individual energies



proportionally to their length as they approach horizontally the segment. It is the-
refore expected that an equilibrium location, maximizing effect due to interactions
in parallel motion and minimizing in length should exist. In particular, interfaces in
such an equilibrium should prefer to stay parallel since rotation increases length in
the short axis situation. This is why the Toda system appears, in which the segment
coordinate takes the role of time.

We should take into account that at a closer look, these multiple interfaces should
not stay quite as straight lines since they need to arrive orthogonally to the boundary
near the upper and lower ends. In reality, analysis of the Toda system under boundary
conditions giving account of this orthogonality, shows that interfaces correspond
asymptotically to broken lines of the form

x1 = µ( |x2 − γ0| + γ1), µ = O(ε log ε). (1.15)

These curves intersect orthogonally the respective osculating circles for P0 and
P1 precisely if

γ0 = 1

2
(�− R1 + R0), γ1 = 1

2
(R1 + R0 − �). (1.16)

Observe that relations (1.11), (1.12) correspond to the facts

γ0 ∈ (0, �), γ1 > 0.

γ0 is the x2-coordinate of the midpoint of the segment between the centers of the
two osculating circles, which we thus assume lies on �0. Assuming γ1 > 0 implies
that the broken lines (1.15) do not touch �0.

Our main result reads as follows.

Theorem 1.1. Assume that the segment �0 given by (1.5) is such that κ(Pj ) > 0,
j = 0, 1 and that conditions (1.11) and (1.12) hold. Then for each N > 1 and all
sufficiently small ε, there exists a solution uε to problem (1.1)–(1.2) which satisfies
relations (1.13), (1.14), and in a neighborhood of �0 it has the form

uε(x1, x2) = o(1)+
N∑

k=1

(−1)k+1U

(
x1 − ε fk(x2)

ε

)
+
{

0 if N is odd
−1 if N is even

(1.17)

with the functions fk , k = 1, . . . , N satisfying the asymptotic expression

fk(x2) = c0 | log ε|
(

k − N + 1

2

)
( |x2 − γ0| + γ1 + o(1) ). (1.18)

Here γ0, γ1 are the constants given by formula (1.16), c0 > 0 is a universal
constant and the quantities o(1) go to zero uniformly as ε → 0.

We include some pictures for different values of the parameters of the approxi-
mate shape of the interfaces in Figs. 1 and 2 below.

We can be much more precise in the way interfaces satisfying expansion (1.18)
arise. It turns out that functions fk solve at main order the Toda system

ε2 f ′′
k = a0

[
e−√

2( fk− fk−1) − e−√
2( fk+1− fk )

]
in (0, �), (1.19)



under boundary conditions

f ′
k(0)+ κ(P0) fk(0) = 0 = f ′

k(�)− κ(P1) fk(�), k = 1, . . . , N , (1.20)

for some universal constant a0 > 0 and with the conventions f0 = −∞, fN+1 =
+∞. As we will later justify, this problem has a unique solution, whose expansion
as ε → 0 corresponds to (1.18).

The presence of higher multiplicity interfaces has been first suggested in [3].
In the one-dimensional or radial cases, concentration in the form of clusters of
transition layers or spikes has already been observed in various problems in the
literature, see [4,10,11,13,27,28,32,33], phenomena in accordance with higher-
dimensional multi-spike clustering as predicted in [20]. In particular, multiple radial
transition spheres collapsing on the boundary have been found for Allen–Cahn in
[28]. The result of Theorem 1.1 seems to be the first of its type in a fully higher
dimensional setting. Single-higher dimensional concentration phenomena has been
the subject in, among other works, [12,25,26].

A broad literature exists for the Toda system, including various representation
formulas for their solutions, we refer the reader to [19,23,31] for results and refe-
rences. The link found here seems new, and we expect that classical mechanical
systems are in agreement with various multiple-curve concentration phenomena
arising in elliptic singular perturbations, in a similar way as gravitational or elec-
trostatic interpretation of point concentration is commonly given.

In [34], Allen–Cahn in dimensions three or higher in a compact manifold has
been considered, establishing that associated to a nondegenerate minimal hyper-
surface a solution with a single interface exists, in analogy with the result in [24].
We would expect multiple concentration of codimension one interfaces dimensions
two and higher to exist, but with more difficult proofs.

The proof of Theorem 1.1 consists of finding a solution close to an initial
approximation, which is essentially the right-hand side of expression (1.17). The
correction term satisfies an equation which is solved in two steps: first, the curves
fk are just left as parameters to be determined, and a projected problem is solved
which involves a small nonlinear perturbation of a uniformly invertible operator
in suitable norms. Second, functions fk are chosen in such a way that the solution
of the projected problem is a full solution. In this second part of the process a
small nonlinear, nonlocal perturbation of system (1.19)–(1.20) arises, which is
solved thanks to nondegeneracy of the solution of the unperturbed system. We
shall develop this scheme in what remains of this paper, in which hypotheses of
Theorem 1.1 will always be assumed.

2. First approximation and outline of the proof

2.1. Approximate solution

We first formulate our problem in a conveniently chosen system of coordinates.
With no loss of generality, we may assume that the segment �0 satisfies |�0| = 1
and is given by

�0 = {(x1, x2) | x1 = 0, 0 < x2 < 1}.



Fig. 1. Equilibrium configurations of 4 and 5 interfaces with � = 1, R0 = 3/4, R1 = 1/2
and ε = 1/25. The dotted lines indicate the osculating circles of the boundary at points P0
and P1, respectively

Fig. 2. Equilibrium configurations as in Fig. 1 with � = 1, R0 = 1/5, R1 = 9/10 and
ε = 1/25

We also assume that near the endpoints of the segment, ∂� is described as the graph
of two smooth functions, let us say, respectively, x2 = G0(x1), x2 = G1(x1), with

G0(0) = 0, G1(0) = 1, G ′
0(0) = 0 = G ′

1(0).

Let us consider the scaling v(y) = u(εy). Problem (1.1)–(1.2) is thus equivalent to

α(v) ≡ �v + f (v) = 0 in �ε, (2.1)

β(v) ≡ ∂v

∂ν
= 0 on ∂�ε, (2.2)

where �ε = ε−1�. Here and in what follows we denote

f (v) = (1 − v2)v.

For some small, fixed number δ0, we can describe diffeomorphically all points
y ∈ �ε with |y1| < δ0ε

−1 by means of coordinates (x, z) which straighten the



boundary as follows.

x = y1, z = y2 − ησ (εy2) ε
−1G0(εy1) − ησ (1 − εy2)ε

−1[ G1(εy1) − 1 ].
(2.3)

Here ησ (s) = η(σ−1s), where η is a smooth cut-off function such that

η(s) = 1, for |s| < 1 and η(s) = 0 for |s| > 2, (2.4)

and σ > 0 is a small ε-dependent number which for our purposes we take

σ = ε
1
8 .

The Laplacian operator in �ε expressed in these new coordinates becomes

�y = �x,z + B,

where B is a second order differential operator with small coefficients:

B = B22(εx, εz)
∂2

∂z2 + B21(εx, εz)
∂2

∂x∂z
+ εB20(εx, εz)

∂

∂z
,

where Bi j are smooth functions with B22(0, ·) = 0, B21(0, ·) = 0.
We also have, for z = 0,

∂

∂νy
= −1 + |G ′

0(εx)|2
(1 + |G ′

0(εx)|2)1/2
∂

∂z
+ G ′

0(εx)

(1 + |G ′
0(εx)|2)1/2

∂

∂x
,

with a similar formula near z = 1/ε. Thus we write,

∂

∂νy
= ∂

∂ν
+ Bb,

where

Bb = b(εx, εz) · ∇x,z, l = 0, 1, z = l/ε,

∂

∂ν
= (−1)�+1 ∂

∂z
, l = 0, 1, z = l/ε.

Here b is a smooth function with b(0, ·) = 0. To define the approximate solution we
recall that U = U (s) is the heteroclinic solution to (1.7) such that U (±∞) = ±1.
More precisely we have:

U (s)− 1 = −A0e −√
2s + o(e −√

2s), as s → +∞,

U (s)+ 1 = A0e
√

2s + o(e
√

2s), as s → −∞,

U ′(s) = √
2A0e −√

2|s| + o(e −√
2|s|), as |s| → +∞,

where A0 is a universal constant.



In the sequel we let N > 1 be a fixed positive integer and consider f1, . . . , fN

given, arbitrary functions fk : (0, 1) → R which satisfy

‖ fk‖H2(0,1) � | log ε|3, fk+1(ζ )− fk(ζ ) �
√

2| log ε| − 4
√

2 log | log ε|.
(2.5)

For notational convenience we will also write

f0(ζ ) = −δ0/ε − f1(ζ ) and fN+1(ζ ) = δ0/ε − fN (ζ ).

Let us set

wk(x, z) = (−1)k+1U (x − fk(εz)) ,

and define the approximate solution to (2.1)–(2.2) by

w(x, z) =
N∑

k=1

wk(x, z)+ 1

2
((−1)N+1 − 1), (2.6)

so that w(x, z) ∼ wk(x, z) for |x − fk(εz)| not too large.

2.2. Outline of the proof of Theorem 1.1.

The approximation w defined by formula (3.1) does actually make sense in the
infinite strip

S = {(x, z) / 0 < z < 1/ε}.
Since the approximation w approaches its limits as x → ±∞ at an exponential rate,
and the remainder operators Bi and Bb are comparatively small, it is reasonable to
believe that the solution of the full problem is essentially the same as that of the
problem in the whole strip

�x,zv + ηεδ Bv + f (v) = 0 in S, (2.7)

under boundary conditions

∂v

∂ν
+ ηεδ Bbv = 0 on ∂S. (2.8)

Here and in what follows we denote

ηεδ(x, z) := η

(
ε|x |
δ

)
, (2.9)

where η(s) is a smooth cut-off function as in (2.4), so that

ηεδ = 1 for |x | < δ

ε
, ηεδ = 0 for |x | > 2δ

ε
.

In fact the full original problem in �ε can be reduced to one in the strip by means
of a gluing procedure developed in Section 6.



We look for a solution of (2.7)–(2.8) in the formw = w+φ where φ is globally
small compared with w. The equation for φ becomes

�φ + f ′(w)φ = −N (φ)+ E in S, (2.10)

∂φ

∂ν
= −ηεδ Bbφ + Eb on ∂S, (2.11)

where

N (φ) = f (w + φ)− f (w)− f ′(w)φ + ηεδ Bφ,

E = �w + ηεδ Bw + f (w), Eb = ∂w

∂ν
+ ηεδ Bbw.

The operator N (φ) is the sum of a quadratic quantity in small φ and a small
linear operator in φ. The linear operator on the right-hand side of equation (2.11)
is also small. Thus if the linear operator defined by the left-hand side of (2.10)
were uniformly invertible in suitable norms under the associated Neumann boun-
dary condition, one could recast the problem into a fixed point problem for a
contraction mapping, provided of course that the errors E and Eb are small enough
in the involved norms. However this uniform invertibility is not expected since there
are decaying elements in an approximate kernel for the linear operator. Indeed, the
functions w j,x = Ux (x − f j (εz)) nearly annihilate the operator, and unless the
functions f j satisfy very special relations, we do not expect solvability of the ori-
ginal problem by the above means.

Thus we consider the linear operator

L(φ) = �φ + f ′(w)φ,

which we can rewrite as

L(φ) = �− 2φ + ( f ′(w)+ 2)φ = 0.

Since f ′(w) + 2 = O(e−√
2|x |) as |x | → ∞, then the operator can be visualized

as a small perturbation at infinity of�− 2. Standard elliptic regularity tells us that
the problem

�φ − 2φ = h in S, (2.12)
∂φ

∂ν
= g on, ∂S (2.13)

has the uniform a priori bound

‖φ‖H2(S) � C [ ‖h‖L2(S) + ‖g‖H1(S) ],
and a corresponding existence statement. The analogous assertions for the operator
L does hold true for the following projected problem which mods out its above
mentioned approximate kernel:



Given functions h ∈ L2(S), g ∈ H1(S), we consider the problem of finding
φ ∈ H2(S) such that for certain functions c j ∈ L2(0, 1), j = 1, . . . , N we have

L(φ) = h +
N∑

j=1

c j (εz) w j,x in S, (2.14)

∂φ

∂ν
= g on ∂S, (2.15)

∫ ∞

−∞
φ(x, z) w j,x (x, z) dx = 0, ∀ z ∈

(
0,

1

ε

)
, j = 1, . . . , N . (2.16)

Proposition 2.1. There exists a constant C > 0, independent of ε and uniform for
f j ’s satisfying (2.5) such that for all small ε Problem (2.14)–(2.16) has a solution
φ = T (h, g), which defines a linear operator of its arguments and satisfies the
estimate

‖φ‖H2(S) � C [ ‖h‖L2(S) + ‖g‖H1(S) ].
We will prove this proposition in Section 3. Using it, we would like to solve via

contraction mapping principles the projected nonlinear problem

L(φ) = E − N (φ) +
N∑

j=1

c j (εz) w j,x in S, (2.17)

∂φ

∂ν
= Eb − ηεδ Bbφ on ∂S, (2.18)

∫ ∞

−∞
φ(x, z) w j,x (x, z) dx = 0, j = 1, . . . , N . (2.19)

As we will see in Section 4, the inner error E is essentially constituted by
quantities carrying ε2| log ε|q times functions exponentially decaying in x from the
f j ’s. This implies that

‖E‖L2(S) � Cε
3
2 | log ε|q ,

for some q > 0, uniformly on functions f j satisfying (2.5). This error, however,
does not match in size with that at the boundary Eb which is much larger: it only
carries ε rather than ε2 as factors, so that we get

‖Eb‖H1(S) � Cε
1
2 | log ε|q .

It is necessary to improve the approximation in order for both errors of approxima-
tion to share size, eliminating the terms of order ε in the expansion of the boundary
error. This is achieved in Section 5 by means of two steps: first, boundary conditions
are imposed on the functions f j . It is assumed that

f ′
k(0)+ κ(P0) fk(0) = 0 = f ′

k(1)− κ(P1) fk(1), k = 1, . . . , N . (2.20)

This assumption eliminates part of the ε-terms in Eb. Second, the remaining
terms of order ε are eliminated by building an improvement of approximation of



the form w+φ∗∗ where φ∗∗, of size ε, solves certain explicit linear problem and has
the property to decay exponentially in z-direction towards the interior of S. This
procedure makes the initial problem (2.17)–(2.19) equivalent to a similar one with

new errors E and Eb with size O(ε
3
2 | log ε|q) and a qualitatively similar operator

N (φ). By contraction mapping principles using Proposition 2.1, we then get a
solution φ of this variation of (2.17)–(2.19) with

‖φ‖H2(S) = O(ε
3
2 ).

We shall get then a solution of our original problem if we are able to adjust the
functions f j in such a way that

c j (z) = 0 ∀ j = 1, . . . , N .

In order to solve the latter system of equations, we simply integrate equa-
tion (2.17) against w j,x to get

c j (z) =
∫ ∞

−∞
(�w + ηεδ Bw + f (w))wx, j dx + O(ε2+µ)

for some µ > 0. These quantities are given at main order in the following lemma.

Lemma 2.1. The following asymptotic formula holds

∫ ∞

−∞
(�w + ηεδ Bw + f (w))wx,k dx

= (−1)ka0 [ ε2b0 f ′′
k − e−√

2( fk− fk−1) + e−√
2( fk+1− fk )] + Pk, (2.21)

for some positive universal constants a0, b0, where

‖Pk‖L2(0,�) � Cε2+µ, for some µ > 0, (2.22)

uniformly on functions fk’s satisfying conditions (2.5).

We carry our these computations in Section 4.
In this way, the full problem is reduced to solving a system of the form

ε2b0 f ′′
k − e−√

2( fk− fk−1) + e−√
2( fk+1− fk ) = h,

under boundary conditions (2.20), where ‖h‖L2(0,�) = O(ε2+µ) and h itself is a
nonlinear, nonlocal operator of f . The system for h ≡ 0 turns out to have a unique
solution which is of size O(| log ε|). This solution is nondegenerate in a suitable
sense, and the problem is finally solved via a perturbation argument. This part of
the process is carried out in Section 7.

In the rest of this paper, we will work out in detail the above outlined scheme.



3. Projected linear theory in the strip

This section will be devoted to the resolution of the projected linear problem
(2.14)–(2.16) by proving Proposition 2.1. A first claim we make is that to prove the
result it suffices to consider the case g = 0, so that we will only need to find the
operator T (h, 0). Indeed, let us consider the solution φ0 = φ0(g) to the problem

�φ0 − φ0 = 0 in S,
∂φ0

∂ν
= g on ∂S.

From standard elliptic theory, we find that

‖φ0‖H2(S) � C ‖g‖H1(S).

On the other hand, we check directly that

φ̃ = φ − φ0

satisfies a similar equation, but now for g = 0, with � replaced by �̃, where

‖�̃‖H2(0,1/ε) � C[‖�‖H2(0,1/ε) + ‖g‖H1(S)],

and with h replaced by h̃ = h̃(h, g), a linear operator in its argument satisfying

‖h̃‖L2(S) � C [ ‖h‖L2(S) + ‖g‖H1(S) ].
With the aid of this and the definition of φ̃, the operator T (h, g,�) is thus built just
from T (h̃, 0, �̃), as claimed.

For the proof of the proposition we need the validity of a priori estimates for a
simpler problem. Given h ∈ L2(S), let us consider the operator

L0(φ) = �φ + f ′(U (x))φ

and the problem

L0(φ) = h in S, (3.1)
∂φ

∂ν
= 0 on ∂S, (3.2)

∫
R

φ(x, z)Ux (x) dx = �(z), 0 < z <
1

ε
(3.3)

where

‖�‖H2(0,1/ε) � C. (3.4)

Lemma 3.1. There exists a constant C > 0, independent of ε such that solutions
of (3.1)–(3.3) with � satisfying (3.4) satisfy the a priori estimate

‖φ‖H2(S) � C [‖h‖L2(S) + ‖�‖H2(0,1/ε)].



Proof. Assume first that� ≡ 0. Let us consider Fourier series decompositions for
h and φ of the form

φ(x, z) =
∞∑

k=0

φk(x) cos (πkεz) ,

h(x, z) =
∞∑

k=0

hk(x) cos (πkεz) .

Then we have the validity of the equations

− k2ε2φk + L0(φk) = hk, x ∈ R (3.5)

and conditions ∫ ∞

−∞
φk Ux dx = 0, (3.6)

for all k. We have denoted here

L0(φk) = φk,xx + f ′(U (x))φk .

Let us consider the bilinear form in H1(R) associated with the operator L0, namely

B(ψ,ψ) =
∫

R

[|ψx |2 − f ′(U )|ψ |2] dx .

Since (3.6) holds uniformly in k we conclude that

C[‖φk‖2
L2(R)

+ ‖φk,x‖2
L2(R)

] � B(φk, φk) (3.7)

for a constant C > 0 independent of k. Using this fact and equation (3.5) we find
the estimate

(1 + k4ε4)‖φk‖2
L2(R)

+ ‖φk,x‖2
L2(R)

� C‖hk‖2
L2(R)

.

In particular, we see from (3.5) that φk satisfies an equation of the form

φk,xx − 2φk = h̃k, x ∈ R,

where ‖h̃k‖L2(R) � C‖hk‖L2(R). Hence it follows that additionally we have the
estimate

‖φk,xx‖2
L2(R)

� C‖hk‖2
L2(R)

. (3.8)

Adding up estimates (3.7), (3.8) in k we conclude that

‖D2φ‖2
L2(S) + ‖Dφ‖2

L2(S) + ‖φ‖2
L2(S) � C‖h‖2

L2(S),

which ends the proof in the case � ≡ 0. To prove the general case it suffices to
apply the above argument with

φ̃ = φ −�(z)
Ux (x)∫
R

U 2
x
.


�



We consider now the following problem: given h ∈ L2(S), find functions
φ ∈ H2(S), c ∈ L2(0, 1) such that

L(φ) = h + c(εz)Ux in S, (3.9)
∂φ

∂ν
= g on ∂S, (3.10)

∫
R

φUx dx = �(z), 0 < z <
1

ε
. (3.11)

Lemma 3.2. Problem (3.9)–(3.11) possesses a unique solution

φ = T0(h, g,�).

Moreover,

‖φ‖H2(S) � C[‖h‖L2(S) + ‖�‖H2(0,1/ε) + ‖g‖H1(S) ].
Proof. We first show that it is sufficient to prove this result for the case � ≡ 0,
g ≡ 0. To this end, let φ0 be the solution of

�φ0 − φ0 = 0, in S,
∂φ0

∂ν
= g, on ∂S,

and define

φ̃ = φ − φ0 −
[
�(z)−

∫
R

φ0Ux dx

]
Ux

‖Ux‖2
L2(R)

.

Then φ̃ satisfies L(φ̃) = h̃ + c(εz)Ux with homogeneous boundary and orthogo-
nality conditions and the general result will follow.

For existence, we write again

h(x, z) =
∞∑

k=0

hk(x) cos (πkεz)

and consider the problem of finding φk ∈ H1(R), and constants ck , such that

−k2ε2φk + L0(φk) = hk + ckUx x ∈ R

and ∫
R

φk Ux dx = 0.

Fredholm’s alternative yields that this problem is solvable with the choices

ck = −
∫
R

hkUx dx∫
R

U 2
x dx

.



Observe in particular that

∞∑
k=0

|ck |2 � Cε‖h‖2
L2(S) . (3.12)

Finally define

φ(x, z) =
∞∑

k=0

φk(x) cos (πkεz),

and correspondingly

c(ζ ) =
∞∑

k=0

ck cos (πkζ ) .

Estimate (3.12) gives that c(εz)Ux has its L2(S) norm controlled by that of h. The
a priori estimates of the previous lemma tell us that the series for φ is convergent
in H2(S) and defines a unique solution for the problem with the desired bounds. 
�

In order to apply the previous result to the resolution of the full problem (2.14)–
(2.16), we define first the operator

L j (φ) = �φ + f ′(w j )φ,

and consider the following problem

L j (φ) = h + c j (εz) w j,x in S, (3.13)
∂φ

∂ν
= g on ∂S, (3.14)

∫
R

φw j,x dx = �(z). (3.15)

We have

Lemma 3.3. Problem (3.13)–(3.15) possesses a unique solution

φ = Tj (h, g,�).

Moreover,

‖φ‖H2(S) � C[‖h‖L2(S) + ‖�‖H2(0,1/ε) + ‖g‖H1(S)].

Proof. We recall thatw j = (−1) j+1U (x − f j (εz)). For a function ξ(x, z) defined
in S we denote below

ξ̃ (x, z) = ξ(x + f j (εz), z).



By direct computation we see that Problem (3.13)–(3.15) is equivalent to

�φ̃ + B1(φ̃)+ f ′(U )φ̃ = h̃ + c j (εz)Ux in S,
∂φ̃

∂ν
= g̃ + B2(φ̃) on ∂S,

∫
R

φ̃Ux dx = �(z),

where

B1(φ̃) = ε2 f ′
j (εz)2φ̃xx + ε2 f ′′

j (εz)φ̃x + 2ε f ′(εz)φ̃xz,

B2(φ̃) = ε f ′
j (εz)φ̃x .

This problem is then equivalent to the fixed point linear problem

φ̃ = T0(h̃ + B1(φ̃), g̃ + B2(φ̃),�),

where T0 is the linear operator defined by Lemma 3.2. The linear operators B1 and
B2 are small in the sense that

‖B1(φ̃)‖L2(S) + ‖B2(φ̃)‖H1(S) � o(1)‖φ̃‖H2(S),

with o(1) → 0 as ε → 0. From this, unique solvability of the problem and the
desired estimate immediately follow. 
�
Proof of Proposition 2.1. In order to solve for φ in Problem (2.14)–(2.16) we
assume that g = 0, which is sufficient as we have pointed out.

We search for a solution of φ = T (h, 0,�) in the form

φ =
N∑

j=1

η jφ + ψ, (3.16)

where

η j (x, z) = η0

(
x − f j (εz)

R

)
, R =

√
2

2
| log ε|,

and η0 is smooth with η0(s) = 1 for |s| < 1/2 and η0(s) = 0 for |s| > 5/6. We
will denote

χ = 1 −
N∑

j=1

η j .

It is readily checked that φ given by (3.16) solves Problem (2.14)–(2.16) with g = 0
if the functions φ j = η jφ, ψ satisfy the following linear system of equations.

�φ j + f ′(w j )φ j = hη j + c j (εz)w j,x

−( f ′(w)− f ′(w j ))η jφ j − η j f ′(w)ψ in S, (3.17)
∂φ j

∂ν
= 0 on ∂S, (3.18)

∫
R

φ jw j,x dx = �̃ j , (3.19)



where

� j =
∫

R

(1 − η j )φ jw j,x dx −
∑
k �= j

∫
R

ηkφkw j,x dx −
∫

R

ψw j,x ,

and

�ψ + χ f ′(w)ψ = χh +
N∑

j=1

(1 − η j )c j (εz)w j,x

−
N∑

j=1

[2∇η j · ∇φ j + φ j�η j ], (3.20)

∂ψ

∂ν
= 0 on ∂S. (3.21)

In order to solve this system we will set up a fixed point argument. To this end,
assume that function φ̃ is given and define

φ̃ j = φ̃η j , ψ̃ = φ̃ −
N∑

j=1

φ̃ j .

First we replace φ j , ψ by φ̃ j , ψ̃ on the right-hand sides of (3.17), (3.19) and
solve (3.17)–(3.19) for each j = 1, . . . , n using Lemma 3.3. We get the following
estimate

‖φ j‖H2(S) � C[‖h‖L2(S) + ‖ψ̃‖H2(S) + o(1)
N∑

j=1

‖φ̃ j‖H2(S). (3.22)

Given ψ̃ we can now find functions φ j = φ j (ψ̃) which solve (3.17)–(3.19)
by a fixed point argument. Next we observe that the norms ‖c j (εz)w j,x‖L2(S) are
controlled by ‖h‖L2(S) as it was pointed out in Lemma 3.2 (see (3.12) and the
argument that follows). Therefore we can now solve (3.20)–(3.21) for ψ which in
addition satisfies

‖ψ‖H2(S) � C‖h‖L2(S) + o(1)
N∑

j=1

‖φ j (ψ̃)‖H2(S). (3.23)

Combining this with (3.22), and applying a fixed point argument again, we get
finally a solution to (3.20)–(3.21). This ends the proof. 
�



4. The inner approximation: size and projections

In what follows the error terms will often involve quantities of the type
O(ε p| log ε|q). While keeping track of the powers of ε is very important, the loga-
rithmic factors turn out not to play a significant role. Therefore in the rest of the
paper we will use q to denote a constant representing a power accompanying | log ε|.
The value of q may change from line to line.

Our first goal is to compute the errors of approximation in a δ0/ε neighborhood
of �ε, namely the quantities

E0 ≡ α(w) = �yw + f (w), E0b ≡ β(w) = ∂w

∂νy
.

We shall do this in (x, z)-coordinates.
The following result gives account of the size of the inner error of approximation

E0 in the region

Sδ0/ε = {|x | < δ0/ε, 0 < z < 1/ε},

Lemma 4.1. The following estimate holds:

|E0(x, z)| � Cε2(| f ′′
j (εz)| + | log ε|q)

N∑
j=1

e−√
2|x− f j (εz)| in Sδ0/ε (4.1)

uniformly on functions f j satisfying constraints (2.5). In particular

‖E0‖L2(Sδ0/ε)
� Cε

3
2 | log ε|q .

Proof. We compute

E0 = (�+ B)w + f (w) ≡ E01 + E02.

We have

�w =
N∑

k=1

(−1)k+1U ′′(x − fk)

−ε2
N∑

k=1

(−1)k+1 f ′′
k U ′(x − fk)

+ε2
N∑

k=1

(−1)k+1( f ′
k)

2U ′′(x − fk).



Then, taking into account Bw we get

�w + Bw =
N∑

k=1

(−1)k+1U ′′(x − fk)[1 − εB21(εx, εz) f ′
k]

−ε2
N∑

k=1

(−1)k+1 f ′′
k U ′(x − fk)[1 + B22(εx, εz)]

+ε2
N∑

k=1

(−1)k+1( f ′
k)

2U ′′(x − fk)[1 + B22(εx, εz)]

−ε2 B20(εx, εz)
N∑

k=1

(−1)k+1 f ′
k .U

′(x − fk).

We now turn to computing E02. We fix a k, 1 � k � N and consider the set

Ak =
{
(x, z) | fk−1(εz)+ fk(εz)

2
� x <

fk+1(εz)+ fk(εz)

2

}
.

For x ∈ Ak we write

f (w) = f (wk)+ [ f (w)− f (wk)]

= f (wk)+ f ′(wk)(w − wk)+ 1

2
f ′′(wk)(w − wk)

2 + O(|w − wk |3)

= f (wk)+ f ′(wk)(w − wk)+ 1

2
f ′′(wk)(w − wk)

2 + max
j �=k

O(e −3
√

2| f j −x |)

=
N∑

j=1

f (w j )+
⎡
⎣ f ′(wk)(w − wk)−

∑
j �=k

f (w j )

⎤
⎦

+1

2
f ′′(wk)(w − wk)

2 + max
j �=k

O(e −3
√

2| f j −x |).

It is convenient to introduce the following numbers.

σk j =
{
(−1) j , if j < k,
−(−1) j , if j > k.



Assuming that N is odd we have

f ′(wk)(w − wk)−
∑
j �=k

f (w j ) = [ f ′(wk)− f ′((−1)k+1)](w − wk)

+
⎡
⎣ f ′((−1)k+1)(w − wk)−

∑
j �=k

f (w j )

⎤
⎦

= 3[1 − U 2(x − fk(εz))](w − wk)+ f ′(1)

⎧⎨
⎩(w − wk)−

∑
j �=k

[σk j − w j ]
⎫⎬
⎭

−1

2

∑
j �=k

f ′′(σk j )[σk j − w j ]2 + max
j �=k

O(e −3
√

2| f j −x |)

= {3[1 − U 2(x − fk(εz))]}(w − wk)− 1

2

∑
j �=k

f ′′(σk j )[σk j − w j ]2

+ max
j �=k

O(e −3
√

2| f j −x |).

A similar argument applies when N is even. Summarizing, we get

E02 =
N∑

j=1

f (w j )+ 1

2
f ′′(w)(w − wk)

2 + 3[1 − U 2(x − fk))](w − wk)

−
∑
j �=k

1

2
f ′′(σk j )(σk j − w j )

2 + max
j �=k

O(e −3
√

2| f j −x |) (4.2)

for x ∈ Ak , k = 1, . . . , N . It follows then that for x ∈ Ak ,

E0 = −ε
N∑

k=1

(−1)k+1 f ′
kU ′′(x − fk)B21(εx, εz)

−ε2
N∑

k=1

(−1)k+1 f ′′
k U ′(x − fk)[1 + B22(εx, εz)]

+ε2
N∑

k=1

(−1)k+1( f ′
k)

2U ′′(x − fk)[1 + B22(x, z)]

−ε2 B2

N∑
k=1

(−1)k+1 f ′
kU ′(x − fk)

+ max
j �=k

O(e −2
√

2| f j −x |).



Thus, denoting by χAk (x) the characteristic function of the set Ak , we have

E0(x, z) =
N∑

k=1

χAk (x)

[
O(ε2| log ε|q)e−√

2| fk−x | + O(1)max
j �=k

e −2
√

2| f j −x |
]
,

and the result of the lemma readily follows. 
�
As we have mentioned in the outline of the proof, the computation of the

projections of the error against the functions w j,x (x, z) is of crucial importance as
given by Lemma 2.1. We carry out its proof next.

Proof of Lemma 2.1. Setting α(w) = �w + ηεδ Bw + f (w), we have to compute

∫
R

α(w)U ′(x − fk(εz)) dx =
{∫

Ak

+
∫
S\Ak

}
ηεδα(w)U

′(x − fk(εz)) dx

= Ek1(εz)+ Ek2(εz).

We begin with

E1k(εz) = −ε2
∫

Ak

N∑
j=1

(−1) j+1 f ′′
j U ′(x − f j )U

′(x − fk)

+ε2
∫

Ak

N∑
j=1

(−1) j+1( f ′
j )

2U ′′(x − f j )U
′(x − fk)

+
∫

Ak

(Bw)U ′(x − fk)

+
∫

Ak

⎡
⎣E2 −

N∑
j=1

f (w j )

⎤
⎦U ′(x − fk) = I1 + I2 + I3 + I4.

Using the asymptotic formula for U ′ we get

I1 = (−1)kε2 f ′′
k (εz)
∫ ∞

−∞
(U ′(s))2 ds + O(ε3)

N∑
j=1

f ′′
j (εz).

Using the fact that
∫∞
−∞ U ′′(s)U ′(s) ds = 0 we get

I2 = O(ε3)

N∑
j=1

( f ′
j (εz))2.

Now,

I3(εz) = ε2 f ′
kbσ (εz)

∫ ∞

−∞
(U ′(s))2ds + O(σ−2ε3)

N∑
j=1

[| f j |′ + ( f ′
j )

2 + | f ′′
j |],



where

bσ (εz) = −ησ (εz)G ′′
0(0)− ησ (1 − εz)G ′′

1(0).

Now we will evaluate I4. Using the expressions of the error term E2 found
above we get

E2 −
N∑

j=1

f (w j ) =
⎡
⎣1

2
f ′′(w)(w − wk)

2 − 1

2

∑
j �=k

f ′′(σk j )(σk j − w j )
2

⎤
⎦

+3(1 − U 2(x − fk))(w − wk) ≡ E21 + E22.

We have

E21 = 1

2
f ′′
⎛
⎝wk +

∑
j �=k

[σk j − w j ]
⎞
⎠
⎧⎨
⎩
∑
j �=k

[σk j − w j ]
⎫⎬
⎭

2

−1

2

∑
j �=k

f ′′(σk j )[σk j − w j ]2

= 1

2

∑
j �=k

[ f ′′(wk)− f ′′(σk j )][σk j − w j ]2 + max
j �=k

O(e−2
√

2| f j − fk |)

= −3
∑
j �=k

[wk − σk j ][σk j − w j ]2 + max
j �=k

O(e−2
√

2| f j − fk |)

= −3(−1)k+1[U (x − fk)+ 1][1 − U (x − fk−1)]2

−3(−1)k+1[U (x − fk)− 1][1 + U (x − fk+1)]2

+ε1/2 max
j �=k

O(e−√
2| f j − fk |).

For fixed k let us consider the following integral
∫ fk

fk−1+ fk
2

[U (x − fk)+ 1][1 − U (x − fk−1)]2U ′(x − fk)dx

=
∫ fk

fk−1+ fk
2

O(1)e−2
√

2(x− fk−1)e−2
√

2( fk−x)dx

= O(e−2
√

2( fk− fk−1)).

Similarly,

∫ fk+1+ fk
2

fk

[U (x− fk)+ 1][1−U (x− fk−1)]2U ′(x − fk)dx = O(e−2
√

2| fk−1− fk |).

Therefore we get
∫

Ak

E21U ′(x − fk)dx = ε1/2 max
j �=k

O(e−√
2| f j − fk |).



We will now compute∫
Ak

E22U ′(x − fk)

= 3(−1)k+1
∫

Ak

[1 − U (x − fk)
2](1 − U (x − fk−1))U

′(x − fk)dx

−3(−1)k+1
∫

Ak

[1 − U (x − fk)
2](1 + U (x − fk+1))U

′(x − fk)

+ε1/2 max
j �=k

O(e−√
2| f j − fk |)

= 3(−1)k A0

∫
R

a(s)
[
−e −√

2( fk− fk−1) + e −√
2( fk+1− fk )

]

+ε1/2 max
j �=k

O(e−√
2| f j − fk |),

where we have denoted

a(s) = (1 − U 2(s))U ′(s)e −√
2s .

To compute Ek2(εz) we notice that for x ∈ S \ Ak we have U ′(x − fk) =
max j �=k O(e−

√
2

2 | f j − fk |) and thus we can estimate, using the above notation,

Ek2(εz) = ε1/2 max
j �=k

O(e−√
2| f j − fk |)+ O(ε1/2)

4∑
m=1

Im .

Now, let us define

c1 = 3A0

∫ ∞

−∞
(1 − U 2(s))U ′(s)e−√

2sds, c0 =
∫ ∞

−∞
U ′(s)2ds.

Gathering the above estimates, we get the following system for the approximate
location of the interfaces:∫

R

α(w)U ′(x − fk)dx

= (−1)k
[
ε2c0 f ′′

k (εz)− c1(e
−√

2( fk− fk−1) − e−√
2( fk+1− fk ))

]

+Pk(εz), k = 1, . . . , N , (4.3)

where, denoting ζ = εz, we have

Pk(ζ ) = ε2c0 f ′
kbσ (ζ )+ O(σ−2ε3)

N∑
j=1

[| f ′
j | + | f ′

j |2 + | f ′′
j |]

+ε1/2 max
j �=k

O(e−√
2| f j − fk |).

Now, we observe that

‖Pk‖L2(0,1) � Cε2+µ, for some µ > 0, k = 1, . . . , N . (4.4)

This last estimate is possible thanks to the fact that we have chosen σ = ε1/8. The
proof is concluded. 
�



5. Boundary error and improvement of approximation

Next we compute the accuracy of the approximate solution w on the boundary.
Again in (x, z) coordinates we

E0b(z = 0) = −1 + |G ′
0(εx)|2

(1 + |G ′
0(εx)|2)1/2

∂w

∂z
+ G ′

0(εx)

(1 + |G ′
0(εx)|2)1/2

∂w

∂x

= ε

N∑
j=1

[ f ′
j (0)+ G ′′

0(0) f j (0)]∂w j

∂x

+ε
N∑

j=1

G ′′
0(ε f j (0))(x − f j (0))

∂w j

∂x

+ε2
N∑

j=1

[O(|x − f j (0)|2 + O(| f j (0)|2)]∂w j

∂x

+ε3
N∑

j=1

[O(|x − f j (0)|2 + O(| f j (0)|2)] f ′
j (0)

∂w j

∂x
.

A similar formula holds for E0b(z = 1/ε). Thus we see that it is natural to take the
following boundary conditions for f j .

f ′
j (0)+ G ′′

0(0) f j (0) = 0
f ′

j (1)+ G ′′
1(0) f j (1) = 0

, j = 1, . . . , N . (5.1)

We shall assume the validity of these conditions in the sequel. We observe that

|E0b(z)| � Cε
N∑

k=1

|x − fk(εz)|e −√
2|x− fk (εz)| for z = 0, ε−1,

which is one order of ε worse in size than E0. As we have said in the outline of the
proof, the discrepancy between the order of approximation in the interior and on
the boundary (E0 and E0b, respectively) makes it necessary to improve the original
approximation w and eliminate the O(ε)-part of the error. We will construct an
improvement in approximation by first solving the problem

�φ + f ′(U (x))φ = 0 in S (5.2)

φz(x, 0) = −xUx , φz(x, 1/ε) = 0 on ∂S. (5.3)

We need the following result.

Lemma 5.1. Problem (5.2)–(5.3) has a unique solution φ∗ ∈ H2(S) which is odd
in x for each z. Besides, there is a C > 0 such that for all small ε,

‖φ∗‖H2(S) � C. (5.4)



In addition there exist constants ν < 1/4,µ > 0 and C > 0 such that the following
estimate holds:

|φ∗(x, z)| + |∇φ∗(x, z)| + |D2φ∗(x, z)| � Ce −[(1−ν)√2|x |+µz]. (5.5)

Proof. The existence part of the above lemma as well as estimate (5.4) follow from
Lemma 3.2. Indeed, the problem

�φ + f ′(U (x))φ = c(εz)Ux in S (5.6)

φz(x, 0) = −xUx , φz(x, 1/ε) = 0, on ∂S (5.7)∫
R

φUx dx = 0 (5.8)

has a unique solution φ∗ ∈ H2(S). On the other hand, the fact that Ux (x) is an
even function and uniqueness implies that φ is odd in x for each z and that c ≡ 0.
Besides,

‖φ∗‖H2(S) � C‖g‖H1(S),

where g is any H1-extension of the boundary condition. Let us take for instance

g(x, z) = e−z xUx (x)η(2εz),

with a suitable cutoff function η, in such a way that ‖g‖H1(S) � C with C inde-
pendent of ε. Thus we get

‖φ∗‖H2(S) � C,

as desired.
Assuming now (5.4) we will establish the decay estimates (5.5). We observe

first that since φ∗ is an odd function of x therefore we have
∫ ∞

−∞
φ∗(x, z)U ′(x) dx = 0

hence
∫ ∞

−∞
[|φ∗

x (x, z)|2 − f ′(U )|φ(x, z)|2] dx � µ2

∫ ∞

−∞
|φ(x, z)|2 dx, (5.9)

whereµ2 is the second eigenvalue of the operator Lψ = −ψ ′′− f ′(U )ψ considered
in R. It is known that µ2 � 2. Consider function

w(z) =
∫ ∞

−∞
|φ(x, z)|2 dx .

From (5.9) it follows that

−wzz + µ2w � 0



and from (5.4) we get that |wz(0)| � C . Clearly we have also wz(1/ε) = 0 and
thus by a comparison argument we get that

|w(z)| � Ce −µz, µ �
√

2.

Using local elliptic estimates we then get

|φ∗(x, z)eµz | � C, in S.

From this, passing a suitable barrier we get (5.5). 
�
We define the approximate solution of

�φ + f ′(w)φ = 0 in S

φz(x, l/ε) = ε
∑

j

G ′′
l (0)(x − f j (l/ε))

∂w j

∂x
for l = 0, 1/ε,

by

φ∗∗(x, z) = ε

N∑
j=1

φ j (x, z),

where

φ j (x, z) =
[

G ′′
0(0)φ

∗(x − f j (εz), z)+ G ′′
1(0)φ

∗
(

x − f j (εz),
1

ε
− z

)]
.

Our next goal is to prove the following.

Lemma 5.2. With the notation of the previous section we have the validity of the
following fact

|α(w + φ∗∗)− α(w)| � Cε3(| f ′′(εz)| + | log ε|q)
N∑

k=1

e−√
2| fk−x |

+ ε2
N∑

j=1

e −(1−ν)√2| f j −x |][e −µz + e −µ(1/ε−z)].

Consequently,

‖α(w + φ∗∗)− α(w)‖L2(S) � Cε
3
2 +µ, µ > 0. (5.10)

Similar decay estimates hold for β(w +φ∗∗). In addition, there is an extension
of β(w + φ∗∗) to the whole strip S such that

‖β(w + φ∗∗)‖H1(S) � Cε
3
2 | log ε|q . (5.11)



Proof. We have

α(w + φ∗∗) = E0 + [(�+ ηδεB)φ∗∗ + f ′(w)φ∗∗] + N (φ∗∗),

where

N (φ∗∗) = f (w + φ∗∗)− f (w)− f ′(w)φ∗∗.

We fix a k and consider the error in the set Ak , as in the previous section. We write

�φ∗∗ + f ′(w)φ∗∗ =
N∑

j=1

[�φ j + f ′(w j )φ j ]

+
N∑

j=1

f ′(w j )(φ
∗∗ − φ j )

+
⎡
⎣ f ′(wk)(w − wk)−

∑
j �=k

f ′(w j )

⎤
⎦φ∗∗

+O(1)|w − wk |2φ∗∗

=
4∑

i=1

E1i .

From the decay estimate (5.5) we get

|E11| � Cε3| log ε|qe −(1−ν)√2| fk−x |,

while the term E12 is estimated using (5.5) by

|E12| � C ε2 max
j �=k

e −(1−ν)√2| f j −x |[e −µz + e −µ(1/ε−z) ].

The remaining terms, including Bφ∗∗ and N (φ∗∗) are easily seen to be smaller
then the ones we have just considered. Estimate (5.10) follows immediately and
(5.11) is an easy consequence of the construction. This ends the proof. 
�

6. Reduction to a problem in S

We will now reduce the original problem which is defined in �ε to a problem
defined in the strip S. This will be done using a gluing procedure similar to that in
[12]. We consider smooth cut-off function η(t) where t ∈ R such that η(t) = 1 if
|t | < 1/2 and = 0 if |t | > 1.

Denote as well ηεδ(t) = η(εt/δ). We define our first global (that is defined in
�ε) approximation to be simply

w(y) =
{
ηε3δ(y1)(w + φ∗∗ + 1)− 1, if y1 < 0,
ηε3δ(y1)(w + φ∗∗ − (−1)N+1)+ (−1)N+1, if y1 > 0.



There is nothing wrong with considering δ as a quantity approaching zero with ε,
however slowly. In fact we fix in the sequel

δ = ε
1
6 .

We try a solution of (2.1)–(2.2) of the form v = w + φ̃. Then

α(w + φ̃) = 0, β(w + φ̃) = 0

if and only if

L̃(φ̃) = Ẽ + Ñ (φ̃) in �ε, (6.1)

β(φ̃) = Ẽb on ∂�ε. (6.2)

Here we have denoted

Ẽ = α(w), L̃(φ̃) = �y φ̃ + f ′(w)φ̃, Ẽb = −β(w),
and

Ñ (φ̃) = f (w + φ̃)− f (w)− f ′(w)φ.

We further decompose φ̃ in the following form:

φ̃ = ηε3δφ + ψ,

where, in coordinates (x, z), we assume that φ is defined in the whole strip S, and
with slight abuse of notation we call the same way its expression in y coordinates
and that in (x, z). Substituting in (6.1) we find

L̃(ηε3δφ)+ L̃(ψ) = Ẽ + Ñ (ηε3δφ + ψ).

We achieve this if the pair (φ, ψ) satisfies the following nonlinear coupled system:

L̃(φ) = ηεδ Ẽ + ηεδ Ñ (φ + ψ)− ηεδ [ f ′(w)+ 2]ψ, in S (6.3)
∂φ

∂ν
+ ηε3δb · ∇x,zφ = −ηεδ Ẽb, on ∂S, (6.4)

and

�yψ − (2 − 2(1 − ηεδ)(2 + f ′(w)) )ψ = (1 − ηεδ ) Ẽ + 2∇ηε3δ ∇φ
+ (�ηε3δ) φ + (1 − ηεδ) Ñ ( ηε3δ φ + ψ ) (6.5)

∂ψ

∂νy
= −(1 − ηεδ)Ẽb − φ

∂ηε3δ

∂νy
, on ∂�ε, (6.6)

whereφ is defined globally on S andψ is defined in�ε . Notice that the operator L̃ in
the strip S may be taken as any compatible extension outside the 6δ/ε-neighborhood
of the curve.

What we want to do next is to reduce the problem to one in the strip. To do this,
we solve, given a small φ, Problem (6.5)–(6.6) for ψ .



Since 1 − w2 = O(e −γ δ/ε) for |y1| > δε−1, then the problem

�yψ − 2ψ + (1 − ηεδ)(2 + f ′(w))ψ = h, in �ε, (6.7)
∂ψ

∂νy
= g on ∂�ε (6.8)

has a unique solution ψ ∈ H2(�ε) whenever ‖h‖L2(�ε)
, ‖g‖H1(�ε)

< +∞.
Moreover,

‖ψ‖L2(�ε)
� C[‖h‖L2(�ε)

+ ‖g‖H1(�ε)
].

Assume now that φ ∈ H2(�ε) satisfies that

‖φ‖H2(�ε)
� Cε

3
2 . (6.9)

Then from Sobolev’s embedding

‖φ‖L∞(�ε) � Cε.

Since Ñ has a power-like behavior with power greater than one, a direct application
of contraction mapping principles yields that Problem (6.5)–(6.6) has a unique
(small) solution ψ = ψ(φ) with

‖ψ(φ)‖H2(�ε)
� C[‖(1 − ηεδ)Ẽ‖L2(�ε)

+ ‖(1 − ηεδ)Ẽb‖H1(�ε)
]

+ Cεδ−1‖φ‖H2(�ε)
]. (6.10)

The nonlinear operator ψ satisfies a Lipschitz condition of the form

‖ψ(φ1)− ψ(φ2)‖H2(�ε)
� Cεδ−1[ ‖φ1 − φ2‖H2(�ε)

. (6.11)

The full problem has been reduced to solving the (nonlocal) problem in the
infinite strip S

L2(φ) = ηεδ Ẽ + ηεδ Ñ (φ + ψ(φ))− ηεδ [ f ′(w)+ 2]ψ(φ) (6.12)

for a φ ∈ H2(S) satisfying condition (6.9). Here L2 denotes a linear operator that
coincides with L̃ on the region |x | < 6δ

ε
.

We shall define this operator next. The operator L̃ for |x | < 6δ
ε

can be extended
in coordinates (x, z) to functions φ defined in the entire strip S as follows:

L2(φ) = �x,zφ + ηε6δB(φ)+ f ′(w)φ = L(φ)+ ηε6δB(φ). (6.13)

Rather than solving problem (6.3)–(6.4) directly, we shall do it in steps. We
consider the following projected problem in H2(S): given f = ( f1, . . . , fN ) satis-



fying bounds (2.5), find functions φ ∈ H2(S), and c = (c1, . . . , cN ), c j ∈ L2(0, 1)
such that

L(φ) = ηεδ Ẽ − N2(φ) +
N∑

j=1

c j (εz)w j,x in S, (6.14)

∂φ

∂ν
+ ηε3δb · ∇x,zφ = −ηεδ Ẽb, on ∂S, (6.15)

∫
R

φ(x, z) w j,x (x, z) dx = 0, 0 < z <
1

ε
, j = 1, . . . , N . (6.16)

Here

N2(φ) = ηε6δB(φ)+ ηεδ Ñ (φ + ψ(φ))− ηεδ [ f ′(w)+ 2]ψ(φ).
We will prove next that this problem has a unique solution whose norm is controlled
by the L2 norm of Ẽ and H1 of the suitable extension of Ẽb. After this has been
done, our task is to adjust the parameter f in such a way that c is identically zero. As
we will see, this turns out to be equivalent to solving a nonlocal, nonlinear second
order differential equation for f Robin boundary conditions. As we will see this
system is solvable in a region where the bound (2.5) hold.

6.1. Solving the nonlinear intermediate problem

Next we will solve problem (6.14)–(6.16).

Proposition 6.1. There exist numbers D > 0 such that for all sufficiently small ε
and all f satisfying (2.5) problem (6.14)–(6.16) has a unique solution φ = φ(f)
which satisfies

‖φ‖H2(S) � Dε
3
2 | log ε|q ,

for certain q depending on the accuracy of the approximation by the approximate
solution w only. Besides φ depends continuously on f .

Proof. Let Tf be the operator defined by Proposition 2.1, in which its dependence
on the chosen f is emphasized. Let us denote

M(φ) = −ηε3δb · ∇x,zφ.

Then, given f the equation (6.14)–(6.16) is equivalent to the fixed point problem
for φ(f):

φ(f) = Tf (η
ε
δ Ẽ(f)+ N2(φ(f)),−ηεδ Ẽb(f)+ M(φ(f)), 0) ≡ A(φ, f). (6.17)

In the sequel we will not emphasize the dependence on f whenever it is not
necessary.

We will define now the region where the contraction mapping principle applies.
We consider the following closed, bounded subset of H2(S):

B =
{
φ ∈ H2(S)

∣∣∣ ‖φ‖H2(S) � Dε
3
2 | log ε|q ,

}
,



where q > 0 is such that

‖Ẽ‖L2(S) + ‖Ẽb‖H1(S) � Cε3/2| log ε|q .
Recall that the existence of such q has already been established in Lemma 5.2.

We claim that there is a constant D > 0 such that the map A defined in (6.17) is
a contraction from B into itself, uniform with respect to f . Given φ̃ ∈ B we denote
φ = A(φ̃, f). First notice that using (6.10) and Lemma 5.2 we get for φ̃ ∈ B

‖ηεδ Ẽ + N2(φ̃)‖L2(S) � C0ε
3/2| log ε|q + C‖φ̃‖2

H2(S) (6.18)

+Cε1/4‖φ̃‖H2 . (6.19)

Using Lemma 5.2, and the fact that |b(εx, εz)| � Cε|x | we get for the H1 extension
of −ηεδ Ẽb + M(φ̃) (denoted by the same symbol)

‖ − ηεδ Ẽb + M(φ̃)‖H1(S) � C1ε
3/2| log ε|q + Cδ‖φ̃‖H2(S). (6.20)

Since δ = ε1/6 from (6.19) to (6.20) we get that A indeed applies B into itself
provided that D is chosen sufficiently large.

Next, let us analyze the Lipschitz character of the nonlinear operator involved
in A for functions in B, namely N2(φ + ψ(φ)). For φ1, φ2 ∈ B we have, using
(6.10) and (6.11):

‖N2(φ1 + ψ(φ1))− N2(φ2 + ψ(φ2))‖L2(S)
� Cε3/2| log ε|q‖φ1 − φ2‖H2(S).

(6.21)

Using this, we readily find that A is a contraction map in B and thus show the
existence of the fixed point.

A tedious but straightforward analysis of all terms involved in the differential
operator and in the error yield that the operator A(φ, f) is continuous with respect to
f . Indeed, denotingφi (fi ) = A(φ̃i , fi ), i = 1, 2, and indicating now the dependence
on fi , let us write:

L2,f1(φ(f1))− L2,f2(φ(f2)) = L2,f1 [φ(f1)− φ(f2)]
+[ f ′(w(f1))− f ′(w(f2))]φ(f2),

and

ηεδ

N∑
j=1

[c j (εz; f1) w j,x (f1)− c j (εz; f2) w j,x (f2)]

= ηεδ

N∑
j=1

[c j (εz; f1)− c j (εz; f2)]w j,x (f1)

+ηεδ
N∑

j=1

c j (εz; f2)[w j,x (f1)− w j,x (f2)]



and finally, for each j = 1, . . . , N

∫
R

[φ(f1)− φ(f2)]w j,x (f1) dx = −
∫

R

φ(f2)[w j,x (f1)− w j,x (f2)] dx .

Using this decomposition one can estimate ‖φ(f1) − φ(f2)‖H2(S) employing the
theory developed in the previous section. Observe that this estimate does not depend
on c j (εz; f1)− c j (εz; f2). A rather lengthy but straightforward computation shows
that in fact for fixed ε the fixed point of A, φ(f) is Lipschitz with respect to f :

‖φ(f1)− φ(f2)‖H2(S) � Cε−1/2| log ε|q‖f1 − f2‖H2(0,1) (6.22)

and thus continuous with respect to f . This ends the proof. 
�

Clearly a solution to (6.14)–(6.16) will be a solution to (6.1)–(6.2), and conse-
quently yield a solution to our original problem (2.1)–(2.2) if we can find f such
that

c(f) = 0. (6.23)

As we will see this leads to a small perturbation of a system of N nonlinear ODE’s
for N . We carry out this argument in the next section.

To prepare for this argument we will examine more closely the dependence of
φ on f . Notice first that the error term Ẽ can be written in the form

Ẽ(x, z; f) = Ẽ1(x, z; f, f ′) · (ε2f ′′)+ Ẽ2(x, z; f, f ′),

that is Ẽ(x, z; f) is actually linear as a function of ε2f ′′. Similarly the error term on
the boundary β(w) can be written as

β(w)(�) = β(x; f)(�) = O(ε2)β1(x; f(�))+ O(ε2)β2(x; f(�)) · (εf ′(�)),

where � = 0, 1/ε. Taking advantage of this structure of the error term we can refine
estimates in Proposition 6.1 indicating their explicit dependence on f ′′ as follows.

‖φ(f)‖H2(S) � C[‖Ẽ1(·; f, f ′) · (ε2f ′′)‖L2(S) + ‖β2(·; f) · (εf ′)‖H1(S)]
+C[‖Ẽ2(·; f, f ′)‖L2(S) + ‖β1(·; f)‖H1(S)]

� D1ε
3/2‖f ′′‖L2(0,1) + D2ε

3/2| log ε|q . (6.24)

Exploring the linear dependence on ε2f ′′ further we can refine estimate (6.22) as
follows

‖φ(f1)− φ(f2)‖H2(S) � Cε3/2| log ε|q‖f1 − f2‖H2(0,1)

+Cε−1/2| log ε|q‖f1 − f2‖H1(0,1). (6.25)



7. Location of the interfaces and the Toda system

7.1. Location of the interfaces

By integrating equation (6.14) againstwk,x and integrating only in x , we obtain
that relations (6.23) are equivalent to the following system of equations for f :

∫
R

[ηεδ Ẽ + N2(φ)− L(φ)]wk,x dx = 0, k = 1, . . . , N . (7.1)

We decompose on |x | < 6δ
ε

,

Ẽ = α(w)+ α(w + φ∗∗)− α(w),

where

α(w) = �w + ηε6δBw + f (w)

and recall that Lemma 2.1 gives us an expansion of the form
∫

R

ηεδα(w)U
′(x − fk) dx

= (−1)ka0 [ ε2b0 f ′′
k − e−√

2( fk− fk−1) + e−√
2( fk+1− fk )] + Pk (7.2)

for some positive universal constants a0, b0, where

‖Pk‖L2(0,1) � Cε2+µ, for some µ > 0, (7.3)

uniformly on functions fk’s satisfying conditions (2.5).
On the other hand, let us set

Rk(εz) = −
∫

R

(α(w + φ∗∗)− α(w))U ′(x − fk) dx .

Using Lemma 5.2 we get

Rk(εz) = −
∫

R

(α(w + φ∗∗)− α(w))U ′(x − fk) dx

that

‖Rk‖L2(0,1) � Cε2+µ. (7.4)

Continuing with the terms involved in (7.1), using the contracting nature of N2(φ)

and Proposition 6.1 we get for

Qk(ζ ) =
∫

R

N2(φ)U
′(x − fk) dx, ζ = εz,

a similar estimate

‖Qk‖L2(0,1) � Cε2+µ, k = 1, . . . , N . (7.5)



We should point out here that by Proposition 6.1 Qk is a continuous function of f .
Finally, with ζ = εz, we will write

Sk(ζ ) =
∫

R

L2(φ)U
′(x − fk) dx =

∫
R

φzzU ′(x − fk)

+
∫

R

B(φ)U ′(x − fk) dx +
∫

R

φ[U ′
xx + f ′(w)U ′(x − fk)] dx .

It is fairly straightforward to estimate L2 norms of the functions involved in the
definition of Sk . For example, using the orthogonality conditions we can write

S1
k (ζ ) =

∫
R

φzzU ′(x − fk) = 2ε f ′
k

∫
R

φzU ′′(x − fk) dx

+ε2
∫

R

φ[ f ′′
k U ′′(x − fk)− ( f ′

k)
2U ′′′(x − fk)] dx .

Using now Proposition 6.1 we get for ‖S1
k ‖L2(0,1) an estimate similar to (7.5). As

before it is also clear that Sk depends continuously on f .
Let us define

Nk(ζ ; f, f ′, f ′′) = −(−1)k[Pk + Qk + Rk − Sk],
where Pk is the quantity in expansion (2.21).

Examining the formulas obtained above we see that Nk can be decomposed in
the following way

Nk(ζ ; f, f ′, f ′′) = Nk1(ζ ; f, f ′, f ′′)+ Nk2(ζ ; f, f ′),

where Nki , i = 1, 2 are continuous functions of its arguments. Function Nk1
satisfies in addition

‖Nk1(ζ ; f, f ′, f ′′)‖L2(0,1) � Cε2+µ (7.6)

‖Nk1(ζ ; f1, f ′
1, f ′′

2 )− Nk1(ζ ; f2, f ′
2, f ′′

2 )‖L2(0,1)

� Cε2+µ| log ε|q‖f1 − f2‖H2(0,1), (7.7)

and the function Nk2 satisfies

‖Nk2(ζ ; f, f ′)‖L2(0,1) � Cε2+µ. (7.8)

In addition, the functions fk need to satisfy boundary conditions (5.1). Thus,
after obvious algebra, setting θ = 2(ζ − 1/2), and using expansion (2.21) in
Lemma 2.1 we have the following system to deal with

α0
√

2ε2 f ′′
k − e−√

2( fk− fk−1) + e−√
2( fk+1− fk ) = Nk, −1 < θ < 1 (7.9)

f ′
k(−1)+ K− fk(−1) = 0, (7.10)

f ′
k(1)+ K+ fk(1) = 0, (7.11)

where K− = 1
2 G ′′

0(0), K+ = 1
2 G ′′

1(0) and α0 = c0/(c1
√

2).
To solve the nonlinear system (7.9)–(7.11) we will first consider its version with

Nk replaced by a given function hk . Our goal is to prove the following:



Theorem 7.1. Assume that the following conditions hold:

K− > 0, K+ < 0, (7.12)

K− − K+ + 2K−K+ > 0, (7.13)
K− + K+
2K−K+

∈ (−1, 1) (7.14)

and let functions hk be such that

‖hk‖L2(−1,1) � Cε2+µ

with some µ > 0. Then, for each sufficiently small ε there exists a unique solution
to the system (7.9)–(7.11) (with hk replacing Nk) which satisfies

‖ fk‖H2(−1,1) � C | log ε|, k = 1, . . . , N ,

and

fk+1(θ)− fk(θ) >
√

2| log ε| − 2
√

2 log | log ε|,
c > 0, k = 1, . . . , N − 1.

Moreover, there exist λ̄, λ̄ = c| log ε| + O(log | log ε|), θ0 ∈ (0, 1) such that we
have the following representation

fk+1(θ)− fk(θ) = 1√
2

[
qk+1(λ̄(θ − θ0))− qk(λ̄(θ − θ0))− log λ̄2ε2

]

+ϕkk+1(θ), k = 1, . . . , N − 1.

Functions qk are explicitly given solutions of the Toda system

q ′′
k − e(qk−1−qk ) + e(qk−qk+1) = 0, in R, k = 1, . . . , N − 1,

where we take q0 = −∞, qN+1 = ∞, and functions ϕkk+1(θ) satisfy

‖ϕkk+1‖L2 � Cεµ
′
,

with some µ′ > 0.

We observe that since we have assumed |�0| = 1 and

K− = 1

2
κ(P0), K+ = −1

2
κ(P1),

then the assumptions of Theorem 1.1 are precisely equivalent to (7.12)–(7.14).
In what follows we will first outline the proof of the theorem. Next we will

prove a special case of two interfaces and then we will consider the general case.
Finally we solve our nonlinear problem (7.9)–(7.11) thus concluding the proof of
Theorem 1.1.

Let us set

fk = 1√
2
( f̃k − (k − 1) log(ε2))



so that (7.9)–(7.11) becomes

α0 f̃ ′′
k − e( f̃k−1− f̃k ) + e( f̃k− f̃k+1) = h̃k, −1 < θ < 1, (7.15)

f̃ ′
k(−1)+ K− f̃k(−1) = K−(k − 1) log(ε2), (7.16)

f̃ ′
k(1)+ K+ f̃k(1) = K+(k − 1) log(ε2), (7.17)

where h̃k = ε−2hk . To solve the above problem we will take advantage of the
fact that some explicit solutions of the equations (7.15) considered on the whole
real line are explicitly known. To this end we introduce two parameters θ0 and
|λ| � 1, define a change of variables t = λ

√
α0(θ − θ0), and look for a solution to

(7.15)–(7.17) in the form:

f̃k(θ) = qk(λ̄(θ − θ0))− (k − 1) log λ̄2,

where for convenience we have set λ̄ = λ
√
α0. To solve

q ′′
k − e(qk−1−qk ) + e(qk−qk+1) = λ̄−2h̃k, t− < t < t+, (7.18)

λ̄q ′
k(t

−)+ K−qk(t
−) = K−(k − 1) log(ε2λ̄2), (7.19)

λ̄q ′
k(t

+)+ K+qk(t
+) = K+(k − 1) log(ε2λ̄2), (7.20)

where t− = −λ̄(1 + θ0), t+ = λ̄(1 − θ0), we first solve (approximately) the
homogeneous problem to determine just two parameters θ0, λ̄ and next we need
to determine the corrections φk . This procedure will be described in detail in the
sequel.

7.2. Cluster of two interfaces

In this section we will prove Theorem 7.1 in the special case when N = 2.
System (7.18)–(7.20) can then be reduced to a single scalar equation for u = q1−q2

u′′ + 2e u = λ̄−2h, t− < t < t+, (7.21)

λ̄u′(t−)+ K−u(t−) = −K− log(ε2λ̄2), (7.22)

λ̄u′(t+)+ K+u(t+) = −K+ log(ε2λ̄2). (7.23)

The homogeneous version of the equation (7.21) considered on R has an explicit
solution

u0(t) = log

(
1

4 cosh2(t/2)

)
.

It can be seen easily that u0(t) < 0 and also that

u0(t) = −|t | + O(e −|t |), t → ±∞.

We will now look for the first approximation of the solution of (7.21)–(7.23) in the
form u(t) = u0(t). We get the following system for θ0, λ̄:

λ̄u′
0(−λ̄(1 + θ0))+ K−u0(−λ̄(1 + θ0)) = −K− log(ε2λ̄2), (7.24)

λ̄u′
0(λ̄(1 − θ0))+ K+u0(λ̄(1 − θ0)) = −K+ log(ε2λ̄2). (7.25)



This is in fact a nonlinear system for (θ0, λ̄). Although it is in principle possible
to find (θ0, λ̄) in such a way that (7.24)–(7.25) are satisfied exactly we will not do
it here. Instead, taking into account the asymptotic behavior of u0, we will look for
(θ0, λ̄) that solve the following system

λ̄[1 − K−(1 + θ0)] = −K− log(ε2λ̄2),

λ̄[−1 − K+(1 − θ0)] = −K+ log(ε2λ̄2),
(7.26)

which has a solution (θ0, λ̄) such that λ̄ = O(| log ε|) > 0, θ0 ∈ (−1, 1) thanks to
(1.4) and our assumption. In fact we have that:

θ0 = K+ + K−
2K+K−

, λ̄ = K+ log(ε2λ̄2)

1 + K+(1 − θ0)
= K−K+ log(ε2λ̄2)

K− − K+ + 2K−K+
. (7.27)

Notice that to find λ̄ in (7.27) we have to solve a simple nonlinear equation.
One can show that

λ̄ = 2K+
−1 + K+(1 − θ0)

log
1

ε
+ O

(
log log

1

ε

)
. (7.28)

Now, denoting

λ̄u′
0(t)+ K±u0(t)+ K± log(ε2λ̄2) = g±, for t = ∓λ̄(1 + ±θ0), respectively

we get from (7.28)

|g±| � Cεµ, (7.29)

with some µ > 0. We will seek an exact solution to (7.21)–(7.23) in the form

u(t) = u0(t)+ ϕ(t).

To find ϕ we will use a fixed point argument and thus we need to study the linearized
version of (7.21)–(7.23).

φ′′ + 2e u0φ = h, t− < t < t+, (7.30)

λ̄φ′(t−)+ K−φ(t−) = g−, (7.31)

λ̄φ′(t+)+ K+φ(t+) = g+, (7.32)

with a given function h ∈ L2(t−, t+) and constants g±. The functions

ψ1(t) = u′
0(t),

ψ2(t) = tu′
0(t)+ 2

form the fundamental set for (7.30)–(7.32) and their Wronskian is actually
W (ψ1, ψ2) = 1. By the variation of constants formula,

φ(t) = −ψ1(t)
∫ t

−λ̄(1+θ0)

ψ2(s)h(s) ds + ψ2(t)
∫ t

−λ̄(1+θ0)

ψ1(s)h(s) ds

+c1ψ1(t)+ c2ψ2(t).



The functions ψ1, ψ2 satisfy the asymptotic formulas

ψ1(t) = ∓1 + O(e −|t |), ψ2(t) = −|t | + O(e −|t |), t → ±∞
from which it follows easily

‖φ‖L2 � C λ̄3/2[‖h‖L2 + λ̄−1|c1| + |c2|]. (7.33)

To determine the constants c1, c2 we need to solve the system

c1[λ̄ψ ′
1 + K−ψ1] + c2[λ̄ψ ′

2 + K−ψ2] = g−, at t = −λ̄(1 + θ0) (7.34)

c1[λ̄ψ ′
1 + K+ψ1] + c2[λ̄ψ ′

2 + K+ψ2] = g+

+ K+

{
ψ1

∫ λ̄(1+θ0)

−λ̄(1+θ0)

ψ2(s)h(s) ds

−ψ2

∫ λ̄(1+θ0)

−λ̄(1+θ0)

ψ1(s)h(s) ds

}
,

at t = λ̄(1 + θ0). (7.35)

This system has a unique solution for λ̄ � 1 since the matrix(
K− 1 − K−(1 + θ0)

−K+ −1 − K+(1 − θ0)

)

is nondegenerate thanks to the nondegeneracy condition (1.4). In fact we find

|c1| � C[|g−| + |g+| + λ̄3/2‖h‖L2 ],
|c2| � C λ̄−1[|g−| + |g+| + λ̄3/2‖h‖L2 ].

From (7.33) we get

‖φ‖L2 � C[λ̄2‖h‖L2 + λ̄1/2(|g−| + |g+|)]. (7.36)

By a straightforward argument we get a further estimate

‖φ‖λ̄ ≡ ‖φ′′‖L2 + ‖φ′‖L2 + ‖φ‖L2 � C[λ̄2‖h‖L2 + λ̄1/2(|g−| + |g+|)].
(7.37)

Given (7.29) and assuming in addition that

‖h‖L2 � εµ,

it is easy to solve (7.21)–(7.23) using a standard fixed point argument in the set of
functions

X = {φ | ‖φ‖λ̄ < εµ
′ }, with µ′ < µ.

After this is done one can go back to the original problem solving the following
equation for f1

f ′′
1 = −λ̄2e u + ε−2h1 + O(e −c/ε)e f1

with the boundary conditions (7.10)–(7.11). The solution to this problem satisfies
estimate ‖ f1‖H2 � C | log ε| as required. The rest of the Theorem 7.1 for N = 2
follows now easily.



7.3. Solvability theory for the general Toda system

In this section we will prove Theorem 7.1. This will be done in several steps.
We will assume here N > 2 since the case N = 2 has just been treated above.

For given functions q j (t), p j (t), j = 1, . . . , N such that

N∑
j=1

q j =
N∑

j=1

p j = 0,

we define the Hamiltonian

H =
N∑

j=1

p2
j

2
+ V, V =

N−1∑
j=1

e (q j −q j+1).

From what we have seen above (4.3), to determine the location of the interfaces it
is necessary to develop a solvability theory for a Toda system of the form:

dq j

dt
= p j , (7.38)

d p j

dt
= − ∂H

∂q j
. (7.39)

In this section we will often make use of classical results of Konstant [23] and in
particular we will use the explicit formula for the solutions of (7.38)–(7.39) (see
formula (7.7.10) in [23]). We will first introduce some notation. Given numbers
w1, . . . , wN ∈ R such that

N∑
k=1

wk = 0, and wk > wk+1, k = 1, . . . , N

we define

w0 = diag (w1, . . . , wN ).

Furthermore, given numbers g1, . . . , gn ∈ R such that

N∏
k=1

gk = 1, and gk > 0, k = 1, . . . , N

we define

g0 = diag (g1, . . . , gN ).

The matrices w0 and g0 can be parameterized by introducing the following two sets
of parameters

ck = wk − wk+1, dk = log gk+1 − log gk, k = 1, . . . , N − 1. (7.40)



We define functions �k(g0,w0; t), t ∈ R, k = 0, . . . , N , by

�0 = �N ≡ 1

�k(g0,w0; t) =
(−1)k(n−k)

∑
1�ii<···<ik�N

ri1...ik (w0)gi1 . . . gik exp[−t (wi1 + · · · + wik )], (7.41)

where ri1...ik (w0) are rational functions of the entries of the matrix w0. It is proven
in [23] that all solutions of (7.38)–(7.39) are of the form

q j (t) = log� j−1(g0,w0; t)− log� j (g0,w0; t), j = 1, . . . , N . (7.42)

We introduce variables uk = qk − qk+1. In terms of u = (u1, . . . , uN−1) system
(7.38)–(7.39) becomes

u′′ + Me u = 0, (7.43)

where

M =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0

. . .

0 · · · 2 −1
0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎠
, e u =

⎛
⎜⎝

e u1

...

e uN−1

⎞
⎟⎠ .

As a consequence of (7.41) all solutions to (7.43) are given by

u j (t) = q j (t)− q j+1(t) = −2 log� j (g0,w0; t)+ log� j−1(g0,w0; t)

+ log� j+1(g0,w0; t). (7.44)

Our first goal is to prove the following:

Lemma 7.1. Let w0 be such that

∣∣∣∣wk − (N − k)+ N − 1

2

∣∣∣∣ < 1

100N 4 , k = 1, . . . , N . (7.45)

Then there holds

uk(t) =
{

−cN−k t−dN−k + τ+
k (c)+O(e − |t |

2 ), as t → +∞, k = 1, . . . , N −1,

ckt + dk + τ−
k (c)+ O(e − |t |

2 ), as t → −∞, k = 1, . . . , N − 1,

(7.46)

where τ±
k (c) are smooth functions of the vector c = (c1, . . . , cN−1).



Proof. Let q j , j = 1, . . . , N be a solution of the system (7.38)–(7.39) depending
on the (matrix valued) parameters w0, g0 and defined in (7.42). We need to study the
asymptotic behavior of� j (w0, g0; t) as t → ±∞ with the entries of w0 satisfying
(7.45) and still undetermined g0.

Note that inequalities (7.45) together with the condition
∑N

k=1wk = 0 imply

|ck − 1| < 1

50N 3 , k = 1, . . . , N . (7.47)

By (7.41) and (7.47), we get that as t → −∞

�k = (−1)k(N−k)r1...k(w0)g1 . . . gke−(w1+···+wk )t + O(e −|t |(1+k(N−k)/4)),

hence

�k+1�k−1

�2
k

= gk+1r1...(k−1)(w0)r1...(k+1)(w0)e−t

gkr2
1...k(w0)

(1 + O(e− |t |
2 )). (7.48)

It follows that as t → −∞

uk(t) = log

(
�k+1�k−1

�2
k

)

= −ckt + log

(
gk+1r1...(k−1)(w0)r1...(k+1)(w0)

gkr2
1...k(w0)

)
+ O(e− |t |

2 ) (7.49)

= ckt + dk + τ−
k (c)+ O(e− |t |

2 ), (7.50)

where

τ−
k (c) = log

(
r1...(k−1)(w0)r1...(k+1)(w0)

r2
1...k(w0)

)
.

Similarly, as t → +∞ we get

uk(t) = log

(
�k+1�k−1

�2
k

)

= −cN−k t − dN−k + τ+
k + O(e− |t |

2 ), (7.51)

where

τ+
k (c) = log

(
rN+2−k...N (w0)rN−k...N (w0)

r2
N+1−k...N (w0)

)
.

This ends the proof. 
�



Next we need to choose (ck, dk): let (λ̄, θ0) be defined at (7.26) as in the case
of N = 2 and

ck = 1 + 1

λ̄
c̄k . (7.52)

We need to choose uk such that it satisfies

λ̄u′
k(t

−)+ K−uk(t
−) = K− log(ε2λ̄2)+ O(εµ), (7.53)

λ̄u′
k(t

+)+ K+uk(t
+) = K+ log(ε2λ̄2)+ O(εµ), (7.54)

for some µ > 0. To this end, we set (ĉk, dk) such that

−(1 + K+(1 − θ0))ĉN−k − K+dN−k + K+τ+
k

(
c0 + 1

λ̄
ĉ
)

= 0, (7.55)

(1 − K−(1 + θ0))ĉk + K−dk + K−τ−
k

(
c0 + 1

λ̄
ĉ

)
= 0, (7.56)

where c0 = (1, . . . , 1), ĉ = (ĉ1, . . . , ĉN−1).
By changing k to N − k in (7.55), we see that (7.55)–(7.56) is equivalent to

−(1 + K+(1 − θ0))ĉk − K+dk + K+τ+
N−k(c) = 0, k = 1, . . . , N − 1, (7.57)

(1 − K−(1 + θ0))ĉk + K−dk + K−τ−
k (c) = 0, k = 1, . . . , N − 1, (7.58)

which can be uniquely solved by the implicit function theorem since the matrix

⎛
⎜⎜⎜⎜⎜⎝

−(1 + K+(1 − θ0)) −K+ 0 · · · 0
(1 − K−(1 + θ0)) K− 0 · · · 0

. . .

0 · · · 0 −(1 + K+(1 − θ0)) −K+
0 · · · 0 (1 − K−(1 + θ0)) K−

⎞
⎟⎟⎟⎟⎟⎠
,

is again nonsingular thanks to the nondegeneracy condition (1.4).
Then we define the new errors

λ̄u′
k(t

±)+K±uk(t
−)−K± log(ε2λ̄2)=gk,± for t = ∓λ̄(1 + ±θ0), respectively.

(7.59)

We get from (7.26) and (7.55)–(7.56) that

|gk,±| � Cεµ, (7.60)

with some µ > 0.
The rest of the proof of Theorem 7.1 follows basically the steps of the proof

of the special case in the previous section. Thus we have to consider the following
linear system



�φ′′ =

⎛
⎜⎜⎜⎜⎜⎝

2e u1 −e u2 0 · · · 0
−e −u1 2e u2 −e u3 · · · 0

. . .

0 · · · 2e uN−2 −e uN−1

0 · · · −e uN−2 2e uN−1

⎞
⎟⎟⎟⎟⎟⎠

�φT , �φ = (φ1, . . . , φN−1)

(7.61)

We first observe that

g j
∂uk

∂g j
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, j = k + 1, t → ∞,

−1, j = k, t → ∞,

1, j = N + 2 − k, t → −∞,

−1, j = N + 1 − k, t → −∞,

0, otherwise.

Hence by a transformation we can find a set of linearly independent solutions to
(7.61)

ψ1k(t) =
{ �ek, t → ∞,

−�ek, t → −∞.

Similarly, considering derivatives of uk with respect tow j we can find solutions of
(7.61), ψ2k(t), k = 1, . . . , N − 1 such that

ψ2k(t) = �ek |t | + O(1).

The functions {ψ1k(t),ψ2k(t)} form a fundamental set for the system (7.61), whose
behavior as t → ±∞ is analogous to that of the functionsψ1(t), ψ2(t), respectively.

Denoting by u0(t) the solution to (7.43) where the parameters w0 and g0 satis-
fying (7.55)–(7.56) and setting uk(t) = qk(t)− qk+1(t), u = (u1, . . . , uN−1), we
look for the solution to (7.18)–(7.20) (expressed now in terms of u) in the form

u(t) = u0(t)+ �ϕ(t), �ϕ = (ϕ1, . . . , ϕN−1),

where the boundary conditions are given at t = −λ̄(1+ θ0) and t = λ̄(1− θ0)with
λ̄ and θ0 defined in (7.26). By (7.60), u0 satisfies the required boundary condition
up to order O(εµ), for some µ > 0. Following the scheme in the case N = 2,
using the fundamental set {ψ1k, ψ2k}, we can solve for the correction �ϕ. The rest
of the proof is an equally straightforward adaptation of the method of the previous
section. We leave the details to the reader.

7.4. Conclusion of the proof of Theorem 1.1

To solve system (7.9)–(7.11) we will set up a fixed point argument scheme. To
this end let f̃ ∈ H1(−1, 1) be given and such that

‖f̃‖H1(−1,1) � | log ε|2



and define for each k = 1, . . . , N

hk(f) = Nk1(f, f ′, f ′′)+ Nk2(f̃, f̃ ′).

With this h = (h1, . . . , hN ) we can use Theorem 7.1 to solve the (now nonlinear)
problem

α0
√

2ε2 f ′′
k − e−√

2( fk− fk−1) + e−√
2( fk+1− fk ) = hk(f), −1 < θ < 1, (7.62)

f ′
k(−1)+ K− fk(−1) = 0, (7.63)

f ′
k(1)+ K+ fk(1) = 0. (7.64)

Here it is important that Nk1 is a contraction in H2(−1, 1) and therefore, making
use of the theory developed above for the linearized Toda system and employing
the Banach Contraction Mapping theorem we find f given f̃ . This way we define
a mapping T (f̃) = f and the solution of our problem is simply a fixed point of T .
Continuity of Nki , i = 1, 2, with respect to its parameters and a standard regularity
argument allows us to conclude that T is compact as a mapping from H1(−1, 1)
into itself. Then the Schauder Theorem applies to yield the existence of a fixed
point of T as required. Finally, we should remark that uniqueness of the solutions
found for system (7.62)–(7.64) for hk = 0 implies the symmetry fact fk = − fN−k .
This symmetry is thus approximately inherited for the inhomogeneous perturbed
problem. The construction itself provides the validity of the asymptotic expressions
(1.18). This ends the proof of Theorem 1.1. 
�
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