
Effective Proximity Retrieval
by Ordering Permutations

Edgar Chavez, Member, IEEE Computer Society, Karina Figueroa, Member, IEEE Computer Society,

and Gonzalo Navarro, Member, IEEE Computer Society

Abstract—We introduce a new probabilistic proximity search algorithm for range and K-nearest neighbor (K-NN) searching in both

coordinate and metric spaces. Although there exist solutions for these problems, they boil down to a linear scan when the space is

intrinsically high dimensional, as is the case in many pattern recognition tasks. This, for example, renders the K-NN approach to

classification rather slow in large databases. Our novel idea is to predict closeness between elements according to how they order

their distances toward a distinguished set of anchor objects. Each element in the space sorts the anchor objects from closest to

farthest to it and the similarity between orders turns out to be an excellent predictor of the closeness between the corresponding

elements. We present extensive experiments comparing our method against state-of-the-art exact and approximate techniques, both

in synthetic and real, metric and nonmetric databases, measuring both CPU time and distance computations. The experiments

demonstrate that our technique almost always improves upon the performance of alternative techniques, in some cases by a wide

margin.

Index Terms—Similarity searching, metric spaces, indexing methods, information search and retrieval, pattern recognition.

1 INTRODUCTION

THE classical Pattern Recognition process has three main
stages: segmentation, feature extraction, and classifica-

tion [29]. Segmentation consists of extracting the individual
objects from the digitalized data. Feature extraction consists
of mapping the digital objects onto a (usually high-
dimensional) vector space, where each coordinate repre-
sents the degree of presence of a certain feature in the
object. Classification consists of assigning each object to one
out of a set of predefined classes of objects. This model
encompasses concrete pattern recognition tasks such as
speech recognition, speaker identification, signature match-
ing, handwriting recognition, face recognition, biometric
identification, etc. [22].

Feature extraction converts the original classification
problem into a geometric problem. Objects in the same class
tend to be spatially close if the features are selected
properly. The most popular classification techniques, such
as support vector machines, neural networks, or K-nearest
neighbors ðK-NNÞ, are defined in terms of geometry.
Among those, K-NN classifiers are attractive because the
training is implicit.

The K-NN approach translates the problem of classifica-
tion into a proximity search problem (find theK representative

objects closest to a new given element) in a high-dimensional
feature space. Unfortunately, current methods for proxi-
mity searching suffer from the so-called curse of dimension-
ality [16]: Any method for proximity searching, no matter
how well it works in low dimensionalities, ends up
scanning the whole set of objects in high dimensionalities.
Dimensionality reduction techniques are effective and well-
known, but they pose an extra overhead on the system
when the data is intrinsically high dimensional and the
classification accuracy will drop if the distances in the
lower dimensional space are not well preserved. That is, the
data will be misclassified when using a K-NN approach in
a mapped space that distorts the original distances.

To avoid mapping onto a lower dimensional space, an
abstract metric could be defined among objects (for
example, the edit distance or dynamic time warping to
match sequences) and can be transparently used as a black
box in a K-NN classifier. In some cases, this is preferred
over either mapping onto a vector space (to classify with a
neural network) or defining a suitable kernel function (to
classify with a kernel-based support vector machine).

In the so-called metric spaces, intrinsic dimensionality can
be defined in many ways, for example, as the minimum
dimensionality of a vector space onto which the metric
space objects can be mapped without distorting much their
pairwise distances. High-dimensional metric spaces have a
concentrated histogram of distances and, just as on high-
dimensional vector spaces, no proximity search algorithm
can avoid comparing the query against all of the database.

Apart from classification, there are many other applica-
tion areas for proximity searching: searching for similar
objects in multimedia databases, searching for similar
documents in information retrieval, searching for similar
biological sequences in computational biology, data pre-
diction, correction, or compression in signal processing,
and so on. In all cases, the general model is that of a black
box database of objects that can be preprocessed so as to
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answer proximity queries against new objects that are given
later. The only tool to obtain information from the objects is
the computation of their distance toward other objects. The
curse of dimensionality shows up in all of these applications
as well, in many cases rendering index-based methods as bad
as a linear scan over the database or even worse.

Such a linear scan does not scale well when the set of
objects to search is large or the distance function is
computationally expensive. Different relaxations on the
precision of the result have been proposed in order to
obtain a computationally feasible solution in those cases.
This is called inexact proximity searching, as opposed to the
classical exact proximity searching. Inexact proximity search-
ing is reasonable in many applications because the feature-
extraction or the metric-space modelizations already in-
volve an approximation to reality; hence, a second
approximation at search time is usually acceptable.

In the literature, we basically find two alternatives for
inexact proximity searching. The first one uses a distance
relaxation parameter: It is ensured that the distance to the
nearest neighbor answer they find is at most 1þ " times the
distance to the true nearest neighbor. This corresponds to
approximation algorithms in the usual algorithmic sense
and is considered in depth in [41], [16], [18]. A second
alternative takes a probabilistic approach, ensuring that the
answer of the algorithm is correct with high probability.
This corresponds to probabilistic algorithms in the usual
algorithmic sense. A generic method to convert exact into
probabilistic algorithms is studied in [14], [10].

In this paper, we present a new probabilistic proximity
search algorithm for metric spaces (which include vector
spaces as a particular case). The central idea is to predict the
closeness between any two objects in a metric space by
comparing the way these two objects order their distances
toward a set of anchor objects called permutants. The index
does not store any actual distance but just permutations of
the anchor objects as perceived by each database element.

We show that the similarity among permutations is a
remarkably good predictor of the proximity among the
corresponding objects. Thus, the database can be traversed
from the permutation most similar to that of the query
object to the least similar, and we expect to find most of the
relevant answers early.

The probabilistic algorithm that results from traversing a
given percentage of the database and returning the closest
elements seen up to then is extremely efficient and
outperforms any existing alternative that we are aware of.
This is remarkable because there already exist very
successful probabilistic techniques. We also tested our
technique over nonmetric databases, using quasi-distances
where the triangle inequality does not hold, and found that
the retrieval effectiveness is comparable to that on metric
databases.

2 BASIC CONCEPTS AND RELATED WORK

2.1 Basic Terminology

Formally, the proximity searching problem may be
stated as follows: There is a universe XX of objects
and a nonnegative distance function d : XX�XX�!IRþ

defined among them. The distance satisfies the
axioms that make the set a metric space: reflexivity
ðdðx; xÞ ¼ 0Þ, strict positiveness ðx 6¼ y) dðx; yÞ > 0Þ,

symmetry ðdðx; yÞ ¼ dðy; xÞÞ, and triangle inequality
ðdðx; zÞ � dðx; yÞ þ dðy; zÞÞ. This distance is assumed to be
expensive to compute (think, for instance, of comparing
two fingerprints). We have a finite database UU � XX, of size
n, which is a subset of the universe of objects. The goal is to
preprocess the database UU to efficiently answer (that is,
with as few distance computations as possible) range queries
and K-nearest neighbor ðK-NN) queries. Range queries are
expressed as ðq; rÞ (a point in XX and a tolerance radius),
which should retrieve all of the database points at distance
r or less from q, that is, fu 2 UU; dðu; qÞ � rg. On the other
hand, K-nearest neighbor queries retrieve the K elements
of UU that are closest to q.

Most of the existing approaches to solving the search
problem are exact algorithms that retrieve exactly the
elements of UU, as specified above. In [16], [27], [38], [44],
most of those approaches are surveyed and explained in
detail. It is usually easier to design range search algorithms
and then apply standard techniques to derive K-NN search
algorithms from those.

2.2 Inexact Proximity Searching

In this work, we are interested in inexact algorithms, which
relax the condition of delivering the exact solution. This
relaxation uses an additional precision parameter " to
control how far away (in some sense) the outcome of the
query can be from the correct result.

Approximation algorithms are surveyed in depth in [41].
An example is [4], which proposes a data structure for
vector spaces under Minkowski metrics Lp. The structure,
called the BBD-tree, is inspired by kd-trees and can be used
to find “ð1þ "Þ nearest neighbors”: Instead of finding u
such that dðu; qÞ � dðv; qÞ8v 2 UU, they find u� such that
dðu�; qÞ � ð1þ "Þdðv; qÞ8v 2 UU.

The essential idea behind this algorithm is to locate
the query q in a cell (each leaf in the tree is associated
with a cell in the decomposition). Every point inside that
cell is processed so as to obtain the nearest neighbor u of
q within the cell. The search continues with neighboring
cells and stops when the radius of a ball centered at q
and intersecting any cell not yet considered exceeds
dðq; uÞ=ð1þ "Þ. The query time is Oðd1þ 6D="eDD lognÞ,
where D is the dimensionality of the space.

Probabilistic algorithms have been proposed both for
vector spaces [4], [43], [41], [23] and for general metric
spaces [20], [18], [14], [10]. We survey a few of them.

In [43], the data structure is a standard kd-tree. The
author uses “aggressive pruning” to improve the perfor-
mance. The idea is to increase the number of branches
pruned at the expense of losing some candidate points in
the process. This is done in a controlled way, so the
probability of success is always known. The data structure
is useful for finding limited-radius nearest neighbors, that
is, nearest neighbors within a fixed distance to the query.

In [23], the distance between two vectors is approxi-
mated by a convex combination of a shape measure of the
vectors and their magnitudes. The shape measure has some
resemblances to our technique as they sort the coordinates
of vectors by increasing value. Nevertheless, our method
applies to the more general metric spaces and does not use
any equivalent to the magnitudes.



In [20], the author chooses a “training set” of queries
and builds a data structure able to correctly answer only
queries belonging to the training set. The idea is that this
setup is enough to answer correctly, with high prob-
ability, an arbitrary query. Under some probabilistic
assumptions on the distribution of the queries, it is
shown that the probability of not finding the nearest
neighbor is OððlognÞ2=kÞ, where k can be made arbitrarily
large at the expense of Oðkn�Þ space and Oðk� lognÞ
expected search time. Here, � is the logarithm of the ratio
between the farthest and the nearest pairs of points in the
union of UU and the training set.

In [10], the authors use a technique to obtain probabilistic
algorithms that is relevant to this work. They use different
techniques to sort the database according to some promise value.
As they traverse the database in such an order, they obtain
more and more relevant answers to the query. In other words,
given a limited amount of work allowed, the algorithm finds
each correct answer with some probability and it can improve
the answer incrementally if more work is allowed. A good
database ordering is one that obtains most of the relevant
answers by traversing a small fraction of the database. Thus,
the problem of finding a good probabilistic search algorithm
translates into finding a good ordering of the database given a
query q. Our contribution in this paper falls within this
general approach.

Finally, there are approaches that combine approxima-
tion and probabilistic techniques, such as the PAC
(probably approximately correct) method [17]. This is also
the case in [14], which presents a general method based on
stretching the triangle inequality.

2.3 Indexing

All metric space search algorithms rely on an index, that is,
a data structure that maintains some information on the
database in order to save some distance evaluations at
search time. There exist two main types of data organiza-
tions [16], which we cover next.

2.3.1 Pivoting Schemes

A pivot is a distinguished database element whose distance to
some other elements is precomputed and stored in an index.
Imagine that we have precomputed dðp; uÞ for some pivot p
and every u 2 UU. At search time, for a range query with
radius r, we compute dðp; qÞ. Then, by the triangle inequality,
dðq; uÞ � jdðp; qÞ � dðp; uÞj, so that, if jdðp; qÞ � dðp; uÞj > r, we
know that dðq; uÞ > r, thus u can be filtered out without the
need of computing distance dðq; uÞ.

The most basic pivoting scheme chooses k pivots p1 . . . pk
and computes all of the distances dðpi; uÞ, u 2 UU, into a
table of kn entries. Then, at query time, all of the k distances
dðpi; qÞ are computed and every element u such that
Dðq; uÞ ¼ maxi¼1...k jdðpi; qÞ � dðpi; uÞj > r is discarded. Fi-
nally, q is compared against the elements not discarded.

As k grows, we have to pay more comparisons against
pivots, but Dðq; uÞ becomes closer to dðq; uÞ and more
elements may be discarded. It can be shown that there is an
optimum number of pivots k�, which grows fast with
dimensionality and becomes quickly unreachable because
of memory limitations. In all but the easiest metric spaces,
one simply uses as many pivots as memory permits. There
exist many variations over the basic idea, including

different ways to store the table of kn entries to reduce
extra CPU time, for example, [13], [11], [32], [5], [12].

Several tree data structures are built on the same
pivoting concept, for example, [42], [9], [30]. In most of
them, a pivot p is chosen as the root of a tree and its
subtrees correspond to ranges of dðp; uÞ values being
recursively structured. In some cases, the exact distances
dðp; uÞ are not stored; just the range can be inferred from the
subtree the element u is in. Albeit this reduces the accuracy
of the index, the tree usually takes OðnÞ space instead of the
OðknÞ needed with k pivots. Moreover, every internal node
is a partial pivot (which knows distances to its subtree
elements only), so we actually have many more pivots
(albeit, local and with coarse data). Finally, the trees can be
traversed using sublinear extra time.

Different tree variants arise according to the tree arities,
the way the ranges of distances are chosen (trying to
balance the tree or not), how local the pivots are (different
nodes can share pivots, which may not belong to the
subtree), the number of pivots per node, and so on. Very
little is known about which is best. For example, the golden
rule of preferring balanced trees, which works well for
exact searching, becomes a poorer choice against unbalan-
cing as the dimensionality increases. For very high-
dimensional data, a good structure is almost a linked list
(that is, a degenerate tree) [15]. Also, little is known about
how to choose the pivots.

2.3.2 Local Partitioning Schemes

Another scheme builds on the idea of dividing the database
into spatially compact groups, meaning that the elements in
each group are close to each other. A representative is chosen
from each group so that comparing q against the representa-
tive has a good chance of discarding the whole group without
further comparisons. Usually, these schemes are hierarchical
so that groups are recursively divided into subgroups.

Two main ways exist to define the groups. One can
define “centers” with a covering radius so that all elements
in its group are within the covering radius distance to the
center, for example, [19]. If a group has center c and
covering radius rc, then, if dðq; cÞ > rþ rc, the whole group
can be discarded. The geometric shape of this scheme
corresponds to a ball centered around c.

In the second approach, for example, [8], [33], a set of
centers is chosen and every other point is added to the
group of its closest center. At query time, if q is closest to
center ci, and dðq; cjÞ � r > dðq; ciÞ þ r, then we can discard
the whole group of cj. The geometric shape in this approach
corresponds to a Dirichlet domain of the space (a general-
ization of the Voronoi diagram for metric spaces) without
overlaps between groups.

3 AN EFFECTIVE INDEX BASED ON ORDERING

PERMUTATIONS

Since the objects in the metric space are seen as black boxes
from which we can only compute their distances toward
other objects, all indexes in the literature are bound to store
distance information. Actually, the most information an
index can store is the n� n matrix of all the distances
among objects in UU. This is actually what algorithm AESA
[40], a pivot-based scheme, stores as its index. This makes



AESA an unbeatably exact algorithm, yet usually imprac-
tical because of its high storage consumption.

The design of metric space indexes can be regarded as a
quest to store the most useful data from the distance matrix
within bounded space. Pivot-based indexes store k columns
from the full distance matrix, that is, for each element, they
store its distances to k fixed pivots. Clustering algorithms
store only some of the smallest distances in the matrix, that
is, for each cluster center, they store the distances to the
elements in that cluster. Some algorithms do not store the
actual distances but just a range containing them so as to
store more distances with less precision.

Within this framework, our approach can be stated as
follows: We choose k columns from the distance matrix and
store, for each row, the order in which the columns are read to
obtain the distances in increasing order. Compared to a
classical pivot-based scheme, we do not store the exact
distances but just the order in which each database element
sees the pivots, from the closest to the farthest element.
That is, to each element, we associate a permutation of the k
pivots. Fig. 1 illustrates.

Just as two close elements will have similar distances to
pivots, close elements will see the pivots in similar order of
closeness and, thus, will have similar permutations. A
difference in the order between two permutations will hint
that the corresponding elements are not too close to each
other. However, those differences do not permit us to prove
how far away from the query a database element is; thus,
we will obtain a probabilistic algorithm.

3.1 Overview of Our Method

We need a bit of terminology. Let IP � UU be a set of
distinguished objects from the database called permutants.
Each element of the space x 2 XX defines a permutation �x,
where the elements of IP are written in increasing order of

distance to x. Ties are broken using any consistent order,
for example, the order of the elements in IP.

Definition 1. Let IP ¼ fp1; p2; . . . ; pkg and x 2 XX. Then, we

define �x as a permutation of ð1 . . . kÞ so that, for all

1 � i < k, it holds that either dðp�xðiÞ; xÞ < dðp�xðiþ1Þ; xÞ or

dðp�xðiÞ; xÞ ¼ dðp�xðiþ1Þ; xÞ and �xðiÞ < �xðiþ 1Þ.
We are now ready to describe the indexing process, the

index structure, and the search process.

3.1.1 Indexing

Our index will be just the permutations �u for every u 2 UU,
with respect to a set of permutants IP ¼ fp1; . . . ; pkg � UU.

The construction of the index is carried out as follows:

1. We choose a parameter k, which is the number of
permutants to use. The larger k is, the more
effective the index is, but it will need more space
(kndlog2 ke bits) and, also, sorting the database to
traverse it in the desired order will be slower.

2. We choose IP ¼ fp1; . . . ; pkg, a set of k permutants, at
random from UU. We will show in Section 4 that
other selection heuristics of linear-time complexity
make no difference in the effectiveness of the
indexing algorithm.

3. For each u 2 UU, we compute dðu; piÞ, for all pi 2 IP,
and store permutation �u according to Definition 1.

The result is a table of n rows (one per database element)
and k columns (one per permutant). Each cell needs
dlog2 ke bits to store one permutation at each row. The
indexing cost is kn distance computations plus Oðnk log kÞ
CPU time to sort all of the permutations.

3.1.2 Searching

At query time, we compute �q and traverse UU in the order
induced by �q. In this order, an element u will be smaller
than an element v if �u is more similar to �q than �v. As we
expect that elements with permutations more similar to �q

will also be spatially closer to q, we will review them
earlier.

The search is carried out as follows:

1. We compute dðq; piÞ for all pi 2 IP and compute
permutation �q according to Definition 1.

2. Given a similarity measure S between permutations,
we sort UU according to Sð�u;�qÞ (those u 2 UU with
smaller SðÞ value go first). Given that we will need
just a (small) subset of the first elements after this
sorting, we have used an incremental sorting
method [36] which gives the elements in order as
we need them. Other methods, such as a full
QuickSort or BucketSort, were usually inferior.

3. We traverse the sorted elements u 2 UU and compute
dðu; qÞ for each such u. For range queries, we report
any u such that dðu; qÞ � r. For K-NN queries, we
remember the K database elements that yielded the
smallest dðq; uÞ values so far.

4. We stop the scanning of UU at some point and then
deliver the result as obtained up to then, hoping that
it will be close to the result that we would obtain by
a full scan.

Fig. 1. (Left) The matrix of all distances in UU. (Top right) A pivot-based
algorithm chooses some columns of the distance matrix. (Bottom right)
Our algorithm only records the order of the pivots from the closest to the
farthest element. Actually, only the permutation is stored, so, for
example, the second row is stored as 1, 3, 2.



Say that we are willing to traverse f � n elements of UU.
The total time complexity of the search process is k distance
computations and Oðk log kÞ CPU time for Step 1,
OðknÞ CPU time to compute the SðÞ values (we see later
that the measure S we use can be computed in OðkÞ time)
and Oðnþ fn lognÞ CPU time for the incremental sorting at
Step 2, and, finally, f � n further distance computations for
Step 3. This adds up Oðknþ fn lognÞ CPU time and kþ fn
distance computations. We tried some alternatives to avoid
computing SðÞ for the whole database, but the result was
not practical.

The stopping criterion deserves some discussion. The
simplest is to scan a fraction 0 < f < 1 of the database so
that the amount of work is fixed beforehand and we have
no control over the quality of the answer. Alternatively, we
could like to fix an expected fraction 0 < p < 1 of the correct
answer retrieved. For K-NN queries, this can be obtained
by previously building plots like those in the Appendix
with a set of training queries. Those plots depend on the
space but not on K. Later, given a K-NN query, we
consider in the plot the points below y ¼ K=n� 100 percent
in the y-axis. Now, we find the point x in the x-axis so that a
fraction p of those points is to the left of x. This x value is
the fraction of the database that we should traverse to
obtain, on average, a fraction p of the K correct nearest
neighbors. For range queries, the mechanism is similar,
using a plot that, on the y-axis, gives the distance to the
points found and y ¼ r.

3.2 Measuring Similarity between Permutations

It remains to specify how we measure the difference
between two permutations. We use Spearman Rho [24],
denoted as S�ð�q;�uÞ, as our similarity measure: We sum
the squares of differences in the relative positions of each
element in both permutations. That is, for each pi 2 IP, we
compute its position in �u and �q, namely, ��1

u ðiÞ and
��1
q ðiÞ, and sum up the squares of the differences in the

positions. A formal definition follows.

Definition 2. Given permutations �u and �q of ð1 . . . kÞ,
Spearman Rho is defined as1

S�ð�u;�qÞ ¼
X

1�i�k
��1
u ðiÞ ���1

q ðiÞ
� �2

:

Let us give an example of S�ð�q;�uÞ. Let �q ¼
6; 2; 3; 1; 4; 5 be the permutation of the query and �u ¼
3; 6; 2; 1; 5; 4 be that of an element u. A particular element p3

in permutation �u is found two positions off with respect to
its position in �q. The differences between permutations are
1� 2, 2� 3, 3� 1, 4� 4, 5� 6, 6� 5, and the sum of their
squares is S�ð�q;�uÞ ¼ 8.

There are other similarity measures between permuta-
tions [24] such as Kendall Tau and Spearman Footrule.
Kendall Tau is defined as follows: For every pair
pi; pj 2 IP, if pi and pj are in the same order in �u and
�q, (that is, ��1

u ðiÞ < ��1
u ðjÞ , ��1

q ðiÞ < ��1
q ðjÞ), then

Kpi;pjð�u;�qÞ ¼ 0; otherwise, it is 1. Kendall Tau is given

by Kð�u;�qÞ ¼
P

pi;pj2IPKpi;pjð�u;�qÞ, which is equal to
the number of exchanges needed by a bubble sort to
convert one permutation into the other. The Spearman
Footrule between two permutations is

F ð�u;�qÞ ¼
X

1�i�k
j��1

u ðiÞ � ��1
q ðiÞj:

In Fig. 2, we show that F ðÞ is not as good as S�ðÞ for our
purposes (similar results were obtained in other metric
spaces). On the other hand, KðÞ performs similarly to S�ðÞ,
but it is more cumbersome to compute. Thus, we stick to
Spearman Rho in the sequel.

We promised that S� would be computable in linear
time. According to Definition 2, this is easy if we store the
inverse permutations ��1

u and ��1
q . As we prove next, it is

enough to invert one of them to compute S� in OðkÞ time.
Thus, we actually use ��1

q instead of �q.

Lemma 1. Definition 2 is equivalent to

S�ð�q;�uÞ ¼
X

1�j�k
j���1

q ð�uðjÞÞ
� �2

:

Proof. It is a matter of calling j ¼ ��1
u ðiÞ and summing in

different order. tu

Algorithm 1 gives the complete pseudocode for range
searching. It receives the query ðq; rÞ and the fraction of the
database 0 < f < 1 to examine. The permutations �u, as
well as the sets UU and IP, are global variables. The database
and the S� values are stored as tuples hui; S�ð�ui ;�qÞi in an
array A, which is computed and then partially traversed to
retrieve the (approximate) answer. For simplicity, we
describe the algorithm as fully sorting A, not incrementally.

Algorithm 1 Sort-rangeQueryðq; r; fÞ
1: INPUT: q is a query and r its radius, f is the fraction

of

the database to traverse.
2: OUTPUT: Reports a subset of those u 2 UU that are at a

distance that is at most r to q.

Fig. 2. Using different similarity measures between permutations (log
scale). The space is a random uniformly distributed set of 10,000 points

in the unitary cube of dimension 128 with euclidean distance. A total of

256 permutants were used.

1. The actual definition in [24] corresponds to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�ð�q;�uÞ

p
in our

terminology. We omit the square root because it is monotonous and hence
does not affect the ordering.



3: Let A½1; n	 be an array of tuples and UU ¼ fu1; . . . ; ung
4: Compute ��1

q

5: for i 1 to n do

6: A½i	  hui; S�ð�ui ;�qÞi
7: end for

8: SortIncreasingðAÞ // by second component of tuples
9: for i 1 to f � n do

10: Let A½i	 ¼ hu; si
11: if dðq; uÞ � r then

12: Report u

13: end if

14: end for

4 EXPERIMENTAL EVALUATION

In this section, we evaluate and compare the performance
of our technique in different metric spaces, such as
synthetic vectors on the unitary cube and clustered data
(multivariate Gaussian distribution), as well as real-life
databases like face images and text documents. We also
tested the algorithm in nonmetric spaces, where the triangle
inequality does not hold. All of the experiments reported
excellent results for our method. They ran on an Intel Xeon
workstation with 2.6 GHz CPU and 4 Gbytes of RAM with
Red Hat Linux, running kernel 2.4.20-9.

4.1 Unitary Cube

We made some experiments using uniformly distributed
sets of 10,000 points in the unitary cube, in 128, 256, 512,
and 1,024 dimensions, under euclidean distance. As we can
precisely control the dimensionality of the space, we use
this experiment to show how the predictive power of
permutants varies with the dimensionality compared with
other methods. We tested the range queries with a search
radius that retrieved, on average, 0.05 percent of the
database (that is, five points). We emphasize that no exact
algorithm can avoid a linear scan of the database when we
go over dimensionality 30 with uniformly distributed
points; only probabilistic algorithms work.

We considered k ¼ 128 and k ¼ 256 permutants in our
experiments. We compare our technique with a standard
pivot-based method using the same amount k of pivots,
even though this represents at least four times the memory
we use for our algorithm. If we used the same amount of
memory for the two algorithms, the comparison would be
even more favorable to us.

The pivot-based probabilistic alternative we tested
[10] calculates, for each database element u, estimate
L1ðq; uÞ ¼ maxp2IP jdðq; pÞ � dðp; uÞj. The database is then
sorted by increasing L1 value and compared against the
query in this order.

Fig. 3 shows the comparison. The x-axis represents the
percentage of the database examined and the y-axis is the
percentage of the actual answer that was retrieved (this
estimates the probability of returning a given answer
element).

Retrieving 90 percent of the answer is good enough for
most proximity searching applications. With 128 pivots, in
dimensionality 128, 60 percent of the database must be
examined to retrieve 90 percent of the results. For our

permutation-based algorithm, with 128 permutants, we
must examine only 10 percent of the database to retrieve
90 percent of the outcome. This raises to 99 percent if we
use 256 permutants. With 256 pivots instead, one needs to
compare 85 percent of the database to retrieve 99 percent of
the answers.

In general, we observe that, as the dimensionality grows, a
larger fraction of the database must be examined to obtain a
given fraction of the result. This observation is true for the
pivot-based algorithm, as well as for ours. Nevertheless, the
pivot-based algorithm is more affected by dimensionality
than ours. Note that an algorithm that traverses the database
in random order would achieve a straight line from the
bottom-left to the top-right corner, that is, it needs to examine
90 percent of the database to obtain 90 percent of the answer.
It can be seen that pivot-based algorithms actually behave
almost randomly on very high dimensionalities.

Note that, in this synthetic data, we may be using more
permutants than space coordinates. Since the permutation
similarity is more expensive to compute than plain
euclidean distance, this may seem nonsensical. We remark
that this experiment is just to demonstrate the performance
of the technique in terms of distance computations. Real
data may have thousands of coordinates or no coordinates
at all. We include real CPU times for all the other metric
spaces that follow.

Fig. 3. Performance of our versus pivot-based probabilistic algorithms in

different dimensionalities. In (a), we use 128 pivots/permutants and, in
(b), 256. Series with the word piv refers to the standard pivot-based

algorithm.



One might wonder whether the L1 distance used by
the pivot-based probabilistic algorithm is a good pre-
dictor. Although there are good reasons to use L1 [10],
one can also argue in favor of L1: AESA, the best exact
algorithm [40], uses the L1 metric as the oracle to select
the next best candidates for pruning the database, that is,
L1ðq; uÞ ¼

P
p2IP jdðq; pÞ � dðp; uÞj. In Fig. 4, we show the

results for the test for the L1 distance to sort the database for
the probabilistic algorithm based on pivots versus the
L1 choice used above. It can be seen that the results are
mixed. In the first part (for example, scanning less than
20 percent of the database in dimensionality 128), distanceL1

retrieves a larger percent of the database compared to L1.
Nevertheless, once a turning point is reached, the result is
reversed. The same behavior is observed in all of the
dimensionalities considered. We emphasize that, anyway,
the results are very far from what we obtain with our new
technique.

In the Appendix, we display the power of the sorting
methods using clouds of points. These show how often our
technique put nearest neighbors in the first positions.

4.2 Gaussian Spaces

Uniformly distributed data is full dimensional. Real data
sets behave more like clustered data, which is easier to
index. We tested our algorithm on a Gaussian space. The
data was generated for a 1,024-dimensional space ½0; 1	1024

with 10,000 points obtained from a multivariate Gaussian
distribution with 32 clusters (centers). The variance of the
center distribution was 0.09 and the variance inside the
clusters was 0.01.

Fig. 5 shows experiments of the CPU time needed for
retrieving the nearest neighbor using 32 and 128 pivots/
permutants. Notice that the ordering using permutations
retrieves 100 percent of the answer faster than the others. In
Fig. 5a, using 32 pivots/permutants, ordering using
permutations retrieves 100 percent of the answer in just
0.03 sec, while the others require 0.17 sec.

4.3 Face Recognition

In many real-world scenarios, objects are modeled as
very high-dimensional feature vectors. Spatial access
techniques cannot be used efficiently in this case due to
the curse of dimensionality. An alternative is to work

without coordinates, using the distance just as a black box,

that is, resorting to the metric space model. Nevertheless, in

several cases, the resulting intrinsic dimensionality is still

very high and no exact search method can avoid an

exhaustive scan of the database.
In this section, we consider the FERET database [37],

which consists of 762 gray-scale frontal face images of

254 different people (3 images per person). The pictures are

of 128� 128 pixels, that is, each face is represented by

16,384 features. The query set has 254 images (1 image per

person). To speed up searches, the vectors were trans-

formed by eigenspace methods which project the input

faces onto a 761-components (coordinates) space where the

recognition is carried out.
We consider K-NN search, as this is the most frequent

query in this application. For the probabilistic algorithms, we

measure the number of distance computations performed

(averaged over all the queries) until the algorithms obtain

the correct K-NN. We used all 254 queries for each K value

tested.
Since the size of the database allows it, we included

AESA [40] in the comparison as it is considered a baseline
to compare exact searching algorithms. AESA uses the
entire distance matrix to answer queries and it is the best
exact algorithm. As the distance is euclidean, we also

Fig. 4. Comparison between the L1 and L1 Minkowski metrics to sort

the database with pivot-based algorithms using 256 pivots.

Fig. 5. Retrieving the nearest neighbor on a 1,024-dimensional

Gaussian space with 32 clusters, using (a) 32 and (b) 128 pivots/
permutants. We show the retrieval percentage versus the total time to

obtain the results.



experiment with a kd-tree [7] as an exact search method that
attempts to reduce CPU time.

Figs. 6a and 6b show the results, using 64 permutants. It
can be seen that the best exact technique (AESA) requires
scanning 30-40 percent of the database to find the nearest
neighbor, and this quickly raises to 80-90 percent for larger
K. Kd-trees need 50 percent to find the nearest neighbor.
Our technique performs better, scanning around 10 percent
of the database on average to find the nearest neighbor and
30-40 percent for 20 nearest neighbors. For the probabilistic
algorithm based on pivots, we chose the L1 distance to sort
the database. It requires traversing a larger fraction of the
database to achieve the same result of permutants (40-
50 percent for K ¼ 20 neighbors). The results for L1 were
not included as they are worse than for L1.

Figs. 6c and 6d show real CPU times. It can be seen that,
although permutations pose a CPU time overhead higher
than pivots, the result is still advantageous in terms of CPU
time. (Note that AESA is more expensive in practice than a
sequential scan.)

Fig. 7 displays the results in a form more similar to
previous plots. We show the percentage of queries
successfully solved (that is, all of their K-NNs are found)
after traversing a given percentage of the database. We also
display the relative error ratio between the distance to the
Kth nearest neighbor found divided by the distance to the
true Kth nearest neighbor (computed only over the
unsuccessful queries). It can be seen that, even when the
algorithm fails to find the true answer, the approximation it
finds is rather good.

Again, in the Appendix, we display the power of the
sorting methods for this database.

4.4 Documents

A central problem in information retrieval consists of finding
documents relevant to a given query. The relevance is
measured using a specialized distance definition. Docu-
ments are represented as unitary vectors, where every
coordinate corresponds to a term and the value of a
document vector along each coordinate is proportional to
the weight of the term in that document. The number of
different terms in a collection is on the order of hundreds of
thousands, resulting in a very high-dimensional vector space
with the usual dimensionality curse problems. The distance
between two documents can be taken as the angle between
their representing vectors (the cosine of this angle is a
similarity measure heavily used in information retrieval [6]).

We used a subset of collection TREC-3 [26] to compare
the performance of our approach against the best previous
results using probabilistic algorithms [10]. The database
consists of 24,960 documents. We averaged 1,000 range
queries chosen at random, with a radius retrieving, on
average, 0.035 percent of the database (nine documents).
No exact algorithm performs well in this setup: Even AESA
needs to compare the query against 60 percent of the
database to solve this query.

The results can be seen in Fig. 8a, using 128 pivots or
permutants. Permutations quickly reach a good percentage
of retrieval: We review just 2 percent of the database to
retrieve 95 percent of the outcome, while the classical pivot-
based algorithm (that is, using L1 ordering) needs to

review almost 20 percent of the database to achieve the

same retrieval performance. A pivot-based algorithm using

L1 (not tried before as far as we know) performs almost as

well as permutations. Finally, in [10], a method called

Dynamic Beta is proposed, which needs to review about

Fig. 6. Comparing techniques over a real database of faces. We show
the percentage of the database compared ((a) and (b)) and CPU time
((c) and (d)) to find the correct K-NN, using 64 pivots/permutants. In (a)
and (c), we work with the original space; in (b) and (d), we work with the
projected space.



10 percent of the database to reach the same retrieval
performance. After paying that 10 percent, Dynamic Beta by
far surpasses the pivot-based method and, from then on, it
becomes similar to permutations.

Fig. 8b shows the result of a 5-NN query, this time

focusing on CPU times. Again, using permutations is

(slightly) faster than the others.
We again display the power of the sorting methods on

this database using clouds of points in the Appendix.

4.5 Nonmetric Databases

There are several real-life applications where similarity
searching has to be carried out over a space that is not even
metric, that is, where the triangle inequality does not hold.
In this case, exact proximity search algorithms are useless
in general as there is no way to prove that an element is
sufficiently far away from the query q. A probabilistic
algorithm instead has a chance of still proposing an
appealing order to traverse the database. A variation of
this idea, forging a monotonous transformation of the
database, is indeed used in [39] as a good alternative to
search in nonmetric databases.

In particular, our probabilistic algorithm does not make
use of the triangle inequality as it never discards an
element; it just hints which are the most promising
candidates to consider first. As such, it can be used on
nonmetric databases.

We apply our K-NN algorithm over a couple of
nonmetric spaces in order to demonstrate its suitability.
The first space is a synthetic uniform vector space, just as
those in Section 4.1, using, instead of euclidean distance, a
so-called fractional norm Lp with 0 < p < 1:

Lp ðx1; . . . ; xDÞ; ðy1; . . . ; yDÞð Þ ¼
X

1�i�D
jxi � yijp

 !1
p

:

Fractional norms are sometimes preferred over the usual

Minkowski norms, L1, L2, or L1, because they lead to

lower intrinsic dimensionality [2], [1], [21], [28]. (Please do

not confuse this norm, which is used as the d distance in the

Fig. 7. Comparing techniques over a real database of faces. In (a) and
(b), we use K ¼ 2 and, in (c) and (d), we use K ¼ 4. In (a) and (c), we
show the percentage of queries where all the K-NN are correctly found.
In (b) and (d), we show the relative error for those queries that do not
find all the correct neighbors.

Fig. 8. Comparing our technique with others in a real database of

documents. (a) Retrieval performance and (b) the CPU time compared

against retrieval performance for all of the probabilistic algorithms.



metric space, with the L1 and L1 norms explained in

Section 4.1 to sort the database. These are independent.)
Fig. 9 compares the performance of our ordering based

on permutations with those based on L1 and L1, as in

previous sections. It can be seen that permutations achieve
the best result, followed by L1. The problem is easier as p
grows and the space gets closer to be metric.

The second space is that of sequences using normalized
edit distance (NED) [31], [3]. The usual edit distance (which
is a metric) favors short sequences over long ones, given the
same fraction of similarity between the two sequences. The
NED counterweights this bias by dividing the cost of a
sequence of operations by the length of that sequence. The
result is no longer a metric, but it works better in several
applications.

Fig. 10 shows the results over 40,000 words from a
dictionary using this distance for a range search with
radius 1. In this case, the permutations and the
L1 orderings yield similar results, superior to those of L1.

4.6 Selecting Permutants

Permutants are central to our method. Hence, it is

worthwhile to investigate the role of permutant selection.

We tested heuristics based on selecting permutants with

minimum or maximum Spearman Rho in the set: We start

with a set with only one element and the next permutant

will be selected minimizing (or maximizing) the sum

p ¼ minui2UU

P
pj2 IP Spðui; pjÞ. This type of heuristic has been

successful in choosing pivots [10]. Its complexity is Oðk3nÞ.
We show experiments in Fig. 11 for uniformly distrib-

uted data in Figs. 11a and 11b, and Gaussian data in
Figs. 11c and 11d, using the setup of previous sections. As
can be seen, no significant improvement is obtained with
the different heuristics. In some cases, random selection is
even better than the alternatives. Other experiments,
artificially choosing the permutants as the centers used to
generate the Gaussian data, failed as well.

5 CONCLUSION AND FUTURE WORK

We have presented a new method for probabilistic
proximity searching in metric spaces. It is based on
comparing the proximity ordering toward a set of
distinguished objects (called permutants). We show that
this ordering is a very good predictor of the relevance of
points to the query. This leads to a very strong probabilistic
proximity search algorithm which needs to scan just a small
fraction of the database to obtain most of the relevant
answers. Our technique is by far better than any other
existing proposal that we are aware of.

Fig. 9. Comparing our technique with others in uniformly distributed

vector spaces using Lp distance (nonmetric, p < 1) to retrieve two
nearest neighbors. In (a) and (b), p ¼ 0:2 and, in (c) and (d), p ¼ 0:8; we

used 128 pivots on (a) and (c) and 256 on (b) and (d).

Fig. 10. Comparing our technique with others in a space of strings using

NED. Range search with radius 1.



Our proposal is very simple to implement and has

immediate applications to many pattern recognition pro-

blems, as well as in other areas that use proximity searching

and can tolerate (very good) approximations to the exact

solutions to proximity queries. One application we have

pursued was to use our technique as an oracle to choose the

pivots in AESA, the best exact proximity search algorithm:

We use S� instead of L1 [25]. The result, iAESA, achieves a

relevant improvement upon an algorithm that has stood

out as unbeatable for 20 years. Another idea we are

pursuing is to use our algorithm to build approximate

K-NN graphs, which are useful for many applications

including proximity searching [34]. Our preliminary results

indicate that we almost always obtain the correct K-NN

graph at a very low cost compared to exact algorithms such

as [35].
On the other hand, several aspects of our technique

deserve more research. One challenge is to reduce CPU
times. Although we have shown that permutants obtain
good CPU times when the distance function is moderately
expensive to compute, it might be possible to do better. In
particular, our best current solutions still take time
proportional to the database size (albeit with a small
constant in practice). Another is to devise new methods to
determine where to stop the scanning so as to achieve some
expected quality in the answer. The method we proposed
requires training. It may be possible to instead use the
history of the updates to the answer produced by the
current query to predict its future behavior.

APPENDIX
Due to space limitations, the Appendix is available only in
electronic form at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2007-70815.
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[32] L. Micó, J. Oncina, and E. Vidal, “A New Version of the Nearest-
Neighbor Approximating and Eliminating Search (AESA) with
Linear Preprocessing-Time and Memory Requirements,” Pattern
Recognition Letters, vol. 15, pp. 9-17, 1994.

[33] G. Navarro, “Searching in Metric Spaces by Spatial Approxima-
tion,” Very Large Databases J., vol. 11, no. 1, pp. 28-46, 2002.
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