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1. Introduction

The first eigenvalue λV,1 of a Schrödinger operator −∆ + V can
be estimated using Sobolev’s inequalities, [24, 22, 11]. In some re-
cent papers, [2, 25, 5], a precise connection has been given between
the optimal estimates of λV,1 in terms of a norm of V , and the opti-
mal constants in some related Gagliardo-Nirenberg inequalities. Such
inequalities admit optimal functions, see [26, 5]. In the case of or-
thonormal and sub-orthonormal systems, interpolation inequalities of
Gagliardo-Nirenberg type provide informations on optimal constants in
inequalities, see [16, 15, 9, 8], which can be extended to Lieb-Thirring

type inequalities, [14]. We refer to [5] for references in this direction
and precise statements concerning the relation between optimal con-
stants in these two families of inequalities, in the case of the euclidean
space Rd.

Conversely, the knowledge of Lieb-Thirring inequalities can be re-
phrased into interpolation inequalities for mixed states, which are infi-
nite systems of orthogonal functions with occupations numbers, see [5].
It is well known that an equivalent formulation holds in terms of op-
erators. In this paper we rewrite and extend these interpolation in-
equalities for trace-class self-adjoint operators and focus on the case



of a domain Ω ⊂ Rd. We also study, at the level of the operators,
the compactness properties of the corresponding embeddings, which
somehow extend the well known properties of Sobolev’s embeddings to
trace-class self-adjoint operators.

An important source of motivation for us is the paper by Markowich,
Rein and Wolansky, [18], which was devoted to the analysis of the sta-
bility of the Schrödinger-Poisson system. It involves in a crucial way
some functionals which are a key tools of our approach, and that we
call free energy functionals because of their interpretation in physics.
In [18], the authors refer to such functionals as Casimir functionals,
for historical reasons in mechanics, see for example [28]. During the
last few years, various results based on free energy functionals, which
are sometimes also called generalized entropy functionals, have been
achieved in the theory of partial differential equations. We can for in-
stance quote nonlinear stability results for fluid and kinetic equations,
see for instance [28, 12, 13, 21], studies of the qualitative behavior of
the solutions of kinetic and diffusion equations, including large time
asymptotics and diffusion limits, see for example [1, 4, 6], and appli-
cations to free boundary problems [7], or quantum mechanics [17, 18].
At a formal level, these various functionals are all more or less the
same object, but the precise connection is still being studied at the
moment from a mathematical point of view. However, at a physical
the correspondence makes no more doubts.

Minimizing the free energy functional for a given potential is equiv-
alent to proving Lieb-Thirring inequalities, while the optimization on
the potential provides interpolation inequalities. Such questions have
been only tangentially studied in [18], since in this paper the potential
is an electrostatic Poisson potential with homogeneous Dirichlet bound-
ary conditions and therefore always positive. Here we work in a much
more general setting, which physically could correspond to external
potentials with a singularity (for instance created by doping charged
impurities in a semi-conductor) and our first task is therefore to bound
from below the free energy functional, that is to establish adapted
Lieb-Thirring inequalities. Our second step consists in reformulating
these inequalities in terms of Gagliardo-Nirenberg type interpolation
inequalities for operators, and to study the compactness properties of
the corresponding embeddings. Afterwards, the minimization proce-
dure becomes more or less trivial, thus giving for almost no work the
existence of minimizers, including in the case of non-linear models in-
volving, for instance, a Poisson coupling.



Let Ω be a domain in Rd with smooth boundary and consider a
smooth positive potential V on Ω. As a starting point, we are inter-
ested in inequalities of Lieb-Thirring type for the Schrödinger oper-
ator −∆ + V . Let {λV,i}i∈N∗ be the corresponding unbounded non-
decreasing sequence of eigenvalues. As a straightforward consequence
of the results of [5], the following inequality holds: for any γ > d/2,
there exists some explicit constant C(γ), which does not depend on V ,
such that

∑

i∈N∗

(

λV,i
)−γ ≤ C(γ)

∫

Ω

V d/2−γ dx (1.1)

(see Example 1 in Section 3.1 for a precise statement). This inequality
arises as a special case of a “master inequality” which goes as fol-
lows. Consider a sequence of orthonormal functions {ψi}i∈N∗ and a
non-increasing sequence {νi}i∈N∗ ∈ `1 of non-negative real numbers.
The sequence {(νi, ψi)}i∈N∗ is called a mixed state in the physics liter-
ature. The master inequality is

∑

i∈N∗

[

β(νi)+νi
〈

ψi, (−∆+V )ψi
〉

L2(Ω)

]

≥ −
∑

i∈N∗

F
(

λV,i
)

≥ −
∫

Ω

G(V ) dx .

(1.2)
Here the functions β, F and G are related as follows. Consider a non-
negative function g satisfying

∫∞

0
g(t)

(

1 + t−d/2
)

t−1 dt <∞, then we
define

F (s) :=

∫ ∞

0

e−t s g(t)
dt

t
and G(s) :=

∫ ∞

0

e−t s (4π t)−d/2 g(t)
dt

t
,

and we let β be such that β(s) ≡ F ∗(−s), where F ∗ denotes the
Legendre-Fenchel transform of F . Then (1.1) corresponds to the case
βm(ν) = −cm νm for some explicit constant cm, m = γ/(γ + 1) ∈
(d/(d+ 2), 1), F (s) ≡ s−γ and G(s) ≡ C(γ) sd/2−γ . The important
point is that Inequality (1.2) holds for any positive potential and any
mixed state. Other choices can also be taken, for instance β1(s) ≡
s log s − s, F (s) ≡ e−s and G(s) ≡ (4π)−d/2 e−s, thus showing the
following Lieb-Thirring type inequality

∑

i∈N∗

e−λV,i ≤ (4π)−d/2
∫

Ω

e−V dx .

Using the Hilbert-Schmidt theorem, by considering self-adjoint trace-
class operators L, with eigenpairs {(νi ψi)} and with kernel KL(x, y) ≡
∑

i∈N∗ νi ψi(x)ψi(y), we can reformulate the first part of Inequality (1.2)



in terms of operators:

Fλ
V,β(L) ≡

∑

i∈N∗

[

β(νi)+νi
〈

ψi, (−∆+V − λ)ψi
〉

L2(Ω)

]

≥ −Tr
[

F
(

− ∆ + V − λ
)]

for some parameter λ that we may take equal to 0 for the moment. Up
to now, V was assumed to be non-negative. Our first main result is an
extension of Inequality (1.2) to potentials which may change sign, being
possibly unbounded below. Assuming that −(1−ε) ∆+V −λ is a non-
negative operator for some ε ∈ (0, 1) and λ ∈ R, for any non-negative
perturbation W of a sign changing potential V , Inequality (1.2) is re-
placed by

Fλ
V+W,β(L) ≥ − ε−d/2

∫

Ω

G(W ) dx . (1.3)

An optimization on W then gives an interpolation inequality of Gagli-
ardo-Nirenberg type. To give a precise statement, let us consider F,G
and β as before and let τ be such that G(s) ≡ τ ∗(−s). Here G∗ denotes
the Legendre-Fenchel transform of G. We also use the notation ρL for
the non-negative function

∑

i∈N∗ νi |ψi|2 ∈ L1(Ω), using a mixed state
representation {(νi, ψi)}i∈N∗ associated to L. Some standard precau-
tions are needed to identify ρL(x) with KL(x, x).

Theorem 1.1. For a given potential V , assume that for some ε ∈
(0, 1), −(1 − ε) ∆ + V is bounded from below by some constant λ, in
the sense of operators. With the above notations, Inequality (1.3) holds
for any non-negative self-adjoint trace-class operator L, and moreover

Fλ
V,β(L) ≥ ε−

d
2

∫

Ω

τ
(

ε
d
2 ρL(x)

)

dx .

Two explicit important examples correspond to F (s) ≡ s−γ and
F (s) ≡ e−s. If we define the kinetic energy of a given trace-class
operator L as

K(L) ≡
∫

Ω

νi |∇ψ|2 dx ,
then we obtain the following interpolation inequalities:

K(L) + κ(γ)

∫

Ω

ρqL dx ≥ cm Tr [Lm] ,

where q ≡ (2γ − d)/(2(γ + 1) − d) ∈ (0, 1), γ > d/2, m = γ/(γ + 1)
and κ(γ) is an explicit positive constant, and

∫

Ω

ρL log ρL dx ≤ Tr [L logL] +
d

2
log

(

e

2πd

K(L)

‖L‖1

)

‖L‖1 ,



where L is any non-negative self-adjoint trace-class operator and ‖L‖1

denotes Tr [L]. For simplicity, the inequalities written here correspond
to the case where V is non-negative, but more general statements cor-
responding to a sign changing potential V can be deduced from Theo-
rem 1.1.

The interpolation inequalities of Theorem 1.1 generalize for self-
adjoint trace-class operators the usual Gagliardo-Nirenberg inequali-
ties. Exactly as for the embedding H1

0(Ω) ↪→ L2(Ω), some compactness
can be expected. Such a statement constitutes our second main result.

Theorem 1.2. Under the assumptions of Theorem 1.1, if {Ln}n∈N is
a sequence of non-negative self-adjoint trace-class operators such that

{Fλ
V,β(Ln)}n∈N

is bounded, then {Ln}n∈N is relatively compact and converges to a non-
negative self-adjoint compact operator L up to a subsequence. More-
over, ρLn converges to ρL in Lq(Ω), for any q ∈ [1,∞] if d = 1,
q ∈ [1,∞) if d = 2 and q ∈ [1, d/(d− 2)] if d ≥ 3.

See Theorem 3.3 for a precise notion of convergence of {Ln}n∈N.

This paper is organized as follows. Section 2 is devoted to defini-
tions and preliminary results. In Section 2.1 we introduce the operator
setting. In Section 2.2 we define a set of trace-class operators having
the form F (−∆). To this class belong the operators generated by the
Boltzmann distribution and the Fermi-Dirac statistics, see Example 3
in Section 2.2. The space S1 of trace-class self-adjoint operators, which
are also known as nuclear self-adjoint operators, plays the role of the
space L1 and the spaces Sq can be felt as a generalization of the spaces
Lq, q ∈ [1,∞]. Inspired by this analogy, we define in Section 2.3 the
Sobolev-like cones W l,p as appropriate subsets of S1. As far as we know
the definition of these cones is a novelty. Basic properties (Proposition
2.1) of these cones and a regularity result (Proposition 2.2) concerning
the density functions associated to H1 = W1,2 are established in Sec-
tion 2.3. The free energy functional Fλ

V,β(L) is defined in Section 2.4.
Theorems 1.1 and 1.2 are proved in Section 3. An improved inter-

polation inequality is given in Theorem 3.2. The key estimate is a
convexity inequality (Lemma 3.1) which allows simultaneously to min-
imize the free energy functional and to get some coercivity even if V
changes sign (Proposition 3.5). The compactness result then follows
(see Theorem 3.3 for a detailed statement.)

As a simple consequence, in Section 4, we prove the existence of
minimizers in several cases of interest in quantum mechanics. Some



additional references for applications in quantum mechanics are given
at the end of this paper.

2. Definitions and preliminary results

2.1. The operators setting. Let Ω be a domain in Rd, d ∈ N∗. We
denote by L(L2(Ω)) the space of bounded linear operators acting on
L2(Ω) and by ‖ · ‖ its standard norm. In L(L2(Ω)) we consider the
subspaces I∞ and S∞ of compact and compact self-adjoint operators,
respectively. Next we define the space of trace-class operators which is
a subspace of I∞ given by

I1 ≡
{

L ∈ I∞ :
∑

i∈N∗

∣

∣

〈

χi, Lχi
〉

L2(Ω)

∣

∣ <∞
}

where {χi}i∈N∗ is any complete orthonormal system in L2(Ω). The
elements of I1 are indifferently called trace-class operators or nuclear
operators. Given L ∈ I1, the trace of L is the value

Tr [L] ≡
∑

i∈N∗

〈

χi, Lχi
〉

L2(Ω)
, (2.1)

where {χi}i∈N∗ is any complete orthonormal system in L2(Ω). It is a
well known fact of the theory that the trace of an operator does not
depend on the choice of {χi}i∈N∗. We will also consider the space of
the Hilbert-Schmidt operators, which is defined as

I2 ≡
{

L ∈ I∞ :
∑

i∈N∗

∣

∣

〈

χi, |L|2χi
〉

L2(Ω)

∣

∣ <∞
}

.

Equipped with the scalar product 〈L,R〉2 ≡ Tr [R∗L], I2 is a Hilbert
space. We denote the corresponding norm by ‖ · ‖2. It can be proved,
see for instance [19, Theorem VI.23], that an operator L ∈ L(L2(Ω))
belongs to the Hilbert-Schmidt space if and only if there is a function
KL ∈ L2(Ω × Ω), the kernel of L, such that

‖L‖2
2 =

∫ ∫

Ω×Ω

|KL(x, y)|2 dx dy

and

(Lη)(x) =

∫

Ω

KL(x, y) η(y) dy for x ∈ Ω a.e. , ∀ η ∈ L2(Ω) .

For L ∈ S∞ we denote by {νi(L)}i∈N∗ , or simply {νi}i∈N∗ if there is no
confusion, the sequence of eigenvalues of L counted with multiplicity,
which is well defined by the Hilbert-Schmidt theorem. We adopt the
convention that {νi}i∈N∗ is ordered in a way such that {|νi|}i∈N∗ is non-
increasing, and if both ν and −ν are eigenvalues, −|ν| comes first. We



will denote by {ψi(L)}, or simply {ψi}i∈N∗ if there is no ambiguity, an
associated orthonormal system of eigenfunctions, which is complete in
L2(Ω): see, e.g., [3, Chapter VI]. From now on we are only dealing with
self-adjoint operators and consider for any q ∈ [1,∞) the spaces

Sq ≡
{

L ∈ S∞ : ‖L‖q ≡
(

∑

i∈N∗

|νi|q
)1/q

<∞
}

.

If L ∈ S2, given an orthonormal basis of L2(Ω) of eigenfunctions
{ψi}i∈N∗ associated to L, KL is explicitly given by

KL(x, y) =
∑

i∈N∗

νi ψi(x)ψi(y) for x, y ∈ Ω a.e.,

and the two given definitions of ‖L‖2 coincide.
If L ∈ S1 and {ψi}i∈N∗ is an orthonormal basis of L2(Ω) of eigen-

functions associated to L ∈ S1, we define

ρL(x) ≡
∑

i∈N∗

νi |ψi(x)|2 x ∈ Ω a.e. ,

which is in L1(Ω). It is a well known fact that ρL does not depend on
the special choice of {ψi}i∈N∗ and that

∫

Ω

|ρL(x)| dx ≤ ‖L‖1 = Tr(|L|) =

∫

Ω

ρ|L|(x) dx ∀ L ∈ S1 .

If additionally L is a non-negative operator, ρL is also non-negative
and it is called the density function associated to L. We certainly have
‖L‖1 = Tr [L] =

∫

Ω
ρL(x) dx. Such a definition is consistent with the

density operator formalism in quantum mechanics.

Remark 2.1. In some cases (2.1) makes sense for an operator L which
is not in S1, but is for instance in L(L2(Ω)) and such that the right
hand side in (2.1) is finite. We shall then write tr [L] instead of Tr [L].

Let us recall some other well known facts on Sq. We refer the reader
to [20, Prop. 5-6] for more details.

i) Sq equipped with the norm ‖ · ‖q is a Banach space and ‖L‖ =
limq→∞ ‖L‖q, but Sq ( S∞ for any q ∈ [1,∞).

ii) If 1 < q1 < q2 <∞, then

‖L‖q2 ≤ ‖L‖q1 ∀ L ∈ Sq1 ,
so that S1 ⊂ Sq1 ⊂ Sq2 ⊂ S∞.

iii) Sq is the closure of the space of finite rank self-adjoint operators
with respect to the norm ‖ · ‖q.



iv) If 1 ≤ q ≤ ∞ and q−1 + r−1 = 1, then

‖AB‖1 ≤ ‖A‖q ‖B‖r ∀ A ∈ Sq , B ∈ Sr . (2.2)

In case q = ∞ (and r = 1), ‖ · ‖∞ = ‖ · ‖ is the usual norm of
bounded operators.

2.2. Operators of the form F(−∆) and Casimir-type functions.
In the case of a bounded domain Ω ⊂ Rd, a useful class of operators
can be obtained out of the Laplacian. Let {λ0,i}i∈N∗ and {φ0,i}i∈N∗ be
the eigenvalues and eigenfunctions of the Laplacian with homogeneous
Dirichlet boundary conditions, that is for each i ∈ N∗

−∆φ0,i = λ0,i φ0,i in Ω , φ0,i ∈ H1
0(Ω). (2.3)

The ordered sequence 0 < λ0,1 < λ0,2 ≤ λ0,3 ≤ ... diverges and
{φ0,i}i∈N∗ is a complete orthonormal system in L2(Ω). Moreover, φ0,i ∈
C∞(Ω) for all i ∈ N∗. See for instance, [3, Theorem IX.31],

Definition 2.1. We shall say that a function F : R → R∪{+∞} is of
class C(−∆,Ω) if F is convex and

∑

i∈N∗ F (λ0,i) is finite.

The Spectral Theorem (see for instance [19, Theorem VIII.5]) then
allows to define the trace-class operator F (−∆) for each F ∈ C(−∆,Ω).
We observe that in this case it follows that the spectrum σ(−∆) ≡
{λ0,i : i ∈ N∗} of −∆ is contained in the domain Dom(F ) ≡ {s ∈ R :
F (s) < ∞}. The set C(−∆,Ω) is a convex cone, that is, it is convex
and stable under addition and multiplication by a positive constant.

Example 1. Let γ > γd ≡ d/2. Then, as we shall see below,
∑

i∈N∗

(λ0,i)
−γ <∞ , (2.4)

so that the function

F (s) =

{

s−γ if s ≥ 0 ,

+∞ if s < 0 ,

belongs to C(−∆,Ω) and therefore (−∆)−γ is a trace-class operator.

Example 2. More generally, let F : R → R ∪ {+∞} be a non-
increasing convex function which is non-negative and such that for
any s ≥ 0 large,

F (s) ≤ C

(1 + s)ε+d/2
,



for some constants C, ε > 0. Then we have that
∑

i∈N∗

F (λ0,i) ≤
∑

k∈N∗

F (k) · #A(k),

where A(k) ≡ {i ∈ N∗ : k < λ0,i ≤ k + 1}. Using Weyl’s estimate [27],
which states that #A(k) grows like kd/2−1 for large k, it follows that
F (k)·#A(k) behaves like k−1−ε as k → ∞. Consequently

∑

i∈N∗ F (λ0,i)
is finite and then F ∈ C(−∆,Ω).

Example 3. Assume f : R → R is a Casimir-type function, that is a
function that satisfies the following properties:

i) There exists s1 ∈ [−∞,∞) such that f(s) = ∞ for any s ∈
(−∞, s1).

ii) f is continuous on (s1,∞).
iii) There exists s2 ∈ (s1,∞] such that f(s) > 0 for any s ∈ (s1, s2)

and f(s) = 0 for any s ≥ s2 .
iv) f is strictly decreasing on (s1, s2) .
v) If s2 = ∞, there exists two positive constants ε and C such

that for any s ≥ 0, large,

f(s) ≤ C

(1 + s)ε+1+d/2
.

Then the function

F (s) =

∫ ∞

s

f(t) dt

falls in the class of functions of Example 2.
Under these conditions f(−∆) is also a trace-class operator if one

requires ε > 1, as shown in [18]. The function of Example 1 above, the
Fermi-Dirac statistics defined for α > 0 by

f(s) =

∫

Rd

dv

α+ es+|v|2/2

and the Boltzmann distribution

f(s) = e−αs

with α > 0, are Casimir-type functions.

Consider now the case of a Schrödinger operator −∆ + V , where V
is a potential for which there exist eigenvalues λV,1 < λV,2 ≤ λV,3 ≤ ...
diverging to infinity and functions such that {φV,i}i∈N∗ is a complete
orthonormal system in L2(Ω), where

−∆φV,i + V φV,i = λV,i φV,i in Ω , φV,i ∈ H1
0(Ω). (2.5)



In this case we define C(−∆ + V,Ω) as the class of functions F : R →
R∪{+∞} that are convex and such that

∑

i∈N∗ F (λV,i) is finite. Then,
using spectral theory, we may define for each such F the trace-class
operator F (−∆ + V ). We will use these operators extensively in what
follows.

2.3. Sobolev-like cones of nuclear operators. We recall that for
any L ∈ S∞, we denote by {(νi(L), ψi(L))}i∈N∗ a sequence of eigenele-
ments of L. Here {ψi(L)} ⊂ L2(Ω) is a complete orthonormal system
of eigenfunctions.

Definition 2.2. Let l ∈ N∗ and p ∈ [1,∞[. An operator L ∈ S1 is in
the Sobolev-like cone W l,p if {ψi(L)}i∈N∗ ⊂ W1,p

0 (Ω) ∩ Wl,p(Ω) and

〈〈L〉〉l,p ≡
∑

i∈N∗

|νi| · ‖ψi‖pW l,p(Ω)
<∞ . (2.6)

We also define the functional Kp on W1,p by

Kp(L) ≡
∑

i∈N∗

|νi|
∫

Ω

|∇ψi(x)|p dx .

The following proposition collects some basic facts:

Proposition 2.1. Sobolev-like cones of trace-class operators satisfy the
following properties:

i) For any p ∈ [1,∞[, l ∈ N∗, W l,p is a cone and

W l2,p ⊂ W l1,p if l1 ≤ l2 , l1 , l2 ∈ N∗ .

ii) If 1 ≤ p < q < ∞, l ∈ N∗, then there exists a constant c1 =
c1(p, q, l) such that

〈〈L〉〉l,p ≤ c1 〈〈L〉〉l,q ∀ L ∈ W l,q ,

so that W l,q ⊂ W l,p.
iii) For any p ≥ 2, there exists a constant c2 = c2(Ω, p) such that

‖L‖1 ≤ c2 Kp(L), ∀ L ∈ W1,p . (2.7)

In the rest of the paper we will only consider the case p = 2, even
though some results can be extended for general p. In this case we
write H1 ≡ W1,2 and we denote by H1

+ the set of operators L ∈ H1

such that L ≥ 0. This set H1
+ is also a cone. We define K : H1

+ →
R as K = K2 and call it the kinetic energy functional. Given L ∈
H1

+ we say that K(L) is the kinetic energy of L and we may write
that K(L) = tr [−∆L]. The Sobolev-like cones H1 and H1

+ are the

analogues of H1(Ω) and H1
+(Ω) = {u ∈ H1(Ω) : u ≥ 0} at the level of



self-adjoint compact operators. This results in integrability properties
for the density ρL(x) =

∑

i∈N∗ νi |ψi(x)|2 which are the counterpart of
Sobolev’s embeddings.

Proposition 2.2. For any L ∈ H1, the density function ρL belongs to
W1,r(Ω) ∩ Lq(Ω) with r and q in the following ranges:

i) for all q ∈ [1,∞] and r ∈ [1, 2] if d = 1,
ii) for all q ∈ [1,∞[ and r ∈ [1, 2] if d = 2,
iii) for all q ∈ [1, d/(d− 2)] and r ∈ [1, d/(d− 1)] if d ≥ 3.

Proof. Assume that d ≥ 3 and r ∈ [1, d/(d− 1)]. Using the convexity
of s 7→ |s|r, Hölder’s and Sobolev’s inequalities, we obtain
∫

Ω

|∇ρL|r dx ≤ 2r
∫

Ω

(

∑

i∈N∗

|νi ψi∇ψi|
)r

dx

≤
(

2
∑

j∈N∗

|νj|
)r
∫

Ω

∑

i∈N∗

(

|νi|
P

j∈N∗ |νj |

)

|ψi|r|∇ψi|r dx

≤ 2r
(

∑

j∈N∗

|νj|
)r−1 ∑

i∈N∗

|νi|
(
∫

Ω

|∇ψi|2
)

r
2
(
∫

Ω

|ψi|
2r

2−r

)1− r
2

≤ 2r srr ‖L‖r−1
1 K(L)

where sr is the Sobolev constant of the embedding H1
0 (Ω) ↪→L

2r
2−r (Ω).

Thus, from (2.7) we find

‖∇ρL‖Lr(Ω) ≤ 2 sr ‖L‖1− 1
r

1 K 1
r (L) ≤ 2 sr c

1− 1
r

2 K(L)

where c2 = c2(Ω, 2) is the Poincaré constant. Therefore, by the critical
Sobolev embedding, we finally have

‖ρL‖Ld/(d−2)(Ω) ≤ sd/(d−1) ‖∇ρL‖Ld/(d−1)(Ω) ≤ 2 s2
d/(d−1) c

1− 1
r

2 K(L) <∞ .

The cases d = 1, 2 follow similarly from the Sobolev inequalities,
with the corresponding restrictions on q and r. �

2.4. The free energy functional. In this section we define the free

energy functional, which is made of an energy functional and an entropy
functional. The energy functional can be seen as the sum of the kinetic
energy, as defined above, and a potential energy functional.

2.4.1. Potential energy. Potential energy for trace-class operators can
be defined as follows. Let V : Ω → R be a measurable function and let
L ∈ S1. If ρ|L|V ∈ L1(Ω), then the V -potential energy of L is given by

PV (L) ≡
∫

Ω

V (x)ρ|L|(x) dx.



Remark 2.2. Since V = V (x) can formally be seen as an operator
acting on L2(Ω) with kernel KV (x, y) = V (x) δx(y), it follows that
P(L) = tr [V |L| ].

The V -potential energy functional is bounded from below in H1
+ if

and only if V is non-negative. To be precise, we have the following
result.

Proposition 2.3. Assume that A ⊆ S1 is such that αA ⊆ A, for all
α > 0. Then

inf
L∈A

P(L) ≥ C (2.8)

for some constant C ∈ R if and only if

inf
L∈A

P(L) = 0 , (2.9)

which is equivalent to V ≥ 0 a.e.

Proof. If we assume (2.8) and there is L ∈ A such that 0 > P(L) > C,
then it should also be true that

0 > P(αL) = αP(L) > C ∀ α > 0 ,

but this is impossible for α > |C|/|P(L)|. Then, as limα→0 P(αL) = 0,
we have (2.9). Next, assuming (2.9) we see that V ≥ 0 a.e., since in
the contrary we can find L such that P(L) < 0. Finally, if V ≥ 0 a.e.,
then (2.8) follows with C = 0. �

2.4.2. Entropy. Let L ∈ S1 and let β : R → R ∪ {+∞} be a convex
function such that β(0) = 0. The functional

Eβ(L) ≡
∑

i∈N∗

β(νi(L))

will be called the β-entropy of L.
At this point the function β is arbitrary, but later we consider it in

relation with a function F in the class C(−∆ + V,Ω).

2.4.3. Free energy. The free energy functional is obtained as the sum
of the entropy, the kinetic energy and the potential energy. Assume
that L ∈ H1 and that V : Ω → R is a measurable function such that
ρ|L|V ∈ L1(Ω).

Definition 2.3. The functional

FV,β(L) ≡ Eβ(L) + K(L) + PV (L)

will be called the (V, β)-free energy of L.



Formally we may say that the (V, β)-free energy of L is given by

FV,β(L) = tr [β(L) + (−∆ + V )L] ,

for all L ∈ H1. We recall that we are using the notation tr[·] when the
trace makes sense even though the operator may not be a trace-class
operator. See Remark 2.1.

Remark 2.3. Here we take temperature 1 from the physics point of
view.

Example 1. Let γ > γd ≡ d/2 and

βm(s) =

{

∞ if s < 0 ,

− cm s
m if s ≥ 0 ,

where cm = (1 − m)m−1m−m and m = γ
γ+1

∈
(

d
d+2

, 1
)

. The entropy

functional Eβm associated to βm will play an important role in Sec-
tion 3.1 below. The function βm has to be seen in connection with the
function F of Example 1 in subsection 2.2.

2.4.4. Poisson potential energy. Let d ≤ 4. By virtue of Proposi-
tion 2.2 we have that ρL is in L2(Ω), for any L ∈ H1, so that we
can find a potential VL ∈ H1

0(Ω), called the Poisson potential, as the
unique solution of the equation

{

−∆V = σ ρL in Ω ,

V = 0 on ∂Ω .

Two cases can be considered, corresponding either to the repulsive case
when σ = +1 (electrostatic Coulomb interaction), or to the attractive
case when σ = −1 (Newton interaction). The Poisson potential energy
of L ∈ H1 is now defined as

P(L) =
1

2

∫

Ω

VL ρL dx =
σ

2

∫

Ω

|∇VL|2 dx .

Using Proposition 2.2 we get the following regularity result, whose
proof can be seen for instance in [10].

Proposition 2.4. Let L ∈ H1. If d = 1 or d = 2, then VL ∈ C0(Ω).
Moreover, VL ∈ W1,p

0 (Ω) ∩ Lq(Ω) for any q ∈ [1,∞) and for any p ∈
[1,∞) if d = 3, and for any p ∈ [1, 4] if d = 4. If additionally ∂Ω is of
class C2, then VL ∈ W2,r(Ω) ∩ C0,1/2(Ω) for any r ∈ [1, 3/2] if d = 3,
and VL ∈ W2,r(Ω) for any r ∈ [1, 4/3] if d = 4.

In Section 4 we will be interested in the more general free energy
functional defined as FV,β(L) + P(L). Such a functional is convex if
σ = +1, but it is not convex if σ = −1.



3. Main results

3.1. Lieb-Thirring and Gagliardo-Nirenberg inequalities (I).
In this subsection we interpret the results obtained in [5] in terms of
the operator formalism and we adapt those results originally written
in Rd to a domain Ω ⊂ Rd. If V is a potential, with the notation of the
end of Subsection 2.2, we let {λV,i}i∈N∗ and {φV,i}i∈N∗ be a sequence of
eigenvalues and eigenfunctions of −∆ + V in Ω, with Dirichlet bound-
ary condition on ∂Ω. We assume that these eigenfunctions define an
orthonormal basis for L2(Ω).

Following the setting defined in [5], we let g be a non-negative func-
tion on R+ such that

∫ ∞

0

g(t)
(

1 + t−d/2
) dt

t
<∞ (3.1)

and we define

F (s) =

∫ ∞

0

e−t s g(t)
dt

t
and G(s) =

∫ ∞

0

e−t s (4π t)−d/2 g(t)
dt

t
.

(3.2)
We observe that F,G : R → R ∪ {+∞} are convex non-increasing
functions.

If V ∈ L1
loc(R

d) is bounded from below and G(V ) ∈ L1(Rd), with
F and G given as in (3.2) and g satisfying (3.1), then the content of
Theorem 3 in [5] is the following Lieb-Thirring inequality

Tr [F (−∆ + V )] ≤
∫

Rd

G(V (x)) dx .

We can extend this result so to consider a domain Ω instead of Rd.
Precisely we have

Theorem 3.1. Let Ω be a domain and V be a potential bounded from
below and in L1

loc(Ω). Assume moreover that G(V ) is in L1(Ω), with F
and G given by (3.2) and g satisfying (3.1). Then we have

∑

i∈N∗

F (λV,i) = Tr [F (−∆ + V )] ≤
∫

Ω

G(V (x)) dx .

A proof of this theorem is easily achieved using Theorem 3 in [5]
with an appropriate increasing sequence of potentials {Vn}, so that its
limit is +∞ outside Ω and V in Ω.

We notice that since V is bounded below, letting λ < infessΩV ,
we see that the eigenvalues λV,i satisfy λV,i ≥ λ0,i + λ, for all i ∈ N∗,
and then the sequence {λV,i}i∈N∗ diverges, since the sequence {λ0,i}i∈N∗

diverges. Under the hypotheses of Theorem 3.1, the function F given



by (3.2), is convex and satisfies
∑

i∈N∗ F (λV,i) <∞ so that F belongs to
the class C(−∆+V,Ω). Theorem 3.1 can be illustrated by the following
examples.

Example 1. If F (s) = s−γ for any s ≥ 0 and F (s) = +∞ for s < 0,

then G(s) = C(γ)s
d
2
−γ for s ≥ 0, where C(γ) = (4π)−d/2 Γ(γ− d

2
)/Γ(γ).

In such a case, Theorem 3.1 takes the following special form

Corollary 3.1. Let Ω be a domain in Rd and V ∈ L1
loc(Ω) a potential

bounded below. Assume moreover that (V )
d
2
−γ is in L1(Ω) for some

γ > d/2. Then

Tr
[

(−∆ + V )−γ
]

=
∑

i∈N∗

(λV,i)
−γ ≤ Γ(γ − d

2
)

(4π)d/2 Γ(γ)

∫

Ω

V
d
2
−γ dx .

Example 2. If F (s) = e−s for any s ∈ R, then G(s) = (4π)−d/2 e−s

and Theorem 3.1 reads as follows

Corollary 3.2. Let Ω be a domain in Rd and V a potential in L1
loc(Ω).

If e−V ∈ L1(Ω), then we have

Tr
[

e−(−∆+V )
]

=
∑

i∈N∗

e−λV,i ≤ 1

(4π)d/2

∫

Ω

e−V dx .

Proof. To prove this result, assume first that V is bounded from below
and apply Theorem 3.1. One concludes for general potentials V by
density. �

In Section 3.3 we will see how to extend the results of Theorem 3.1
to general potentials that may be unbounded from below, but that still
have some boundedness property with respect to −∆.

Now we are going to state some Gagliardo-Nirenberg inequalities in
the context of the operator formalism. In the way to get them, we will
obtain some useful estimates for FV,β.

Given a convex function θ : R → R ∪ {+∞} such that θ 6≡ +∞,
we shall denote by θ∗ the Legendre-Fenchel transform of θ, that is the
function defined by

θ∗(ν) ≡ sup
λ∈R

{νλ− θ(λ)} ∀ ν ∈ R .

Thus, if F is convex and β is given by β(s) = F ∗(−s) for all s ∈ R,
we get

β(ν) + ν λ ≥ −F (λ) ∀ ν, λ ∈ R . (3.3)



From here we get a uniform lower bound for FV,β on H1
+ under the

conditions of Theorem 3.1. That is, in terms of operators, we have

FV,β(L) ≥ −Tr [F (−∆ + V )] ∀ L ∈ H1
+ . (3.4)

In order to prove this, let ψ ∈ H1
0 (Ω) such that ‖ψ‖L2(Ω) = 1. Then

there exists a sequence {αi}i∈N∗ ⊂ R such that ψ =
∑

i∈N∗ αi φV,i and
∑

i∈N∗ α2
i = 1. By convexity of F , we obtain

F
(

∫

Ω

|∇ψ|2 dx+

∫

Ω

V |ψ|2 dx
)

= F
(

∑

i∈N∗

α2
i λ0,i

)

≤
∑

i∈N∗

α2
i F (λ0,i) =

〈

ψ, F (−∆ + V )ψ
〉

L2(Ω)
.

If ψ is an eigenfunction of −∆ + V then this inequality becomes an
equality. Using (3.3), we can now bound from below the free energy.
Substituting νi for ν,

∫

Ω
(|∇ψi|2 + V |ψi|2) dx for λ and adding over

i ∈ N∗, we get

Eβ(L) + K(L) + P(L) =
∑

i∈N∗

[

β(νi) + νi

∫

Ω

(

|∇ψi|2 + V |ψi|2
)

dx
]

≥ −
∑

i∈N∗

F
(

∫

Ω

|∇ψi|2 dx+

∫

Ω

V |ψi|2 dx
)

≥ −
∑

i∈N∗

〈

ψi, F (−∆ + V )ψi
〉

L2(Ω)
= −Tr [F (−∆ + V )] .

Hence we obtain (3.4).
Now, if F and G are as in Theorem 3.1, then we have

−Tr [F (−∆ + V )] ≥ −
∫

Ω

G(V (x)) dx , (3.5)

and

Eβ(L) + K(L) + JL(V ) = FV,β(L) +

∫

Ω

G(V (x)) dx ≥ 0 ,

for all L ∈ H1
+, where we define

JL(V ) ≡
∫

Ω

[

V (x)ρL(x) +G(V (x))
]

dx .

Next we proceed as in [5] minimizing JL(·) in the set of potentials V
which verify (3.4) and (3.5), for L fixed. If V0 is the minimizer of JL(·),
then

G′(V0) + ρL = 0 .



By defining τ(s) ≡ −
[(

G ◦ (G′)−1
)

(−s) + s (G′)−1(−s)
]

, that is τ such
that

G(s) = τ ∗(−s) ,
we have that

JL(V0) = −
∫

Ω

τ (ρL(x)) dx (3.6)

and we can state the following

Theorem 3.2. Let Ω be a domain and functions F and G be defined
as in (3.2). Let us consider β and τ such that β(s) ≡ F ∗(−s) and
G(s) ≡ τ ∗(−s). Then for any L ∈ H1

+, we have

K(L) + Eβ(L) ≥
∫

Ω

τ(ρL) dx .

Since G is convex, (3.6) holds even if G is not differentiable. This
theorem provides interesting insights in the following two typical ex-
amples.

Example 1. Assume that γ > γd ≡ d/2 and consider the convex func-
tion βm(s) = − cm s

m on R+, extended by +∞ on (−∞, 0), where cm =
(1 −m)m−1m−m, m = γ

γ+1
∈ ( d

d+2
, 1). The corresponding functions F

and G take the form F (s) = β∗
m(−s) = s−γ and G(s) = C(γ) s

d
2
−γ for

s ≥ 0, extended by +∞ to the interval (−∞, 0).
Define

q =
2γ − d

2(γ + 1) − d
∈ (0, 1).

In such a case, Theorem 3.2 takes the following special form

Corollary 3.3. With the above notations, for any L ∈ H1
+,

K(L) + κ(γ)

∫

Ω

ρqL dx ≥ cm Tr [Lm] ,

where κ(γ) ≡ (C(γ))1−q [( q
q−1

)1−q + ( q
q−1

)−q].

Example 2. Consider the convex function β1(s) ≡ s log s− s if s > 0,
extended by β1(0) = 0 and +∞ on (−∞, 0), and corresponding func-
tions F (s) = e−s and G(s) = (4π)−d/2 e−s, for any s ∈ R. Theorem 3.2
applies as follows

Corollary 3.4. For any L ∈ H1
+,

K(L) + Tr [L logL] ≥
∫

Ω

ρL log ρL dx+
d

2
log(4π)

∫

Ω

ρL dx .



3.2. Convexity Estimates. In this subsection we extend some of the
ideas discussed before to include potential functions which are not nec-
essarily bounded from below. In [18, Lemma 3], in the context of mixed
states, the authors obtained an estimate like (3.4), for functions F gen-
erated by a Casimir-type functions f , in presence of a repulsive Poisson
coupling and for d = 3. See Example 3 in Section 2.2 above. Here we
want to establish such a type of estimate for potential which may be
not only negative, but also not bounded from below.

We first establish a direct consequence of (3.4), for non-negative po-
tentials. With obvious notations, we say that F ∈ C(−(1 − ε)∆ + V,Ω)
if F is convex and

∑

i∈N∗ F (λεV,i) is finite, where λεV,i are the eigenvalues
of −(1 − ε)∆ + V in Ω, with Dirichlet boundary condition.

Lemma 3.1. Assume that V is a non-negative potential, ε ∈ (0, 1] and
F ∈ C(−ε∆ + V,Ω). If β(s) ≡ F ∗(−s) then for any L ∈ H1

+ we have

Eβ(L) + (1 − ε)K(L) + PV (L) ≥ −Tr [F (−(1 − ε) ∆ + V )]

and
FV,β(L) ≥ εK(L) − Tr [F (−(1 − ε) ∆ + V )] .

In order to extend our approach to potentials which take negative
values, some additional definitions are needed.

Definition 3.1. We will say that the Schrödinger operator −∆ +V is
ε coercive for some ε ∈ (0, 1] if and only if

λεV,1 ≡ sup{µ ∈ R : −(1 − ε) ∆ + V ≥ µ} > −∞ . (3.7)

The ε coercivity indeed means that

−∆ + V − λεV,1 ≥ −ε∆

in the sense of operators. We will denote by {λεV,i}i∈N∗ the sequence of

eigenvalues of the operator −(1−ε) ∆+V . Notice that λ0
V,1 = λV,1. We

also observe that condition (3.7) for ε = 1 means that V is bounded
from below and λ1

V,1 = 0 means V is non-negative.

For λ ≤ λεV,i we define the free energy functional Fλ
V,β : H1

+ →
R ∪ {∞} as

Fλ
V,β(L) ≡ FV,β(L) − λTr [L] .

In order to obtain a lower bound for this functional, we assume that
the function F ∈ C(−(1− ε)∆ +V +λ,Ω), that is F : R → R∪ {+∞}
is convex and

∑

i∈N∗ F (λεV,i − λ) is finite.
We notice that if F ∈ C(−(1− ε)∆+V +λ,Ω), then [λεV,1 −λ,∞) ⊂

Dom(F ) even if V − λ may be negative at some open sets. With the
same convexity argument as in the proof of (3.4) and Lemma 3.1, we



can see that if V verifies condition (3.7) for a given ε ∈ [0, 1], then for
any F ∈ C(−(1 − ε)∆ + V + λ,Ω), with β(s) = F ∗(−s), s ∈ R

Fλ
V,β(L) ≥ εK(L) − Tr [F (−(1 − ε) ∆ + V − λ)] ∀ L ∈ H1

+ ,

so that Fλ
V,β(L) is uniformly bounded from below. Moreover we see

that ‖L‖1 is uniformly bounded, thanks to (2.7), and in this sense Fλ
V,β

is coercive.
We formalize these conclusions in the following proposition

Proposition 3.5. Let V be a potential verifying (3.7) for some ε ∈
(0, 1]. For any F ∈ C(− ε

2
∆,Ω), let β(s) ≡ F ∗(−s), s ∈ R. For any

λ ≤ λεV,1, for any L ∈ H1
+,

Fλ
V,β(L) ≥ −Tr

[

F
(

−ε
2

∆
)]

+
ε

2
K(L) .

Hence Fλ
V,β is bounded from below and

Fλ
V,β(L) ≥ Tr [F (−∆ + V − λ)] ∀ L ∈ H1

+ .

Moreover, if Fλ
V,β(L) is finite for some L ∈ H1

+, then −∆+V has only
pure point spectrum, provided F is positive on (0,+∞).

Proof. Let L ∈ H1 and write

Fλ
V,β(L) = {Eβ(L)+

ε

2
K(L)}+ε

2
K(L)+{(1−ε)K(L)+PV (L)−λ ‖L‖1} .

From Lemma 3.1 we have that

Eβ(L) +
ε

2
K(L) ≥ −Tr

[

F
(

−ε
2

∆
)]

. (3.8)

On the other hand, from (3.7) it follows that

(1 − ε)K(L) + PV (L) − λ ‖L‖1

=
∑

i∈N∗

νi

∫

Ω

(

(1 − ε) |∇ψi|2 + (V − λ) |ψi|2
)

dx ≥ 0 , (3.9)

where (νi, ψi) = (νi(L), ψi(L)) are a complete sequence of eigenpairs of
the operator L, with the notation of Section 2.1. This proves the lower
bound on Fλ

V,β(L).
The assertion on the spectrum of −∆+V easily follows. Notice that

from its definition, F is non-negative. Since
∑

i∈N∗ F (λV,i−λ) <∞, to
prove that {λV,i}i∈N∗ diverges, it is therefore sufficient to require that
F is positive. �

Corollary 3.6. Under the conditions of Proposition 3.5, if {Ln}n∈N∗

is a sequence in H1
+ such that {Fλ

V,β(Ln)}n∈N∗ is bounded, then the
sequences {‖Ln‖1}n∈N∗, {K(Ln)}n∈N∗, {Eβ(Ln)}n∈N∗ and {PV (Ln)}n∈N∗

are also bounded.



Proof. As follows from (3.8) and (3.9) in the proof of Proposition 3.5, it
is clear that the boundedness of Fλ

V,β(Ln) implies the boundedness from
above of (1− ε)K(Ln) +PV (Ln)− λ ‖Ln‖1 and of Eβ. Then we obtain
the boundedness from above of K(Ln) and therefore that of ‖Ln‖1, by
(2.7). Now the boundedness of PV (Ln) follows. �

3.3. Lieb-Thirring and Gagliardo-Nirenberg inequalities (II).
In Section 3.1 we established Lieb-Thirring inequalities only for poten-
tials bounded from below. Under condition (3.7) for some ε ∈ (0, 1), a
Lieb-Thirring inequality also holds and then an interpolation inequal-
ity can also be established for such potentials. This will give a proof of
Theorem 1.1.

To start with, we use scaling to rewrite Theorem 3.1 with −∆ re-
placed by −ε∆.

Lemma 3.2. Let ε ∈ (0, 1) and consider a non-negative potential W .
Let F and G be defined by (3.2), with g satisfying (3.1). Consider β
and τ such that β(s) ≡ F ∗(−s) and G(s) ≡ τ ∗(−s), with the notations
of Section 3.1. Then, for any L ∈ H1

+,

tr [β(L) + (−ε∆ +W )L] ≥ −Tr [F (−ε∆ +W )] ≥ − ε−
d
2

∫

Ω

G(W ) dx .

Proof. Let {ψi} = {ψi(L)} be a complete basis of L2(Ω) of eigenvectors
of L. Then we consider the scaling ψεi (x) = εd/4ψi(

√
ε x), W ε(x) =

W (
√
ε x) for any x ∈ ε−1/2 Ω and denote by Lε the operator associated

to L after the scaling. Then
∫

Ω

(

ε |∇ψi|2 +W |ψi|2
)

dx =

∫

ε−1/2 Ω

(

|∇ψεi |2 +W ε |ψεi |2
)

dx ,

for all i ∈ N∗ and then

tr [β(L) + (−ε∆ +W )L] = tr [β(Lε) + (−∆ +W ε)Lε] .

Applying the results of Theorem 3.1 we find

tr [β(Lε) + (−ε∆ +W ε)Lε] ≥ −Tr [F (−∆ +W ε)] ≥ −
∫

ε−1/2 Ω

G(W ε) dx .

The conclusion then holds by undoing the change of variables. �

Now we consider λ ≤ λεV,1. For any L ∈ H1
+, using the definition of

Fλ
V+W,β, of λεV,1 and Lemma 3.2 we find that

Fλ
V+W,β(L) = tr [(−(1−ε)∆ + V − λ)L] + tr [β(L) + (−ε∆ +W )L]

≥ − ε−
d
2

∫

Ω

G(W ) dx .



Then we can rearrange this estimate as

Fλ
V,β(L) ≥ −

∫

Ω

(

ρLW + ε−
d
2 G(W )

)

dx .

Optimizing on W as in Section 3.1, we get that the right hand side is
bounded from below by

ε−
d
2

∫

Ω

τ
(

ε
d
2 ρL(x)

)

dx ,

which completes the proof of Theorem 1.1.

3.4. Compactness results. Let us start with some observations. As-
sume that {Ln}n∈N is a bounded sequence in S1 and denote respectively
by {νni }i∈N∗ and {ψni }i∈N∗ the sequence of eigenvalues and a sequence
of orthonormalized eigenfunctions of Ln. Then there exists a constant
C > 0 such that |νni | ≤ C, for all i, n ∈ N∗ and, consequently, there
exists a sequence of real numbers {ν̄i}i∈N∗ such that, up to a subse-
quence,

lim
n→∞

νni = ν̄i, ∀ i ∈ N∗ .

Our first result is concerned with the case of Example 1 in Section 3.1.
We easily see that Theorem 1.2 is a direct consequence of this result
and Corollary 3.6.

Theorem 3.3. Consider a bounded domain Ω in Rd, d ≥ 2, and as-
sume that m ∈ ( d

d+2
, 1). Let {Ln}n∈N be a sequence in H1 such that

K∞ ≡ sup
n∈N

K(Ln) <∞ ,

for some constant K∞ > 0. Then, {Ln}n∈N is bounded in S1 and

sup
n∈N

∑

i∈N∗

|νni |m <∞ .

Moreover, the following properties hold:

i) If ν̄i 6= 0 for all i ∈ N∗, then, up to a subsequence,

lim
n→∞

∑

i∈N∗

|νni |m =
∑

i∈N∗

|ν̄i|m .

ii) For any m′ ∈ (m, 1], up to a subsequence,

lim
n→∞

∑

i∈N∗

|νni |m
′

=
∑

i∈N∗

|ν̄i|m
′

.

iii) Up to a subsequence, {Ln}n∈N converges to some L in S1 and
{KLn}n∈N converges KL in L2(Ω × Ω).



Proof. By (2.7), supn∈N
‖Ln‖1 <∞. For i ∈ N∗, n ∈ N, let

En
i ≡

∫

Ω

|∇ψni (x)|2 dx .

The uniform bound on ‖Ln‖1 and
∑

i∈N∗ |νni |m follow from Proposi-
tion 2.2, and Corollary 3.3 and Hölder’s inequality respectively.

Proof of i) Assume first that ν̄i 6= 0 for any i ∈ N∗. Then, for each
i ∈ N∗, the sequence {En

i }n∈N is bounded and, consequently, there is a
function ψ̄i ∈ L2(Ω) for which, up to a subsequence,

lim
n→∞

ψni = ψ̄i in L2(Ω) .

Recall that, counting multiplicity, |ν̄1| ≥ |ν̄2| ≥ ... We denote by PN :
L2(Ω) → FN the orthogonal projection operator over

FN ≡ span{ψ̄i : 1 ≤ i ≤ N − 1}

and let QN ≡ Id − PN be the projection operator onto F⊥
N .

Next we claim that for all ε > 0, there exists N ∈ N∗ such that

∞
∑

i=N

|νni |m ≤ ε ∀ n ∈ N . (3.10)

This can be proved as follows. First, using (2.4), we choose N ∈ N∗

such that
(

∞
∑

`=N

(λ0,`)
−γ

)m/γ

≤ ε

2

where γ = m
1−m

and {λ0,i}i∈N∗ is the sequence of the eigenvalues of −∆

in H1
0(Ω), with associated eigenfunctions φ0,i, i ∈ N∗. Consider for each

n ∈ N the expansion

ψni =

∞
∑

k=1

αni,k φ0,k n ∈ N ,

where αni,k ≡
〈

ψni , φ0,k

〉

L2(Ω)
. According to the reverse Hölder inequal-

ity, which states that for any p ∈ (0, 1), q ∈ (−∞, 0) such that 1
p
+ 1
q

= 1,

∑

i∈N∗

ai bi ≥
(

∑

i∈N∗

api

)1/p(
∑

i∈N∗

bqi

)1/q

∀ {ai}i∈N∗, {bi}i∈N∗ ∈ (R+)N∗

,



applied for p = m = γ/(γ + 1), q = −γ, ai = |νni | and bi = En
i , we get,

for all N ∈ N∗, that
(

∞
∑

i=N

|νni |m
)1/m

≤ K∞

(

∞
∑

i=N

(En
i )−γ

)1/γ

.

Next we find N ∈ N∗ large enough so that

‖PN(φ0,`)‖L2(Ω) ≥ 1 − 1

2
εγ/m ` = 1, 2, ...N − 1 ,

or, which is equivalent,

‖QN (φ0,`)‖L2(Ω) ≤
1

2
εγ/m, ` = 1, 2, ...N − 1 .

Then, there is n0 ∈ N∗ large enough so that,

∞
∑

i=N

(αni,`)
2 ≤ εγ/m ∀ n ≥ n0 , ` = 1, 2, ..., N − 1 .

Using En
i =

∑∞
`=1 λ0,` (α

n
i,`)

2 and
∑∞

`=1(α
n
i,`)

2 = 1, by concavity of
s 7→ s−γ we have

(En
i )−γ ≤

∞
∑

`=1

(αni,`)
2 (λ0,`)

−γ.

Hence, collecting the above estimates, we obtain

∞
∑

i=N

(En
i )−γ ≤

∞
∑

i=N

∞
∑

`=1

(αni,`)
2 (λ0,`)

−γ =

M−1
∑

`=1

∞
∑

i=N

· · · +
∞
∑

`=M

∞
∑

i=N

· · ·

≤ M − 1

λγ1

∞
∑

i=N

(αni,`)
2 +

∞
∑

l=M

εγ/m

λγ0,l

≤ c εγ/m ,

for some constant c > 0. This completes the proof of Claim (3.10).

Since {‖Ln‖1}n∈N is uniformly bounded with respect to n ∈ N,
∑

i∈N∗

|ν̄i| <∞ .

For any η ∈ L2(Ω), by the Cauchy-Schwarz and the triangle inequality,
∥

∥

∥

∥

∥

∑

i∈N∗

〈

η, ψ̄i
〉

L2(Ω)
ν̄i ψ̄i

∥

∥

∥

∥

∥

L2(Ω)

≤ ‖η‖L2(Ω)

∑

i∈N∗

|ν̄i| <∞ .



Hence the operator defined through

(L̄η)(x) =
∑

i∈N∗

〈

η, ψ̄i
〉

L2(Ω)
ν̄i ψ̄i(x) x ∈ Ω , η ∈ L2(Ω)

is in S1. Let us prove that {Ln}n∈N converges to L̄ in S1. Given
N ∈ N∗, denote by P n

N : L2(Ω) → F n
N the orthogonal projection onto

F n
N = span{ψni : 1 ≤ i ≤ N − 1} and by Qn

N = I − P n
N the projection

onto (F n
N)⊥:

‖Ln−L‖1 ≤ ‖(Ln−L)PN‖1+‖LnQn
N‖1+‖LQN ‖1+‖Ln (Qn

N−QN)‖1 .

The first term converges to zero, because of the strong convergence of
the first N − 1 eigenvalues and eigenfunctions in R and L2(Ω) respec-
tively. From (3.10) we have that the second and third terms are small
if N ∈ N∗ is large enough, independent of n ∈ N, since

(

∑

i∈N∗

|νi|n
)m

≤
∑

i∈N∗

|νni |m < ε .

Using (2.2), we have that

‖Ln(Qn
N −QN )‖1 ≤ ‖Ln‖1 · ‖Qn

N −QN‖
which converges to zero as n→ ∞, since Qn

N−QN = P n
N−PN converges

to zero for the same reasons as the first term.

Proof of ii) Assume now that supn∈N

∑

i∈N∗ |νni |m = C1 is finite, so
that using the monotonicity of {|νni |m}i∈N∗, for any m′ > m and any
N ∈ N∗,

∞
∑

i=N

|νni |m
′ ≤ (νnN )m

′−m
∞
∑

i=N

|νni |m ≤ |νnN |m
′−m C1 .

If ν̄i = 0 for all i ∈ N∗, then

lim
n→∞

∑

i∈N∗

|νni |m
′ ≤ lim

n→∞
|νnN |m

′−m C1 = 0 .

From here on, taking m′ = 1 and arguing as before we obtain that
{Ln}n∈N converges to 0 in S1. The general case, i.e., when there is
i0 ∈ N∗ such that |ν̄i0 | > 0, follows from similar arguments.

Proof of iii) The convergence of the kernels KLn to the kernel of the
limit operator L follows from ii) with m′ = 1 and from the strong
convergence of ψni to ψ̄i in L2(Ω). �

Remark 3.1. The properties shown in Theorem 3.3 is an analogous at
operators level of the compactness of the embedding H1

0(Ω) ↪→ L2(Ω).



4. Applications

In this section we present three applications of the results discussed
in this paper. The three cases correspond to minimization problems
arising in Quantum Mechanics.

4.1. Minimization of the free energy functional. Consider first
the free energy functional

Fλ
V,β(L) = FV,β(L) − λTr [L] .

Theorem 4.1. Let V be a potential verifying (3.7) for some ε ∈ (0, 1]
and take λ ≤ λεV,1. Let F ∈ C(− ε

2
∆,Ω) and β given by

β(s) ≡ F ∗(−s) ∀ s ∈ R.

Then (β ′)−1(∆ − V + λ) ≡ L∞ ∈ H1
+ is such that

Fλ
V,β(L∞) = inf

L∈H1
+

Fλ
V,β(L),

provided one of the following conditions is satisfied:

i) if d = 1, V ∈ Lq(Ω), for some q ∈ [1,∞],
ii) if d = 2, V ∈ Lq(Ω), for some q ∈]1,∞],
iii) if d ≥ 3, V ∈ Lq(Ω), for some q ∈ [d

2
,∞],

and L∞ is the unique minimizer of Fλ
V,β.

Proof. By Proposition 3.5, the functional Fλ
V,β is bounded from below.

Let {Ln}n∈N∗ ⊂ H1
+ be a minimizing sequence, that is

lim
n→∞

Fλ
V,β(Ln) = inf

L∈H1
+

Fλ
V,β(L) .

Then the sequences

{‖Ln‖1}n∈N∗, {K(Ln)}n∈N∗, {Eβ(Ln)}n∈N∗ and {PV (Ln)}n∈N∗

are bounded according to Corollary 3.6. Then Theorem 3.3 provides
the existence of L∞ ∈ S1 such that, up to a subsequence, {Ln}n∈N∗

converges to L∞ in S1 so that, in particular,

lim
n→∞

‖Ln‖1 = ‖L∞‖1 .

In order to study the entropy term we consider the space `1 with the
usual norm. Consider the set

A+ ≡ {µ = {µi}i∈N∗ ∈ `1 :
∑

i∈N∗

β(µi) ≥ A} ,



where A ≡ infn∈N Eβ(Ln). Both the function D : A+ → R defined by

D(µ) ≡
∑

i∈N∗

β(µi) ∀ µ = {µi}i∈N∗ ∈ A+ ,

and the set A+ are convex. Thus D is weakly lower semi-continuous,
so that lim infn→∞D(νn) ≥ D(ν0), where νn = {νni }i∈N∗ and ν0 =
{ν̄i}i∈N∗. This allows to say that

lim inf
n→∞

Eβ(Ln) ≥ Eβ(L∞) .

Next we consider the kinetic energy term. Given a fixed N ∈ N∗, for
any n ∈ N we have that

lim inf
n→∞

∑

i∈N∗

νni

∫

Ω

|∇ψni (x)|2 dx ≥ lim inf
n→∞

N
∑

i=1

νni

∫

Ω

|∇ψni (x)|2 dx

≥
N
∑

i=1

ν̄i

∫

Ω

|∇ψ̄i(x)|2 dx .

Since the number N is arbitrary, we get

lim inf
n→∞

K(Ln) ≥ K(L∞) ,

whence L∞ ∈ H1
+. As for the potential energy, we obtain

lim
n→∞

PV (Ln) = PV (L∞)

using Proposition 2.2.

At this point we relate the minimization problem with the one stud-
ied in [5]. For this purpose we denote by S the set of non-increasing
sequences {νi}i∈N∗ ⊂ R+ converging to zero, such that

∑

i∈N∗ β(νi) is
absolutely convergent and let

X ≡ {(ν, ψ) ∈ S ×
(

L2(Ω)
)N

∗

:
〈

ψi, ψj
〉

L2(Ω)
= δij, ∀ i, j ∈ N∗}

be the space of mixed states. Then we define an associated free energy
functional acting on mixed states as

Fλ
V,β[ν, ψ] ≡

∑

i∈N∗

[

β(νi) + νi

∫

Ω

(

|∇ψi|2 + (V (x) − λ)|ψi|2
)

dx

]

.

Next we assume some extra hypotheses on β in order to be in the con-
text of Section 3 in [5]. We assume that β is of class C1 and strictly con-
vex. We also assume that −∆+V has an infinite sequence {λi(V )}i∈N∗

of eigenvalues diverging to ∞. This last assumption is always true
when Ω is bounded.



We observe that the function F is simply given by

F (s) = β ◦ (β ′)−1(−s) − s (β ′)−1(−s) .
As a consequence of Theorem 4.1,

min
(ν,ψ)∈X

Fλ
V,β[ν, ψ] (4.1)

has a solution (ν, ψ) ∈ X given by νi = νi(L∞) and ψi = ψi(L∞).

The minimizer of (4.1) is unique, up to the choice of basis for non-
simple eigenvalues, as proved in [5]. As a consequence the minimization
problem at the level of operators

min
L∈H1

+

Fλ
V,β(L)

has a unique minimizer L∞ ∈ H1
+. The solution of (4.1) is given by

(ν̄, ψ̄) = {(ν̄i, ψ̄i)}i∈N∗ ∈ X ,

where

ν̄i = (β ′)−1(λ− λV,i) ,

and ψ̄i is an eigenfunction of −∆ + V − λ associated to λV,i. Finally
we may simply rewrite this as

L∞ = (β ′)−1(∆ − V + λ).

�

Remark 4.1. In the Heisenberg formalism we see that the solution to
the minimization problem given by Theorem 4.1 is a stationary solution
to the Heisenberg equation

[−∆ + V − λ, Lλ] = 0 .

Recall that the commutator operator is given by [L,R] = LR− RL.

4.2. Free energy involving a non-linear but local function of
the density function. Consider the free energy functional given by

Fλ,g
V,β(L) ≡ Fλ

V,β + G(L) ∀ L ∈ H1
+ ,

where

G(L) =

∫

Ω

g(ρL(x)) dx

and g is some real function, which is not necessarily convex. Using an
argument similar to that in the proof of Theorem 4.1, we obtain the
following result.



Theorem 4.2. Let V be a potential on Ω verifying (3.7), for some
ε ∈ (0, 1]. Let λ ≤ λεV,1 and assume that F ∈ C(− ε

2
∆,Ω) and β is

given by

β(s) ≡ F ∗(−s) ∀ s ∈ R.

Let g ∈ C([0,∞)) be such that for non-negative constants c1, c2

c1 ≤ g(s) ≤ c2s
q ∀ s ≥ 0 , (4.2)

where

i) q ∈ [1,∞) if d = 1 or d = 2,
ii) q ∈ [1, d/(d− 2)] if d ≥ 3.

Then there exists L∞ ∈ H1
+ such that

Fλ,g
V,β(L∞) = inf

L∈H1
+

Fλ,g
V,β(L) .

Proof. It is similar to the one of Theorem 4.1. We use condition (4.2)
to show via Fatou’s lemma that

G(L∞) ≤ lim inf
n→∞

G(Ln) ,

where {Ln}n∈N∗ ⊂ H1
+ is a minimizing sequence for Fλ,g

V,β. �

Remark 4.2. If g ∈ C1([0,∞)), L∞ is a fixed point of the application
Y : H1

+ −→ H1
+ given by

Y (L) = (β ′)−1 (−(−∆ + V ) + λ− g′ ◦ ρL) .
4.3. Stationary states for the Hartree problem with tempera-
ture. Consider a Heisenberg equation with a Poisson coupling, namely











i ∂tL(t) = [−∆ + V (t, ·), L(t)] t ≥ 0 ,

−∆V (t, x) = ρL(t)(x) x ∈ Ω , t ≥ 0 ,

L(0) = L̃

(4.3)

where L(t), the density operator of the system, is a positive trace-class
operator acting on L2(Ω) and [L,R] = LR−RL. This system is known
as the Hartree evolution system, or Schrödinger-Poisson system in the
mixed states formulation, and a large literature has been devoted to its
study, which goes far beyond the scope of this paper. We refer to [18]
for further references.

We assume that d ≤ 4 and restrict our study to the case of homoge-
neous Dirichlet boundary conditions:

V = 0 on ∂Ω .



The stationary states of (4.3) are then solutions of
{

[−∆ + V, L] = 0 ,

−∆V = ρL .
(4.4)

Stationary states of (4.3) can be obtained through the minimization
of the free energy

Fβ(L) = Eβ(L) + K(L) + P(L) ∀ L ∈ H1
+ ,

where

P(L) =
1

2

∫

Ω

VLρL dx =
1

2

∫

Ω

|∇VL|2 dx .

Theorem 4.3. Let F ∈ C(−∆,Ω) and

β(s) ≡ F ∗(−s), ∀ s ∈ R.

Then there exists LF ∈ H1
+ such that

Fβ(LF ) ≤ Fβ(L) ∀ L ∈ H1
+ .

Moreover if β is of class C1 in the interior of its support, then

LF = (β ′)−1(∆ − VLF
)

is the unique minimizer of Fβ and solves (4.4) as well.

Proof. The proof follows the same lines as the one for Theorem 4.1.
The argument changes only to reach limn→∞P(Ln) = P(LF ), but this
still follows from Proposition 2.2. �

Remark 4.3. Let us notice that if β is non-negative then the minimizer
in Theorem 4.3 is LF = 0. However, the result applies to functions β
for which {β < 0} 6= ∅ as it is the case for

β(s) =











s log s− s if s > 0 ,

0 if s = 0 ,

+∞ if s < 0 .

The result is still interesting for practical cases for which β ′ is contin-
uous at 0+. Replacing β by β − λ for some positive λ, we can produce
non-trivial solutions. The parameter λ in this case can be reinterpreted
as a Lagrange multiplier (see below).

Remark 4.4. The case with an attracting Poisson coupling, that is
when the potential is given by

+∆V = ρL in Ω ,



can be dealt with the same methods although it makes less sense from
the point of view of physics. Some additional work is necessary to
establish spectral properties of ∆ + VL.

Let us finally remark that for stationary states having a prescribed
total charge we may get a generalization of [18, Theorem 2] at op-
erators level. Mathematically, the free energy is changed only by a
term −λ

∫

Ω
ρL dx, where λ is the Lagrange multiplier associated to

the mass constraint. The generating function β of the entropy term
is now changed into ν 7→ β(ν) − λ ν, which results in the fact that
the set {ν ∈ R : ν 7→ β(ν) − λ ν < 0} is automatically non-empty if β ′

is continuous at 0+. Because of the compactness property, the mass
constraint will be verified when passing to the limit the minimizing
sequence.

Moreover, with almost no work, we may add an external potential
which takes negative values and eventually singularities, of Coulomb
type, for instance. This situation is highly relevant from a physics
point of view, for the modelization of atomic and molecular systems,
without temperature, see for instance [23] and references therein, or
with temperature, see [17]. In such a case however, the appropriate
model is rather the Hartree-Fock system than the Hartree system.
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Blanco Encalada 2120 (4to piso),
Santiago, Chile
E-mail address : jmayorga@dim.uchile.cl


