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Abstract. The representation of Cantor minimal systems by Bratteli-Vershik di-
agrams has been extensively used to study particular aspects of their dynamics. A
main role has been played by the symbolic factors induced by the way vertices of a
fixed level of the diagram are visited by the dynamics. The main result of this arti-
cle states that Cantor minimal systems that can be represented by Bratteli-Vershik
diagrams with a uniformly bounded number of vertices at each level (called finite
rank systems) are either expansive or topologically conjugate to an odometer. More
precisely, when expansive, they are topologically conjugate to one of their symbolic
factors.

0. Introduction

Since the construction by Herman, Putnam and Skau in [HPS] of the represen-
tation of Cantor minimal systems by means of Bratteli-Vershik diagrams, several
aspects of their dynamics have followed from particular properties or invariants
constructed from the diagrams. The complete invariant for orbit equivalence pro-
posed in [GPS] is one of the most remarkable examples. Another interesting aspect
of this theory has been the characterization of particular classes of minimal Can-
tor systems through Bratteli-Vershik diagrams. Among other results, stationary-
expansive Bratteli-Vershik diagrams characterize substitution subshifts [DHS], ex-
pansive Bratteli-Vershik diagrams with constant number of incoming edges per level
characterize Toeplitz systems [GJ] and expansive Bratteli-Vershik diagrams with a
finite set of incidence matrices characterize linearly recurrent subshifts [CDHM].

There exists no universal checkable criterion for a Bratteli-Vershik diagram to
be expansive. In the above examples expansiveness needed to be assumed or it is
deduced from the specific form of the diagram (which implies finite rank). This
problem motivates our article.

What does expansiveness mean in this context ?
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Given a Bratteli-Vershik diagram, the vertices of a fixed level induce a natural
partition of the associated state space and an associated symbolic factor (which we
call a level factor). Moreover, since these partitions refine (generate the topology),
the system appears as the inverse limit of the level factors. A big diversity can be
observed in the behavior of these factors. If all of them are finite, then the system
is an odometer and has only rational eigenvalues. In Bratteli-Vershik diagrams as-
sociated to Cantor minimal systems with only irrational eigenvalues (like Sturmian
subshifts) all level factors are infinite and conjugate to the entire system. If the
system is linearly recurrent then there is only a finite number of symbolic factors,
so all (but finitely many) level factors are mutually conjugate [D].

In most of the results described in this introduction the main technical idea is
to prove that the system is in fact conjugate to one of its level factors. This is
also the idea we develop in this paper for the class of minimal Cantor systems
which admit a Bratteli-Vershik representation such that the number of vertices per
level is uniformly bounded, also called finite rank Bratteli-Vershik diagrams. Our
main result states that every such system is conjugate either to one of its level
factors or to an odometer. This result generalizes former expansiveness results for
substitution subshifts, linearly recurrent systems and finite rank Toeplitz systems.

In Section 1 the main background about Bratteli-Vershik diagrams and its as-
sociated dynamical systems is given. The main result of the paper is stated and
proved in Section 2.

1. Bratteli-Vershik representation

Consider a Cantor minimal system (X, T ), i.e., a homeomorphism T on a com-
pact metric zero-dimensional space X with no isolated points, such that the orbit
{Tnx : n ∈ Z} of every point x ∈ X is dense in X. We assume familiarity of the
reader with the Bratteli-Vershik diagram representation of such systems, yet we
recall it briefly in order to establish the notation. Fore more details see [HPS].

The vertices of the Bratteli-Vershik diagram are organized into countably many
finite subsets V0, V1, . . . called levels (V0 is a singleton {v0}). Every edge e connects
a vertex s = s(e) ∈ Vi+1 for some i ≥ 0 with some vertex t = t(e) ∈ Vi. At least
one edge goes upward and at least one goes downward from each vertex in Vi+1.
Multiple arrows connecting the same vertices are admitted (see Figure 1). We
assume that the diagram is simple, i.e., that there is a subsequence (ik)k≥0 such
that from every vertex in Vik+1 there is an upward path (going upward at each
level) to every vertex in Vik

. For each vertex v (except v0) the set of all edges
going upward from v is ordered linearly. This induces a lexicographical order on all
upward paths from v to v0, and a partial order on all infinite upward paths arriving
to v0. We identify X with the set of all such infinite paths. We assume that this
partial order has a unique minimal element xm (i.e., such that all its edges are
minimal for the local order) and a unique maximal one xM (whose all edges are



maximal for the local order). The map T sends every element x to its successor in
the partial order and it sends xM to xm.
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Figure 1. The first three levels of a Bratteli-Vershik diagram.

Now we provide a symbolic interpretation of the Bratteli-Vershik representa-
tion of (X,T ). It is almost identical with the standard approach of considering
Kakutani-Rohlin towers, but we find our symbolic approach a bit more convenient,
as it allows to code individual points and play with block codes and other block
manipulations.

With each vertex v ∈ Vi we associate a rectangular matrix called an i-symbol,
that is also denoted v. The i-symbol v has i + 1 rows and some finite width. The
last (bottom) row (number i) contains one symbol v (the name of the vertex in Vi

or of the i-symbol itself) framed with a box extending over the full width of the
matrix and height of one row. (Instead of a framed single symbol one can imagine
a string of the form v, v, v, . . . , v.) The next row above it (number i− 1) consists of
several concatenated boxes labeled by the names of the vertices belonging to Vi−1.
The number of these boxes equals the number of edges emerging upward from v
and they carry labels corresponding to the target vertices of these edges ordered
the same way as these edges are ordered in the diagram. In the next row (number
i− 2), aligned with each box of row i− 1 (labeled, say, w) there is a concatenation
of smaller boxes labeled by the names of the vertices in Vi−2, following the same
rule as described for the row i− 1 (now with reference to w in place of v). And so
on, until row number 0, where all the boxes carry the same label v0 and they all
are one position wide. This determines the widths of all boxes in all rows of the
described i-symbol (see Figure 2). The i-symbol associated to v ∈ Vi is no more
than its symbolic coding determined by the order of the paths in the top i+1 levels
of the diagram.
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Figure 2. The 2-symbol corresponding to the vertex u1 of Figure 1.

An element x ∈ X can be represented as an infinite matrix with rows indexed
from 0 to ∞ (each row extending from −∞ to ∞), with the property that for
every i ≥ 0 the top i + 1 rows of the matrix are an infinite concatenation of the
i-symbols. The i-symbol crossing the coordinate 0 corresponds to the vertex vi

passed by the path x at the level i, and the position of the 0 coordinate in this
i-symbol is determined by the position of the path connecting the vertex vi with
v0 used by x in the lexicographical order defined on such paths. The map T
corresponds to the usual horizontal shift on the set of such matrices. The finite
alphabet system obtained by projecting onto the top i + 1 rows will be denoted
by Xi and we let πi be the corresponding factoring map (projection). This is
the mentioned before ith level factor of (X,T ). Clearly the row i carries all the
information about the system Xi, because it determines all rows above it. (In terms
of the Bratteli-Vershik diagram it must be remembered, however, that the dynamics
of Xi is determined by the higher-index levels of the diagram.) Also notice that the
procedure known as telescoping the Bratteli-Vershik diagram corresponds to simply
deleting some collection of rows (still leaving infinitely many of them), which leads
to a topologically conjugate representation of the same system (X, T ).

Consider a pair 〈x, x′〉 of distinct points in X such that πi(x) = πi(x′) for some
i ≥ 1. We call such pair i-compatible. Because x 6= x′, there exists some j > i such
that πj(x) 6= πj(x′). We then say that the pair is j-separated. The largest index i0
for which the pair 〈x, x′〉 is i0-compatible (and then it is (i0+1)-separated) will be
called depth of compatibility for this pair (or just depth for short). Equal elements
have depth ∞. Observe that if 〈x, x′〉 is a pair of depth i and 〈x, x′′〉 is a pair of
depth j > i then 〈x′, x′′〉 is a pair of depth i (hence never equal).

A j-separated pair 〈x, x′〉 is said to have a common j-cut if there is a coordinate
n ∈ Z such that a j-symbol starts at n in both x and x′ (see Figure 3). Notice
that if a pair has a common j-cut then it also has a common j′-cut for each integer
j′ ≤ j (at the same coordinate n).

↓n

x row i
row j

x′ row i
row j

Figure 3. A common j-cut in a pair 〈x, x′〉 of depth i.



2. The main result

A Cantor minimal system (X, T ) is said to have topological finite rank K if it
admits a Bratteli-Vershik diagram representation with #Vi ≤ K for every i ≥ 0 (in
other words, there is a symbolic representation with no more than K i-symbols at
each level i), and K is the smallest such integer. It is well known that a system has
topological rank 1 if and only if it is an odometer, i.e., an inverse limit of a sequence
of periodic systems. Such systems are also characterized as the only equicontinuous
minimal Cantor systems.

Recall that (X,T ) is expansive if there is an ε > 0 such that the trajectory of any
two distinct points is separated by ε at some moment. In the context of systems
on the Cantor set, due to a classical result by Hedlund (1960), expansiveness is
equivalent to topological conjugacy with a two-sided subshift. In particular, such
system is topologically conjugate with one of its level factors Xi, i ≥ 0. Once a
system is conjugate to its level factor Xi, all further level factors Xj (j ≥ i) are all
mutually conjugate.

The main result of this paper is the following theorem concerning systems with
finite rank higher than 1.

Theorem 1. Every Cantor minimal system of finite rank K > 1 is expansive.

Proof. Suppose a Bratteli-Vershik diagram represents a minimal dynamical system
(X,T ) which is not expansive. Then for infinitely many levels i there exist pairs of
points 〈xi, x

′
i〉 with depth of compatibility i. By telescoping the diagram we may

assume that every i ≥ 1 appears in this role for some pair. There are now two
possibilities:

(1) There exists i0 such that for all i ≥ i0 and every j > i there exists a pair of
depth i with a common j-cut.

(2) For infinitely many i, and then every sufficiently large j > i, any pair of
depth i has no common j-cuts.

The proof is different for the above two cases. Recall that we are assuming that
there is a K ∈ N such that #Vi ≤ K for each i.

Proof in case (1). In fact, we will prove that such case never occurs, even for K = 1.
Fix some j > i0 + K and for an integer i ∈ [j −K, j − 1] let 〈xi, x

′
i〉 be a pair of

depth i with a common j-cut. For i = j−1 we have a (j−1)-compatible j-separated
pair 〈xj−1, x

′
j−1〉 with a common j-cut. We assume without lost of generality that

xj−1 and x′j−1 are j-separated to the right of this common j-cut.
If the first j-symbols right from this cut are the same in xj−1 and x′j−1 then the

following j-cut is also common. So, there exists a common cut followed, in xj−1

and x′j−1, by different j-symbols, say u and v, respectively. If their lengths agree,
since 〈xj−1, x

′
j−1〉 is a (j−1)-compatible pair, then u and v are (j−1)-compatible

(their first j − 1 rows coincide). We note this fact as it will play an important role



in the argument. Moreover, then the following j-cut is also common, so we can
continue checking the following pair of symbols to the right.

Otherwise suppose that u is longer than v. Then we modify the collection of
j-symbols; namely we replace the last row in u by two boxes, the first is the same
as the last row of v (and carries the symbol v), and the second has complementary
length and carries a new symbol u′ (see Figure 4).

↓
xj−1 row i

row j u

x′j−1 row i

row j v

modified xj−1

v u′

Figure 4. Change of a j-symbol. The arrow shows the common cut.

We replace every occurrence of the j-symbol u in every element of Xj by the
concatenation vu′.

This procedure is reversible and preserves the number of j-symbols (it is a topo-
logical conjugacy of Xj) and it introduces more j-cuts (never removes them). If
after this modification, all j-cuts in xj−1 and x′j−1 are common, this implies that u′

is (j−1)-compatible with some j-symbol existing earlier. Again, we note this fact
as important. If there are still some non-common cuts, we can repeat the previous
step and replace some other j-symbol by a concatenation of one existing and one
new j-symbol.

This procedure and the analogous one applied to the left of the starting j-cut
must stop after finitely many such steps. So eventually we will obtain a new (but
of the same cardinality) set of j-symbols (or a new equivalent Bratteli-Vershik
diagram) for which the representations of xj−1 and x′j−1 we will have all j-cuts
common, and there will necessarily be at least one pair of (j−1)-compatible but
different (new) j-symbols (otherwise the pair would not be j-separated).

At this point we produce a topological factor X ′
j of Xj by treating each pair of

(j−1)-compatible j-symbols as one j-symbol. That is, in the language of Bratteli-
Vershik diagrams, we amalgamate vertices of level j that are (j−1)-compatible
(this replaces Xj by its topological factor, possibly even conjugate to Xj−1). It is
important that in any case we strictly reduce the number of j-symbols, so that
in X ′

j there is at most K − 1 of them. Clearly, we have lost the j-separation of the
pair 〈xj−1, x

′
j−1〉, but all the other pairs 〈xi, x

′
i〉 for i ∈ [j−K, j−2] (more precisely,

their images in the factor) remain j-separated, because they were separated already
in rows with indices smaller than j, and these rows pass unchanged to the factor.



Moreover, our modification of the jth row only added more j-cuts, so the above
pairs remain to have a common j-cut.

We can now delete (or skip) the row j − 1 and repeat the same algorithm using
the common j-cuts in the pair 〈xj−2, x

′
j−2〉. This will lead to a new factor and

again reduce the number of j-symbols by at least one and preserve the j-separation
with a common cut of the pairs 〈xi, x

′
i〉 for i ∈ [j −K, j − 3]. Having applied the

above algorithm no more than K − 1 times we obtain a factor in which the pair
〈xj−K , x′j−K〉 remains to be j-separated with a common j-cut while the alphabet
of j-symbols has only one element. This is clearly impossible.

Proof in case (2). After telescoping, the required behavior described in (2) is
observed at all levels: For each i ≥ 1 every pair of depth i has no common (i+1)-cuts
(hence no common j-cuts for any j > i). Recall the earlier assumption that for
each i ≥ 1 there exists at least one pair of depth i. In this case we will prove that
for each i0 ≥ 1 Xi0 is periodic, which yields that (X, T ) is an odometer and hence
has topological rank 1.

Fix some i0 ≥ 1 and let j = i0+K2. For i ∈ [i0, j−1] fix a pair 〈xi, x
′
i〉 of depth i.

Because the (i+1)-separation without common cuts of a pair (and hence the depth
for such pair) passes via any element τ of the enveloping semigroup (pointwise limit
of a subsequence Tnk ; see [A]), we can replace the pairs 〈xi, x

′
i〉 by 〈τi(xi), τi(x′i)〉

with τi so chosen, that τi(xi) = y0 is the same for all considered i (we use minimality
of X). Then, for any i′, i ∈ [i0, j− 1], i′ > i, the pair 〈yi, yi′〉 = 〈τi(x′i), τi′(x′i′)〉 has
depth i and, by our assumption (2), has no common j-cuts. In this way we have
found K2 + 1 i0-compatible and pairwise j-separated elements y0, yi0 , yi1 . . . yj−1

with no common j-cuts.
The reminder of the proof we call an infection lemma; it shows that a “period-

icity law” spreads along the row number i0 from one j-symbol to another, like an
infection.

Lemma. (Infection lemma). If there exist at least K2 + 1 i-compatible points yk,
(k ∈ [1,K2 + 1]) which, for some j > i, are pairwise j-separated with no common
j-cuts, then Xi is periodic.

Proof. Denote by ŷ the common image of the points yk in Xi. Analogously, by
v̂ we will denote the restriction of a j-symbol v to its top i + 1 rows. Draw a
diagram showing ŷ and all elements yk (it suffices to draw the jth row of each of
them) one above another with aligned zero coordinate. Any fixed coordinate is
covered by j-symbols differently in the points yk. However, it may (and often will)
happen that in some two of them we see overlapping copies of the same j-symbol
v. Because there are no common j-cuts, such copies are shifted by some positive
integer l < |v|. The j-symbol v = v[1, |v|] then satisfies the “l-periodicity law”
(concerning the projection to Xi): v̂(n) = v̂(n + l) for every n ∈ [1, |v| − l].

We make a general observation concerning such case: let v be a j-symbol and
let lv denote the smallest shift at which two copies of v overlap anywhere in the



diagram. Now observe that if some position, say 0, is covered by two copies of v
(no matter how shifted), then the lv-periodicity law holds at this coordinate in ŷ
(see Figure 5).

ŷ ∗ ==0=======−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
========v= v

v ︸ ︷︷ ︸
lv

︸ ︷︷ ︸
l

========v=

Figure 5. The periodicity law of the smallest shift lv (marked by the long equality
sign) is valid at any coordinate covered by two copies of v. (For the larger shift l
the l-periodicity law does not have this property; it need not hold at the position
marked by *)

Because we consider K2 + 1 elements and there are only K j-symbols, the coor-
dinate 0 is covered by at least K +1 (≥ 2) overlapping copies of the same j-symbol,
say v. Let lv be the minimal shift for v appearing in the diagram. Then the
lv-periodicity law holds at 0. Let I be the largest interval containing 0 where the
lv-periodicity law holds. If I is not bounded on the right then ŷ is eventually
lv-periodic and, by minimality, Xi is a periodic system.

So suppose I has a right end. Let m be the first coordinate right from I. Restrict
the diagram to some K + 1 elements yk in which the coordinate 0 is covered by v.
In such diagram the coordinate m is still covered by at least two copies of the same
j-symbol, say w. If w = v then the lv-periodicity law holds at m, which is ruled
out. The coordinate m is aligned with some position r > 1 of the extreme left copy
of w. Because the coordinate zero is covered by v in all considered elements yk, and
w 6= v, this copy of w cannot extend beyond I on the left, hence has its left part
w[1, r − 1] inside the interval I, where the lv-periodicity law holds. Now take the
other copy of w. It is shifted to the right by a positive shift, so the coordinate m is
aligned with a position n ∈ [1, r−1] in this copy. This implies that the lv-periodicity
law holds at m and thus m ∈ I, a contradiction (see Figure 6).

ŷ |
I︷ ︸︸ ︷

====0====================|m−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
yk1 v ====== w

yk2 v ====== w

Figure 6. The second copy of w “infects” the coordinate m with the lv-periodicity
law.

We have proved that I has no right end. This concludes the proof of the infection
lemma, and hence also of the main theorem. ¤ ¤



The Infection Lemma seems to have its own interest and maybe can be applied
to study other combinatorial problems concerning Bratteli-Vershik diagrams. So it
is interesting to ask,

Question 1. Is it possible to replace the expression K2 + 1 in the assuptions of the
lemma by a smaller one?
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