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a Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
b Faculty of Electrical Engineering, University of Ljubljana, Slovenia

a b s t r a c t

In this paper we describe the design of hybrid fuzzy predictive control based on a genetic algorithm (GA).
We also present a simulation test of the proposed algorithm and a comparison with two hybrid predictive
control methods: Explicit Enumeration and Branch and Bound (BB). The experiments involved controlling
the temperature of a batch reactor by using two on/off input valves and a discrete-position mixing valve.
The GA-hybrid predictive control strategy proved to be a suitable method for the control of hybrid systems,
giving similar performance to that of typical hybrid predictive control strategies and a significant saving
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with respect to the computation time.
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. Introduction

Model Based Predictive Control (MBPC) consists of optimizing
he process behavior to obtain optimal future control actions. In
he MBPC framework the use of non-linear models with contin-
ous and/or discrete variables has been considered in order to
btain better representations of the process non-linearities. Thus,
e present the more recent reports related to fuzzy predictive con-

rol, hybrid predictive control and the new hybrid predictive control
pproach.

Firstly, simplified solutions of non-linear fuzzy predictive
ontrol methods were developed, such as the fuzzy predictive
ontroller based on the Takagi–Sugeno fuzzy model linearization
roposed by Roubos, Babuska, Bruijn, and Verbruggen (1998). In
hat paper a linear model for every sampling time is derived by eval-
ating the fuzzy model premises and a linear predictive controller is
esigned. The method provides a sub-optimal solution, but requires

ess computational time, as Kim et al. point out in a similar study
Kim & Huh, 1998). Espinosa, Vandewalle, and Wertz (2005) and
spinosa and Vandewalle (1998) propose a fuzzy predictive con-

rol algorithm based on an approximation of the free and forced
esponses of the fuzzy model. In such an approach the predic-
ive control analytical solution is similar to the one obtained with
he linear MBPC algorithm. Hadjili and Wertz (1999), Espinosa and
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andewalle (1999) and Nounou and Passino (1999) describe similar
redictive controllers, where the fuzzy predictor is linearly approxi-
ated by using constant satisfaction degrees for the future horizons

nd an analytical solution of a linear MBPC is applied. These algo-
ithms compare favorably with Roubos’s algorithms (Roubos et al.,
998).

More robust solutions of the fuzzy predictive control strat-
gy have been proposed. Babuska (1998) and Babuska, Sousa,
nd Verbruggen (1999) developed a multi-step fuzzy predictor
or longer prediction horizons. However, these solutions require
longer computation time. Mahfouf, Kandiah, and Linkens (2002)

onsider a Takagi–Sugeno (T–S) fuzzy model with different fuzzy
artitions of the input space.

Recently, in order to appropriately control processes that con-
ain discrete and/or continuous variables (hybrid systems), hybrid
redictive control techniques were developed. Slupphaug, Vada,
nd Foss (1997) and Slupphaug and Foss (1997) describe a predic-
ive controller with continuous and integer input variables solved
y non-linear mixed integer programming.

Bemporad and Morari (1999) and Bemporad, Borrelli, and
orari (2002) present a predictive control scheme for hybrid

ystems solved by using Mixed Integer Quadratic Programming
MIQP). The proposed algorithm was applied to a gas-supply system

hat considers quantized manipulated variables. The main prob-
em with MIQP is its computational complexity, which increases
he time required to find the solution. Bemporad, Giovanardi, and
orrisi (2000) present a predictive control design for Piece-wise
ffine (PWA) systems, as these are models for describing both non-

http://www.sciencedirect.com/science/journal/00981354
mailto:gorazd.karer@fe.uni-lj.si
dx.doi.org/10.1016/j.compchemeng.2008.05.014
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inear and hybrid systems. In this case, reachability conditions are
stablished. In addition, Bemporad, Heemels, and Schutter (2002)
stablished that a hybrid system with the predictive control based
n a quadratic objective function and linear constraints is a sub-
lass of the Mixed Logical Dynamical (MLD) hybrid system. In other
ords, the closed-loop system corresponds to a hybrid system. This

esult opens up the use of robustness and stability tools developed
or the hybrid model classes, to study the closed-loop properties of
ybrid predictive control.

Borrelli, Baotic, Bemporad, and Morari (2003) and Borrelli
2003) propose a finite-time optimal control solution for PWA
ystems with a quadratic performance criterion. The controller is
ased on a dynamic programming recursion and a multiparametric
uadratic programming solver. Thus, the optimization problem is
olved for each partition of the PWA system. Baotic, Christophersen,
nd Morari (2003) present a linear criterion for the proposed
lgorithm that results in a reduced computation time. Thomas,
umur, and Buisson (2004) propose a hybrid predictive controller
artitioning in the state-space domain. In every partition some
ariables change, while the others remain constant. This approach
lso reduces the computation time. Beccuti, Geyer, and Morari
2003) present a hybrid predictive approach based on a tempo-
al decomposition scheme. In this case duality properties are used
o translate the original optimal control problem into a temporal
equence of independent subproblems with a smaller dimension.
his solution approximates the optimal, but the computation time
s significantly reduced. On the other hand, Potočnik, Mušič, and
upančič (2004) propose a hybrid predictive control algorithm
ith discrete inputs based on a reachability analysis. The com-
utation time is reduced by building and pruning an evolution
ree.

Škrjanc, Blažič, and Agamenonni (2005) present modelling
nd identification using the interval fuzzy model (INFUMO). This
pproach is useful for describing a family of uncertain non-linear
unctions or when systems with uncertain physical parameters are
bserved.

In a recent study, Núñez, Saez, Oblak, and Škrjanc (2006) present
hybrid predictive control strategy based on a fuzzy model. The key
lement of the fuzzy identification is the detection and estimation
f switching regions by combining fuzzy clustering and a principal
omponent analysis. The non-linear NP-hard optimization problem
as solved efficiently, by using the genetic algorithms, in terms of

ccuracy and computation time.
A self-adaptive supervisory predictive functional control for

pplications in a semi-batch reactor in which the optimal operation
s to follow the reference trajectory without significant overshoot
s presented in Škrjanc (2008).

Both fuzzy and hybrid predictive controllers correspond to non-
inear predictive control strategies that are required to solve an
P-hard problem given by the non-linear optimization problem
ssociated with the predictive objective function and the non-linear
redictive model (fuzzy and/or hybrid model). Note that neural net-
ork predictive control also corresponds to non-linear predictive

ontrol. To solve these kinds of NP-hard problems, evolutionary
lgorithms have been proposed.

Recently, in order to obtain a good solution in a reason-
ble time for the fuzzy predictive control optimization problem,
arimveis and Bafas (2003) propose the specialized genetic algo-
ithm (GA) optimization method for fuzzy predictive control based
n Takagi–Sugeno models.
GAs have also been applied for a non-linear predictive con-
roller based on neural networks. Shin and Park (1998) describe
neural predictive controller based on a GA that shows better per-

ormance than a Quasi-Newton optimization technique. Woolley,
ambhampati, Sandoz, and Warwick (1998) describe a GA predic-

v
m

l
t

ive controller based on radial basis functions (RBF). Furthermore,
s a new, efficient and optimization evolutionary algorithm, par-
icle swarm optimization (PSO) (Kennedy & Eberhart, 2001) has
een developed. This is inspired by the social behavior of animals
nd insects and is defined by the behavior of a swarm of particles
n a multidimensional search space.

Coelho, de Moura Oliveira, and Cunha (2005) present a pre-
ictive controller based on recursive linear models where the
ptimization problem is solved by PSO. The good performance of
SO is demonstrated in comparison with a GA and classical Quasi-
ewton methods. Wang and Xiao (2005) describe a PSO-based
redictive controller based on a radial basis function (RBF) neu-
al network model by obtaining slightly better results than a GA
nd a Quasi-Newton method.

Solis, Saez, and Estevez (2006) propose the application of PSO
s an efficient tool for the design of fuzzy predictive control (FPC)
trategies. The performance of the proposed method is successfully
valuated in terms of the accuracy and the computation time.

In this study, the design of Hybrid Fuzzy Predictive Con-
rol based on a GA (HFPC-GA) is described and applied to a
atch reactor (Karer, Mušič, Škrjanc, & Zupančič, 2007a, 2007b;
arer, Škrjanc, & Zupančič, in press). In Section 2, we formally
escribe the HFPC-GA formulation, which includes a prediction
ased on a hybrid fuzzy model of the process. Two approaches
or solving such an NP-hard problem are described: Branch and
ound (BB) and the GA. The former corresponds to the non-

inear optimization algorithm used in (Karer et al., 2007a), and
he second, the newly proposed approach, HFPC-GA. In Section

the batch reactor process and its corresponding hybrid fuzzy
odelling are described. In Section 4, numerical examples are

resented to show the benefits of applying hybrid fuzzy predic-
ive control based on a GA, compared with BB. Finally, Section 5
oncludes with an analysis, comments and further research direc-
ions.

. Model predictive control of systems with discrete inputs
ased on a reachability analysis

Model predictive control is an approach where a model of
he system is used to predict the future evolution of the sys-
em (Camacho & Bordons, 1998; Maciejowski, 2002). The most
ppropriate input vector is established and applied for every time
tep. Its determination is an optimization problem that is solved
ithin a finite horizon Nu, i.e., for a pre-specified number of time

teps ahead. For each time step k a sequence of optimal input
ectors (1) is acquired; this minimizes the selected cost function
hile considering the eventual constraints of the inputs, outputs

nd system states. However, only the first vector of the opti-
al sequence is actually applied during the current time step.

n the next time step, a new optimal sequence is determined,
tc.

k+Nu−1
k = {u(k), u(k + 1), . . . , u(k + Nu − 1)} (1)

he Hybrid Fuzzy Predictive Control (HFPC) strategy is a
eneralization of Model Predictive Control (MPC), where the
rediction model includes both discrete-integer and continuous

ariables. In this study we propose a hybrid fuzzy prediction
odel.
In general, a hybrid predictive control design minimizes the fol-

owing generic objective function. This particular case corresponds
o the most common objective function used for predictive control
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min
{u(k),u(k+1),...,u(k+Nu−1)}

J = J1 + �J2

J1 =
Ny∑

h=N1

(ŷ(k + h) − r(k + h))2, J2 =
Nu∑

h=N1

�u(k + h − 1)2

subject to
ŷ(k + h) = f (ŷ(k + h − 1), . . . , u(k + h − 1))
u(k + h − 1) ∈ U

(2)

ere J is the objective function, ŷ(k + h) corresponds to the h-step-
head prediction for the controlled variable, r(k + h) is the reference,
u (k + h − 1) is the increment of the control action and � is the
eighting factor. N1, Ny and Nu are the prediction horizons and

he control horizon, respectively. Uk+Nu−1
k

= {u(k), . . . , u(k + Nu −
)} represents the control action sequence, which corresponds to
he optimization variables. U is a set of discrete input values.

For the hybrid fuzzy predictive control design proposed, the pre-
iction model is given by a non-linear function as a T–S fuzzy hybrid
odel and the manipulated variable and/or state variable are inte-

er/discrete. This non-linear optimization problem corresponds to
P-hard and, therefore, we propose two approaches: a BB method
nd a GA.

.1. The Branch and Bound approach (HFPC-BB)

The control algorithm used in this paper is thoroughly described
n Karer et al. (2007a) and Potočnik, Mušič, and Zupančič (2005).
ince it is limited to systems with discrete inputs only, the possible
volution of the system over time steps h up to a maximum predic-
ion horizon Nu can be illustrated by a tree of evolution, as shown in
ig. 1 for Nu = 4 and 3 input vectors. The nodes of the tree represent
eachable states, and branches connect two nodes if a transition
xists between the corresponding states.

For a given root-node V1, representing the initial states xi =
-(k|k) and qi = q(k|k), the reachable states are computed and
nserted in the tree as nodes Vi, where i indices the nodes as they

ere successively computed. The notation (k1|k2) denotes the time
tep of the current node in the MPC algorithm (k1) and the time

tep in which the algorithm started (k2), i.e., the actual time step in
he control process.

A cost value Ji is associated with each new node, and based on the
ost value the most promising node is selected. After labelling the
ode as explored, new reachable states emerging from the selected

ig. 1. Example of an explored tree of evolution. The optimal node is V14, therefore
he input uopt = u2 is selected and applied.
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ode are computed. The construction of the tree of evolution con-
inues upwards first, until one of the following conditions occurs:

The value of the cost function at the current node is greater than
the current optimal one (Ji ≥ Jopt).1

The maximum step horizon is reached (h = Nu).

If the first condition occurs, the node is labelled as non-
romising and thus eliminated from further exploration. On the
ther hand, if the node satisfies the second condition only, it
ecomes the new current optimal node (Jopt = Ji), whereas the
equence of input vectors leading to it becomes the current optimal
ne.

The exploration continues from the topmost step horizon, where
nexplored nodes can be found, etc., until all the nodes are explored
nd the optimal input vector uopt(k) can be derived from the current
ptimal sequence. The optimal input vector is applied to the system
opt(k) and the whole procedure is repeated at the next time step
+ 1.

For an insight into the computational complexity issues and the
pproaches and properties used for dealing with them, see Karer et
l. (2007a).

.2. Optimization based on a genetic algorithm (HFPC-GA)

The GA method is suitable for NP-hard optimization problems
ith discrete or integer variables, and therefore the binary codifi-

ation is not necessary. In other words, the genes of the individuals
feasible solutions) are given directly by the integer optimization
ariables. In addition, gradient computations are not necessary, as
n conventional non-linear optimization solvers, which allows us
o save a significant amount of computation time.

The optimization based on a GA (Man, Tang, & Kwong, 1998),
resented in Fig. 2, can be described by the following steps:

1) Initialize a random population of individuals corresponding to
the feasible solutions.

2) Evaluate the objective function for each individual of the cur-
rent population.

3) Select random parents from the current population.
4) Apply genetic operators like crossover and/or mutation to the

parents, for a new generation.
5) Evaluate the objective function for all the individuals of the

generation.
6) Choose the best individuals according to the best values of the

objective function.
7) Replace the weakest individuals of the previous generation with

the best ones of the new generation obtained in Step 6.
8) If either the value of the objective function reaches a certain

tolerance or the maximum number of generations is reached,
then the algorithm stops. Otherwise, go to Step 2.

In general, genetic algorithms efficiently cope with non-linear
ixed/integer optimization problems with constraints, which can

e input constraints or the constrains of the process states (Man et

l., 1998). Another advantage is that the objective function gradient
oes not need to be calculated, which relaxes the computational
ffort.

A potential solution of the genetic algorithm is called an individ-
al. The individual can be represented by a set of parameters related

1 Before beginning the exploration of the tree of evolution, the initial value of the
urrent optimal node is set to infinity Jopt = ∞.
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Fig. 2. GA flowchart.

o the genes of a chromosome and can be described in binary or
nteger form. The individual represents a possible control action
equence Uk+Nu−1

k
= {u(k), . . . , u(k + Nu − 1)}, where each element

s called a gene, and the individual length corresponds to the control
orizon Nu.

Using genetic evolution, the fittest chromosome is selected
o ensure the best offspring. The best parent genes are selected,

ixed and recombined for the production of the offspring in the
ext generation. For the recombination of the genetic population,
wo fundamental operators are used: crossover and mutation. For
he crossover mechanism, the portions of two chromosomes are
xchanged with a certain probability in order to produce the off-
pring. The mutation operator alters each portion randomly with a
ertain probability (Man et al., 1998).

In summary, the proposed genetic algorithm solution provides
solution near to the optimum. The tuning parameters of the GA-
ethod are as follows: the number of individuals which denotes

he number of possible solutions; the number of generations which
eans the number of iterations; the crossover probability; the
utation probability; and the stopping criteria, which defines the

recision of the algorithm.
The solving of constrained optimization problems using GA is a

ery complex issue due to the genetic operations (mutation and
rossover) do not guarantee solution feasibility. Although much
ttention has been given to solve these issues, no general and sys-
ematic solution has been proposed.

There are many publications considering constraints in opti-
ization problems based on GA. Back, Fogel, and Michalewics

2000), Coello (2002), and Michalewicz (1995) are excellent

eviews and methods, but no general methodology has been pro-
osed. One of the most important methods is GENOCOP proposed
y Michalewicz and Nazhiyath (1995), who developed this genetic
lgorithm-based program for constrained and unconstrained opti-
ization.

T

p
t
t

Fig. 3. Scheme of the batch reactor.

Recent work has shown promising results for a
easible–Infeasible Two-Population (FI-2Pop) genetic algorithm
or constrained optimization Kimbrough, Koehler, Lu, and Wood
2008). The FI-2Pop GA has proved to be better than standard

ethods for handling constraints in GAs; it has regularly produced
etter decisions for comparable computational effort than GENO-
OP. Moreover FI-2Pop GA is a high-quality GA solver engine for
onstrained optimization problems generating excellent decisions
or problems that cannot be handled by GENOCOP.

. The batch reactor

The aforementioned approaches to solving the optimization
roblem arising from the optimal control problem were tested on a
imulation example of a real batch reactor that is situated in a phar-
aceutical company and is used in the production of medicines.

he goal is to control the temperature of the ingredients stirred in
he reactor core so that they synthesize into the final product. In
rder to achieve this, the temperature has to follow the reference
rajectory, given in the recipe, as accurately as possible.

A scheme of the batch reactor is shown in Fig. 3. The reactor’s
ore (temperature T) is heated or cooled through the reactor’s water
acket (temperature Tw). The heating medium in the water jacket
s a mixture of fresh input water, which enters the reactor through
n/off valves, and reflux water. The water is pumped into the water
acket with a constant flow ˚. The dynamics of the system depend
n the physical properties of the batch reactor, i.e., the mass m and
he specific heat capacity c of the ingredients in the reactor’s core
nd in the reactor’s water jacket (here, the index w denotes the
ater jacket). � is the thermal conductivity, S is the contact area

nd T0 is the temperature of the surroundings.
The temperature of the fresh input water Tin depends on two

nputs: the positions of the on/off valves kH and kC. However, there
re two possible operating modes of the on/off valves. In case kC = 1
nd kH = 0, the input water is cool (Tin = TC = 12 ◦C), whereas if kC = 0
nd kH = 1, the input water is hot (Tin = TH = 75 ◦C).

The ratio of fresh input water to reflux water is controlled by the
hird input, i.e., by the position of the mixing valve kM. There are
ix possible ratios that can be set by the mixing valve. The share of
resh input water can be either 0, 0.01, 0.02, 0.05, 0.1 or 1.

We are therefore dealing with a multivariable system with three
iscrete inputs (kM, kH and kC) and two measurable outputs (T and
w).
Due to the nature of the system, the time constant of the tem-
erature in the water jacket is obviously much shorter than the
ime constant of the temperature in the reactor’s core. Therefore,
he batch reactor is considered as a stiff system.
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Fig. 4. Membership functions.

.1. Modelling and identification of the batch reactor

The modelling procedure is explained in detail in Karer et al.
2007a).

The temperature in the reactor’s core T is influenced only by the
eat conduction between the reactor’s core and the reactor’s water

acket. Furthermore, we have surmised that the heat conduction is
roportional to the temperature difference between the reactor’s
ore T and the reactor’s water jacket Tw .

Therefore, a first-order linear MISO submodel can be presumed,
s shown in (3). The system parameters are given below.

ˆ (k + 1) = �T
c [Tw(k)T(k)]T (3)

T
c = [0.0033 0.9967] (4)

he temperature in the reactor water jacket Tw is influenced by the
emperature in the core T, the fresh input water inflow at the mixing
alve kM, and the position of the cold-water and hot-water on/off
alves kC and kH.

Let us assume two operating modes of the subsystem (s = 2).

The first operating mode (q = 1) is the case when the fresh input
water is hot, i.e., kC(k) = 0 and kH(k) = 1.
The second operating mode (q = 2) is the case when the fresh input
water is cool, i.e., kC(k) = 1 and kH(k) = 0.

q(k) = q(kC(k), kH(k)) =
{

1 if kC(k) = 0 ∧ kH(k) = 1
2 if kC(k) = 1 ∧ kH(k) = 0

(5)

Next, the membership functions have to be defined. The system
is fuzzyfied with regard to the temperature in the reactor’s water
jacket Tw(k). Simple triangular functions are used, as shown in
Fig. 4.

Such a form of the membership functions ensures that the nor-
alized degrees of fulfillment ˇj(Tw) are equal to the membership

alues �j(Tw) across the whole operating range for each rule Rjd,
espectively. The normalized degrees of fulfillment ˇj(Tw) make up
normalized vector of fulfillment ˇ(Tw(k)) = ˇ(k). In this case there

re five membership functions (K = 5), with maximums at 12◦, 20◦,
0◦, 60◦ and 70◦, so that the whole operating range is covered.

The rule base of the hybrid fuzzy model is given in (6). We pre-
ume that a local system corresponding to an individual rule Rjd is e
ffine.

Rjd :
if q(k) is Qd and Tw(k) is Aj

1
then Tw(k + 1) = a1jdTw(k) + a2jdT(k) + b1jdkM(k) + rjd

for j = 1, . . . , 5 and d = 1, 2

(6)

he output of the model of the temperature in the reactor’s water
acket is written in compact form in (7)–(9).

ˆw(k + 1) = ˇ(k)�T
w(k)[Tw(k)T(k)kM(k)kM(k)1]T (7)

w(k) =
{

�w1 if q(k) = 1
�w2 if q(k) = 2

(8)

w1 =

⎡
⎢⎣

0.9453 0.9431 0.9429 0.9396 0.7910
0.0376 0.0458 0.0395 0.0339 0.0225
19.6748 16.7605 10.5969 3.9536 1.6856
0.3021 0.2160 0.5273 1.2701 12.0404

⎤
⎥⎦ (9)

w2 =

⎡
⎢⎣

0.9803 0.9740 0.9322 0.9076 0.8945
0.0025 0.0153 0.0466 0.0466 0.0111

−0.0704 −0.6956 −7.8013 −12.2555 −18.7457
0.2707 0.2033 0.5650 1.9179 5.6129

⎤
⎥⎦
(10)

. Results

For the hybrid predictive control optimization problem of the
atch reactor we propose the cost function given by (11) (see also
arer et al., 2007a).

= w1

Ny∑
h=1

(T(k + h) − Tref(k + h))2 + w2

Nu∑
h=1

kC(k + h)kH(k + h − 1)

+ w3

Nu∑
h=1

|kM(k + h) − kM(k + h − 1)|kH(k + h − 1) (11)

1 = 1
15

, w2 = 15, w3 = 0.03

n this study the prediction horizons considered are Nu = Ny = N = 4,
and 6. The sampling time of the prediction model equals Ts = 10 s.
herefore, the optimization problem must be solved within 10 s.
ote that the inputs are allowed to change only every 15 time steps

see Karer et al., 2007a). This means that the control action will be
eld during a control sampling time Tcs, which equals 150 s.

The set of possible input variables u(k + h − 1), h = 1. . .Nu, is
efined in (12).

=
{[

0
0
1

]
,

[
0.01
0
1

]
,

[
0.02
0
1

]
,

[
0.05
0
1

]
,

[
0.1
0
1

]
,

[
1
0
1

]
,

[
1
1
0

]}
(12)

The first row denotes the mixed valve input kM ∈ {0, 0.01, 0.02,
0.05, 1}.
The second row is the cool-water on/off valve input kC ∈ {0, 1}.
1}.

There are two possible output disturbances that are often
ncountered in real-life applications of batch reactors: we should
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ig. 5. Results of HFPC based on BB: core temperature T (solid line) and reference
emperature Tref (dotted line).

onsider a disturbance added to temperature in the reactor’s core
and a disturbance added to temperature in the reactor’s water

acket Tw. Due to faster dynamics, it is much easier for the control
lgorithm to take care of the latter; only the former has thus been
onsidered in the experiments. Therefore, at time 23,000 s, a step
ith amplitude 3 ◦C was added to the temperature in the reactor’s

ore T as a persistent disturbance.

.1. The Branch and Bound approach—results

The results of the experiment using the HFPC-BB approach for
y = Nu = 4 are shown in Figs. 5 and 6.

The control results for Ny = Nu = 5 and Ny = Nu = 6 are almost iden-
ical in this case.

.2. Optimization based on a genetic algorithm—results
In this case the individuals for the HFPC based on a GA are
efined as feasible future control action sequences:

ndividualj = {u(k), . . . , u(k + Nu − 1)}

Fig. 6. Results of HFPC based on BB: other system states.

(

(

n individual consists of Nu genes and each gene represents one
ontrol action.

For simplicity, we consider the following notation for represent-
ng the seven possible control actions for the batch reactor:

0 =
[

0
0
1

]
, 1 =

[
0.01
0
1

]
, 2 =

[
0.02
0
1

]
, 3 =

[
0.05
0
1

]
,

4 =
[

0.1
0
1

]
, 5 =

[
1
0
1

]
, 6 =

[
1
1
0

]
. (13)

ow, the possible control action u(k + h − 1) ∈ {0,1, 2, 3, 4, 5, 6},
hich represents the possible values or the states of the input

ariables.
The procedure for the HFPC-GA consists of:

1) Initialize a random population of individuals, i.e., create
random-integer feasible solutions of manipulated variables for
the hybrid fuzzy predictive control problem. As an example,
the size of the population could be seven individuals per gen-
eration. Then, as the control horizon is 4, there are 74 possible
individuals. However, for the GA per generation, the following
population is considered:

Populationi =

⎡
⎢⎢⎢⎢⎢⎢⎣

individual1
individual2
individual3
individual4
individual5
individual6
individual7

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0163
2100
5423
3634
4131
2543
0301

⎤
⎥⎥⎥⎥⎥⎥⎦

2) Evaluate the fitness function for all the initial individuals of the
population using Eq. (11). Note that the prediction ŷ (k + h) is cal-
culated recursively by using the future control action. In general

ŷ(k + h) = f (ŷ(k + h − 1), . . . , u(k + h − 1), . . .)

where f is a non-linear function defined by a hybrid fuzzy model.
3) Select random parents from the population (different vectors

of the future control actions). For example, Individual 1 and
Individual 5 are chosen as the parents:

4) Apply crossover and mutation to the parents in order to gener-
ate an offspring.

After the crossover step

After the mutation step
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Fig. 7. Computation ti

5) Evaluate the fitness given by the objective function (11) of all
the individuals of the offspring population.

6) Select the best individuals according to the objective function.
7) Replace the weakest individuals from the previous generation

with the strongest individuals of the new generation selected
in step 6.

8) If the objective function value reaches the defined tolerance or
the maximum generation number is reached (stopping criteria),
then stop. Otherwise, go to step 2.
The genetic algorithm approach in the HFPC-GA provides a sub-
ptimal discrete control law close to the optimal one. The tuning
arameters of the GA method are the number of individuals, the
umber of generations, the crossover probability, the mutation
robability and the stopping criteria.

i

c
g
a

Fig. 8. Computation time an
d cost function, N = 4.

Figs. 7–9 present the computation time of the genetic algorithm
valuation, the value of the objective function as a function of the
umber of individuals and the number of generations for different
rediction and control horizons (Nu = Ny = N = 4, 5 and 6). Based on
hese figures, and considering a reasonable trade off between accu-
acy and computational effort, 10 generations with 30 individuals
re selected for N = 4, 30 generations with 30 individuals for N = 5
nd 30 generations with 30 individuals for N = 6.

The computation time of the HFPC-GA algorithm evaluation is
inearly dependent on the generation number and its slope slightly

ncreases with the number of individuals.

For N = 4 with 10 generations and 30 individuals (Fig. 7), the
omputation time was approximately 0.75 s. For N = 5 with 30
enerations and 30 individuals (Fig. 8), the computation time was
pproximately 2 s. Finally, for N = 6 with 30 generations and 30

d cost function, N = 5.
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Fig. 9. Computation ti

ndividuals (Fig. 9), the computation time was approximately 6 s.
he computation time is smaller than the sampling time, which
quals Ts = 10 s. This allows the use of the proposed HFPC-GA control
trategies in real-time control problems.

The results of the experiment are shown in Figs. 10 and 11. These
esults are very similar to the ones obtained with the HFPC-BB (see
igs. 5 and 6).

Figs. 12–14 show the normalized computation time for both the
FPC-BB and HFPC-GA for N = 4, 5 and 6 respectively. Normalized
omputation time corresponds to the total time expended on solv-
ng the optimization problem divided by the sampling time Ts = 10 s.
n the figures, k represents every instant when a control action is

aken (instant k occurs at 150·k seconds).

The computation time in the case of the GA remains constant
uring the whole simulation. On the other hand, in the case of
he BB the computation time varies significantly with set-point
hanges. This is the main advantage of the HFPC-GA, and makes

ig. 10. Results HFPC based on GA: core temperature T (solid line) and reference
emperature Tref (dotted line).

a
B
e

t

d cost function, N = 6.

t usable in a real-time implementation. The HFPC-GA provides
olutions within a bounded computation time that is less than
he sampling time. Note that the HFPC-BB with N = 5 and 6 can-
ot be used for solving the control problem in real-time, because

n the case when the reference signal changes, the computation
ime becomes longer than the sampling time (i.e. normalized com-
utation time is major than one). For a real-time problem, the
ormalized computation time should be less than one, at every

nstant k.

.3. Comparison

Tables 1–3 show the computation time per algorithm iteration

nd the objective function values using Branch and Bound (HFPC-
B), the genetic algorithm (HFPC-GA) and, in addition, explicit
numeration (HFPC-EE).

From Tables 1–3 we obtained equal mean values for the objec-
ive function of BB and EE, and also a similar value was provided

Fig. 11. Results HFPC based on GA: other system states.



Fig. 12. Normalized computation time, N = 4.

Fig. 13. Normalized computation time, N = 5.

b
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Table 1
Comparison between BB, GA, and EE, N = 4

Mean time (s) Standard time
deviation (s)

Mean J Standard
deviation J

BB 1.11 0.19 3,401,524 0
GA (30,10) 0.72 0.04 3,494,511 25342
EE 17.47 0.38 3,401,524 0

Table 2
Comparison between BB, GA, and EE, N = 5

Mean time (s) Standard time
deviation (s)

Mean J Standard
deviation J

BB 2.97 0.52 4,035,237 0
GA (30,30) 1.93 0.09 4,065,722 6054
EE 158.1 1.24 4,035,237 0

Table 3
Comparison between BB, GA, and EE, N = 6

Mean time (s) Standard time
deviation (s)

Mean J Standard
deviation J

B
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Fig. 14. Normalized computation time, N = 6.
y the GA. Thus, the three proposed optimization algorithms allow
s to solve the HFPC strategy efficiently in terms of objective func-
ion. However, in terms of computation time, there are significant
ifferences between them. The EE provides the global optimum

b

R

B

B 7.35 0.93 4,406,738 0
A (30,30) 6.1 0.11 4,432,356 11463
E – – – –

t each instant k; however, the long computation time required
oes not allow us to ensure a real-time implementation. Regarding
he HFPC-BB and HFPC-GA strategies, the mean computation time
aries between 1.11 and 7.35 s and between 0.72 and 6.1 s, respec-
ively. Therefore, a computation time saving of approximately 25%
s obtained when using the GA in comparison with the BB.

Although the HFPC-BB returns an optimal solution at each
nstant k, the overall behavior of the controlled plant is practi-
ally identical to the HFPC-GA, which provides sub-optimal results.
urthermore, the BB approach does not require any parameter tun-
ng. However, the GA ensures a steady and bounded computation
ime for each control sampling time, which is critical in real-time
pplications (see Figs. 12–14).

. Conclusion

The proposed Hybrid Predictive Control strategy allows us to
egulate the temperature of a batch reactor, minimizing both the
rajectory error and the control energy.

The HFPC-BB and HFPC-GA provide very similar behavior in
erms of accuracy, but a 25% computation time saving is obtained
y using the HFPC-GA. Moreover, for a longer prediction horizon
he HFPC-GA can obtain good solutions in a shorter computation
ime.

In this study the HFPC-GA is presented as a heuristic, systematic
nd efficient algorithm that allows us to solve NP-hard problems
ith the HFPC strategy.

Future work will focus on extending the proposed HFPC-GA to
olve predictive control with both discrete and continuous manip-
lated variables.
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