
ARTICLE IN PRESS
$ Cod

index.h
� Tel.

E-m
Statistical tests for validating geostatistical simulation algorithms$
Xavier Emery �

Department of Mining Engineering, University of Chile, Avenida Tupper 2069, Santiago 837 0451, Chile
Keywords:

Random field

Ergodic fluctuation

Student’s test

Hotelling’s test

Chi-squared test

Regional semi-variogram
e available from server at http://www

tm

: +56 2 978 4498; fax: +56 2 978 4985.

ail address: xemery@ing.uchile.cl
a b s t r a c t

Geostatistical simulation relies on the definition of a stochastic model (e.g. a random field

characterized by the set of its finite-dimensional distributions), a spatial domain and an

algorithm used to construct realizations of the model over the domain. In practice, most

algorithms are approximate, because their implementation requires simplifications or

because the convergence to the model is only asymptotic. This work addresses the

problem of evaluating the ability of a given algorithm to reproduce the underlying model.

Several statistical tests are proposed in order to detect whether the fluctuations observed

between the sample statistics (in particular, the spatial average, variance and regional

semi-variogram) and the associated theoretical statistics (mean value, dispersion variance

and semi-variogram) are inconsistent with the random field model and domain size. The

tests are illustrated on a few examples and a set of computer programs is provided.
1. Introduction

Geostatistical simulation is used to predict complex
transfer functions and to quantify uncertainty in a spatial
context, and has found acceptance in mineral resources
evaluation, reservoir characterization, hydrology, soil and
environmental sciences, to cite a few application domains.
Its implementation relies on three components:
(1)
 A stochastic model, which is characterized by a
probability space (O,A,P), where O is the set of
possible realizations, A is a s-algebra on O (set of
events) and P is a probability on A. Models differ by
their type (random field, random set, population of
objects, point process,y), parameters, and also by the
possible presence of conditioning data. For random
fields (which is the case of interest in this work), the
model contains information on its finite-dimensional
distributions and reflects the spatial dependence
structure.
.iamg.org/CGEditor/
(2)
 A domain corresponding to the portion of space (set of
locations) where the model has to be simulated.
(3)
 An algorithm, which is the particular mechanism used
to construct realizations of the model over the domain
of interest. For example, to simulate Gaussian random
fields, i.e. random fields with multivariate normal
distributions, one can resort to the matrix decom-
position (Davis, 1987), circulant-embedding (Dietrich
and Newsam, 1993), sequential Gaussian (Ripley,
1987) or turning bands (Matheron, 1973) algorithms,
to cite a few options. Although the first two algo-
rithms yield exact simulations of the target random
field, they are restricted on the number or on the
spatial configuration of the locations where simula-
tion is performed. As for the other algorithms, their
practical implementation requires approximations,
such as moving neighborhood restrictions (sequential
Gaussian) or the use of a finite number of lines
(turning bands). Accordingly, it is essential to assess
the impact of such approximations on the quality of
the algorithm.
This work is not concerned with testing the consis-
tency between a set of experimental data and an assumed
stochastic model. Instead, it addresses the problem of
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assessing the correctness of an algorithm for simulating a
given random field model in a given domain. The objective
is to propose some statistical tests and computer
programs for validating the algorithm and to illustrate
them on a few examples.
2. How to validate a simulation algorithm?

One approach to validating geostatistical simulation is
to perform cross-validation or jackknife against a set of
data (or, in some cases, against exhaustive datasets) and to
check the accuracy of transfer function predictions and of
the uncertainty models (Gotway and Rutherford, 1994;
Deutsch, 1997). For instance, in mining applications, one
can think of using exploration data to predict production
data. This approach does not test for the sole simulation
algorithm, but also for the suitability of the underlying
stochastic model to the data. In particular, a failure of the
validation does not necessarily mean that the algorithm is
deficient, as it may indicate that the model has to be
revised.

A second approach consists in comparing the multi-
variate distributions (or, at least, some of its moments) of
the simulated random field with those of the model.
However, in general, the calculations of multivariate
distributions are intractable analytically, so that theore-
tical results are available for a few specific cases only. In
this respect, studies on the turning bands algorithm have
been presented by Mantoglou and Wilson (1982), Tomp-
son et al. (1989), Freulon and de Fouquet (1991),
Lantuéjoul (1994) and Gneiting (1999). However, the
recommendations given by these authors for the practical
implementation of the algorithm (choice of the number of
lines) are quite different, so that the validation still
remains subjective.

An alternative approach to validate the quality of a
simulation algorithm is to check the agreement between
the experimental statistics of the simulated random field
(e.g. the mean, semi-variogram and indicator semi-
variograms calculated over several realizations) and the
corresponding model statistics. As an example, applica-
tions of this procedure to the sequential Gaussian
algorithm have been presented by Omre et al. (1993),
Gómez-Hernández and Cassiraga (1994), Tran (1994),
Leuangthong et al. (2004) and Emery (2004).

The comparison of experimental and model statistics
may, however, be misleading. Indeed, given that the
domain in which the random field is simulated is not
infinite, one always observes a departure or ‘‘fluctuation’’
between both types of statistics (Matheron, 1965). Based
on this notion, the idea developed in this article is to
validate a simulation algorithm by checking that the
observed fluctuations are consistent with the random field
model and with the size of the domain where simulation
is performed. So far, the inspection of such fluctuations is
not systematic in geostatistical simulation studies,
although it has been advocated by Lantuéjoul (1994),
Chilès and Delfiner (1999), Emery (2004) and Emery and
Lantuéjoul (2006).
3. Definition of statistical tests

Let Y be a random field in Rd satisfying the following
properties:
(1)
 stationarity: the finite-dimensional distributions are
invariant under spatial translation;
(2)
 finiteness of its moments, at least up to the fourth
order;
(3)
 strong mixing: for any domains D and D0 in Rd, one has
(Rosenblatt, 1985)

supA2A1 A02A2
jPðA \ A0Þ � PðAÞPðA0ÞjpfðdðD;D0ÞÞ, (1)

where A1 and A2 are the s-algebras generated by the
sets of random variables {Y(x), xAD} and {Y(x0), x0AD0},
respectively, dðD;D0Þ ¼ infx2D x02D0 jx� x0j is the Eucli-
dian distance between D and D0, and f is a function
such that f(d)-0 as d-N.
The strong mixing property will be useful to assume
that spatial averages calculated over large domains have
approximately normal distributions, by virtue of a gen-
eralization of the central limit theorem (Bolthausen,
1982). For a stationary Gaussian random field, a sufficient
condition for this property to hold is that the covariance
function has a positive continuous spectral density
(Rosenblatt, 1985). This excludes covariance functions
that do not tend to zero at infinity or that have a
sinusoidal component (in both cases, the spectral measure
has an atom and the spectral density is undefined), as well
as covariance functions that decay slowly at large lags and
have infinite integral ranges (in such cases, the spectral
density is singular in the neighborhood of zero). For most
geostatistical applications, strong mixing can be assumed
when the covariance function of Y is absolutely integrable
in Rd, i.e. when the integral range exists and is finite
(Lantuéjoul, 1991). This is the case when the covariance
function has a finite range (e.g. a spherical model) or
when it vanishes rapidly as the norm of the lag vector
tends to infinity (e.g. an exponential or a Gaussian model).

Let m denote the mean value (expectation) of Y, C its
covariance function, g its semi-variogram and D a finite
domain of Rd in which Y has to be simulated. In the
following, we will examine the fluctuations in the
experimental first- and second-order moments of Y

around the corresponding theoretical parameters. For
the sake of simplicity, the tests are performed on non-
conditional realizations, since the distributions of a
random field conditioned to data differ from its prior
distributions and are generally hard to determine analy-
tically (Appendix A).
3.1. Testing the reproduction of the mean value and

dispersion variance

The average of the random field Y over domain D,
denoted by Y(D) hereunder, is a random variable with the
same expectation (m) as Y. Because of the mixing
property, and provided that D is large with respect to
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the integral range, one can assume that Y(D) has a normal
distribution (Bolthausen, 1982; Rosenblatt, 1985).

Let ȲðDÞ and S2
YðDÞ be the sample mean and sample

variance of N realizations of Y(D) drawn independently.
Then

YðDÞ �m

SYðDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

�TN�1, (2)

where TN�1 is a Student random variable with N�1
degrees of freedom and � indicates an equality of the
distributions. Formula (2) allows deriving an interval with
a pre-specified probability (say, 1�a ¼ 0.95) of finding
YðDÞ. If the actual value of YðDÞ does not belong to this
interval, the simulation algorithm should be questioned.

A Student test can also be designed for the dispersion
of the simulated values within domain D. Specifically, let
s2ð�jDÞ denote the sample variance of the random field Y

over D; this is a random variable whose expectation is the
dispersion variance in D

s2ð�jDÞ ¼
1

jDj2

Z
D

Z
D
gðx0 � xÞdx dx0, (3)

where |D| stands for the measure of D.
Let s2ð�jDÞ and S2

s2ð�jDÞ be the mean and variance of N

realizations of s2ð�jDÞ. Then

s2ð�jDÞ � s2ð�jDÞ

Ss2ð�jDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

�TN�1. (4)

3.2. Testing the reproduction of the semi-variogram at a

given lag

The regional semi-variogram over D for a given lag
vector hARd is defined as

GDðhÞ ¼
1

2Khð0Þ

Z
D\D�h

½Yðxþ hÞ � YðxÞ�2 dx, (5)

where D�h represents domain D shifted by vector �h and
Kh is the geometric covariogram of D\D�h; in particular,
Kh(0) is the measure of D\D�h. The expected value of
GD(h) is the semi-variogram model at lag h, i.e. g(h), and
(provided that D\D�h is large with respect to the integral
range) its distribution is close to normal, according to the
central limit theorem for mixing random fields (Davis and
Borgman, 1982).

Let GDðhÞ and S2
GDðhÞ

be the sample mean and sample
variance of the regional semi-variograms calculated over
N realizations of Y. It comes

GDðhÞ � gðhÞ
SGDðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

�TN�1, (6)

which allows constructing an interval for GDðhÞ with a
pre-specified probability 1�a.

3.3. Testing the reproduction of the semi-variogram at

multiple lags

A question that naturally arises is the determination of
a region with probability 1�a for the average regional
semi-variogram calculated at several lags h1,y, hK. One
possibility is to consider an interval with probability
1�a/K for each lag, according to Bonferroni’s inequality.
However, this approach does not take into account the
stochastic dependence between the regional semi-vario-
grams at lags h1,y, hK and may therefore fail to detect
significant results.

To get out of this problem, assume that CD ¼

(GD(h1),y,GD(hK))T has a multivariate normal distribu-
tion, with mean vector c ¼ (g(h1),y, g(hK))T (Pardo-
Igúzquiza and Dowd, 2001). Let CD and S2

CD
denote the

sample mean vector and sample variance–covariance matrix
of CD, calculated over N realizations of Y. Then one has

ðN � 1ÞðCD � !ÞTðS2
CD
Þ
�1
ðCD � !Þ�T2

N;K , (7)

where T2
N;K is a Hotelling random variable, proportional to

a Fisher random variable FK,N�K with K and N–K degrees of
freedom:

T2
N;K ¼

KðN � 1Þ

N � K
FK ;N�K . (8)

Eq. (7) can be seen as a multivariate generalization of
Eq. (6), as the square of a Student random variable with
N�1 degrees of freedom is a Fisher random variable with 1
and N�1 degrees of freedom.

3.4. Testing the dispersion of the regional semi-variogram

The above Student and Hotelling’s tests allow checking
whether there exists a bias in the reproduction of the
semi-variogram model, either at a single lag or at multiple
lags simultaneously. In this subsection, we will examine
the dispersion of the regional semi-variogram around the
prior model. Again, assuming that the regional semi-
variogram at lag h is normally distributed, it comes

NS2
GDðhÞ

var½GDðhÞ�
�w2

N�1, (9)

where w2
N�1 is a chi-squared random variable with N�1

degrees of freedom. From this, one can define a two-sided
test to detect whether the actual variance of the regional
semi-variogram is significantly smaller or greater than
that of the model.

This test can also be extended to validating the joint
dispersion of the regional semi-variogram at several lags
h1,y, hK. Let us use the same notations as in Section 3.3
and introduce the theoretical variance–covariance matrix
R2

D of vector CD. Then

XN

n¼1

fðCðnÞD � CDÞ
T
ðR2

DÞ
�1
ðCðnÞD � CDÞg�w2

KðN�1Þ (10)

in which CðnÞD is the regional semi-variogram vector
calculated over the nth realization of Y.

The expression of the covariance of CD depends on the
quadrivariate distributions of the simulated random field
Y. A simple example is that of a stationary Gaussian
random field, for which one has (Matheron, 1989)

covf½Yðxþ hÞ � YðxÞ�2; ½Yðx0 þ h0Þ � Yðx0Þ�2g

¼ 2½gðx� x0 þ hÞ þ gðx� x0 � h0Þ � gðx� x0Þ

� gðx� x0 þ h� h0Þ�2. (11)
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This entails

var½GDðhÞ� ¼
1

2K2
hð0Þ

Z
D\D�h

Z
D\D�h

½gðx� x0 þ hÞ

þ gðx� x0 � hÞ � 2gðx� x0Þ�2 dx dx0

¼
1

2K2
hð0Þ

Z
½gðuþ hÞ þ gðu� hÞ

� 2gðuÞ�2KhðuÞdu. (12)

The last equality has been obtained from the first one by
applying Cauchy algorithm (Chilès and Delfiner, 1999).
More generally, the entries of R2

D are given by

cov½GDðhÞ;GDðh
0
Þ�

¼

R
½gðuþ hÞ þ gðu� h0Þ � gðuÞ � gðuþ h� h0Þ�2Kh;h0 ðuÞdu

2Khð0ÞKh0 ð0Þ

(13)

where Kh;h0 is the geometric cross-covariogram between
D\D�h and D\D�h0

Kh;h0 ðuÞ ¼ measurefD \ D�h0 \ D�u \ D�u�hg. (14)

Other examples of random field models for which the
(co)variance of the regional semi-variogram can be
expressed analytically are given by Alfaro (1979) and
Emery (2005).

3.5. Comments

Before going through examples, several comments are
worthwhile:
(1)
 The tests indicate whether there is a statistical
evidence for rejecting the hypothesis of an accurate
reproduction of the random field model. The accep-
tation of a test does not necessarily mean that the
simulation algorithm is correct; rather it means that
there is no significant proof of the contrary. In
contrast, the rejection of the test is a stronger
conclusion, as the probability of a false positive
(type I error) is less than a (significance level of the
test).
(2)
 The tests on the semi-variogram (Sections 3.2–3.4)
actually require an assumption of intrinsic stationar-
ity for Y, i.e. that the distributions of its incre-
ments (rather than of the random field itself) are
invariant under spatial translation and have finite
moments.
(3)
 Concerning these tests, the choice of the lag vectors
is free and can be made according to the application
under consideration. For instance, small vectors
would be adequate if one wants to regularize the
realizations and to determine block support distribu-
tions (e.g. in mining engineering, to calculate the
recoverable resources at a selective mining unit
support). In contrast, if one is concerned with the
response to a transfer function that involves the
whole field (e.g. in petroleum reservoir modeling, a
flow simulation so as to assess the uncertainty in
production variables), it is also advisable to test the
semi-variogram reproduction at large lags.
(4)
 Multiple testing problem. To assess a simulation
algorithm, one may be interested in testing several
realization statistics (mean, variance, semi-vario-
gram, etc.). In such a case, to obtain an overall
significance level equal to a 0 (probability of type I
error), the level a for each test must be chosen
smaller. In particular, if K tests are performed over
independent statistics, then the overall significance
level is given by

a0 ¼ 1� ð1� aÞK . (15)

For instance, this is the case if one considers a test
on the mean and a test on the semi-variogram, since
the latter only depends on the increments of the
random field and is therefore not affected by
the mean. In the general case where the tests
statistics are not independent, one has (Bonferroni’s
inequality)

a0pKa. (16)

However, this inequality is conservative and
results in an overstatement of the true significance
level when the test statistics are strongly dependent.
This situation has been discussed when testing the
reproduction of the semi-variogram at several lags,
for which a Hotelling test should be considered
instead of several Student tests performed separately
(Eqs. (6) and (7)). A simple way to get out of the
multiple testing problem is to carry out each test on a
different set of realizations of the random field: the
test statistics are therefore independent and one can
resort to Eq. (15) to calculate the overall significance
level.
(5)
 A given simulation algorithm may successfully pass
some tests and fail at other tests. For instance, it can
accurately reproduce the univariate distribution of
the random field (hence, the mean value), but not the
semi-variogram. In such a situation, it behooves the
practitioner to decide whether the statistics that fail
to be validated are essential or not to the solution of
the problem at hand.
(6)
 The size of the simulation domain has an impact
on the magnitude of the fluctuations between
experimental and model statistics (Matheron,
1965): the larger the domain, the smaller the
fluctuations, so that inaccurate simulation algo-
rithms are more likely to be detected (it is easier to
identify a bias when fluctuations are negligible).
Conversely, when the simulation is performed on a
small domain, the algorithms are more likely to pass
the tests because fluctuations may hide possible
biases.
(7)
 The tests assume that the simulation domain D is
much larger than the integral range, so that the
experimental statistics calculated over a realization
(sample mean, sample variance, regional semi-
variogram at a given lag) are almost normally
distributed. This assumption can be checked by
plotting the quantiles of the statistics obtained over
a set of realizations against the normal quantiles. As
a rule of thumb, Tompson et al. (1989) suggest that
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the size of the simulation domain in any direction
should be larger than 10 times the correlation range
in the same direction.
(8)
 Student and Hotelling’s tests are robust against
departures from normality and can be used even if
domain D is not large with respect to the integral
range. Also, they can be generalized to detect biases
in the reproduction of other statistics, such as the
indicator semi-variograms associated with given
thresholds or the semi-variograms of order less than
2 (semi-madogram, semi-rodogram, etc.).
(9)
 The chi-squared test on the regional semi-variogram
(Eq. 9) is more demanding, as its validity is ensured
only if the regional semi-variogram has a normal
distribution (see comment no. 6). The application of
this test should therefore be restricted to small lags
and large simulation domains (Davis and Borgman,
1982). Otherwise one can perform the test on
the average semi-variogram of a group of M realiza-
tions, instead of the semi-variogram of a single
realization

NS2
GDðhÞ

var½GDðhÞ�
�w2

N�1, (17)

where GD is the average regional semi-variogram
of a group of M realizations and N is the number of
such groups (i.e. N�M realizations are drawn in
total). If M is large, the distribution of GDðhÞ is normal
(central limit theorem).
(10)
 The chi-squared test proposed in Eq. (10) relies
on an even stronger assumption of multivariate
normality for the regional semi-variogram at
multiple lags, which can be unwarranted in
practice. Indeed, a weighted average of the compo-
nents of CD is a sum of non-identically distri-
buted and correlated random variables and may
therefore not have a Gaussian distribution (the
central limit theorem may not apply). Again, to avoid
this inconvenient, the test can be done on the
average regional semi-variogram of a group of M

realizations.

(11)
 The aforementioned tests are implemented in a set of

Matlab programs (version 5.0 or later) provided
together with this article. The reader is referred to
the headers of the program files for a description of
the input and output parameters:

�
 STUDENT_MEAN.M: Student’s test on the mean

(Eq. (2)).

�
 STUDENT_VAR.M: Student’s test on the variance

(Eq. (4)).

�
 STUDENT_VARIOG.M: Student’s test on the semi-

variogram at a single lag (gridded realizations)
(Eq. (6))

�
 HOTELLING_VARIOG.M: Hotelling’s test on the semi-

variogram at multiple lags (gridded realizations)
(Eq. (7))

�
 CHI2_VARIOG.M: chi-squared test on the disper-

sion of regional semi-variogram at a single lag
(gridded realizations; multivariate normal model)
(Eqs. (9)–(12)).
4. Applications
4.1. Simulating a Gaussian random field with the sequential

algorithm

Let us consider the sequential algorithm (Ripley, 1987)
for constructing realizations of a stationary Gaussian
random field with an isotropic semi-variogram with sill
1 and range 40 over a 400� 400�1 regular grid in R3.
A key aspect in the implementation of the algorithm is the
number of neighboring data used for conditioning kriging,
as a unique neighborhood implementation is impractical.
In the following, four moving neighborhoods are con-
sidered, containing up to 10, 20, 50 and 100 conditioning
data, respectively, and three isotropic semi-variogram
models (spherical, exponential and Gaussian, the latter
with a 0.5% of relative nugget effect) are put to the tests. In
each case, a random path is used to visit the nodes of the
simulation grid and a spiral search is performed to select
the data closest to the node under consideration (Gómez-
Hernández and Cassiraga, 1994).

The test on the spatial averages of 100 realizations does
not allow rejecting any of the implementations, as the
absolute values of the Student statistics are always below
the critical values (1.984) for a 95% probability (Table 1).
This is explained because the sequential algorithm
reproduces the univariate distribution of the Gaussian
random field, irrespective of the number of conditioning
data considered in the moving neighborhood (Emery,
2004). However, with the first implementation
(10 conditioning data), the sample variance does not
match the theoretical dispersion variance in the cases of
the exponential and Gaussian semi-variogram models,
which suggests that the spatial correlation of the random
field is not accurately reproduced.

Furthermore, Student’s and Hotelling’s tests on the
regional semi-variograms indicate a bias in the reproduc-
tion of the semi-variogram model, unless the latter is an
exponential model and the neighborhood contains at least
50 conditioning data (Table 1 and Fig. 1). Concerning the
dispersion of the regional semi-variograms, the chi-
squared test also casts doubt on the validity of the first
two implementations (with 10 and 20 conditioning data)
in the cases of the spherical and exponential semi-
variogram models.

4.2. Simulating a Gaussian random field with a continuous

spectral algorithm

An alternative to the sequential algorithm is to
simulate a Gaussian field by adding independent random
fields {Yj, j ¼ 1,y, J} with the same finite-dimensional
distributions (Lantuéjoul, 1994)

8x 2 Rd;Y ðJÞðxÞ ¼
1ffiffi

J
p XJ

j¼1

YjðxÞ. (18)

According to the central limit theorem, the finite-
dimensional distributions of Y(J) tend to that of a Gaussian
random field as J tends to infinity. Let GD,J be the regional
semi-variogram of Y(J), GD,1 the regional semi-variogram of
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Table 1
Statistical tests on 100 sequential Gaussian realizations over a 400� 400�1 grid

Number of conditioning data Absolute value of statistics 95% probability interval

Spherical semi-variogram Exponential semi-variogram Gaussian semi-variogram Lower bound Upper bound

Student’s test on mean value

10 0.868 0.996 0.784 0 1.984

20 0.870 0.978 0.909 0 1.984

50 0.880 0.985 0.955 0 1.984

100 0.893 0.985 0.975 0 1.984

Student’s test on variance

10 1.751 2.991 2.393 0 1.984

20 0.491 0.128 0.215 0 1.984

50 1.066 0.636 1.163 0 1.984

100 1.166 0.663 1.289 0 1.984

Student’s test on semi-variogram (lag distance ¼ 10)

10 26.99 30.30 17.75 0 1.984

20 9.58 11.97 8.649 0 1.984

50 0.008 0.136 2.356 0 1.984

100 0.746 0.626 0.306 0 1.984

Hotelling’s test on semi-variogram (lag distances ¼ 10, 20, 30, 40, 50)

10 2104 1565 7982 0 12.04

20 536.8 243.2 2505 0 12.04

50 107.7 3.34 556.1 0 12.04

100 32.41 2.67 157.3 0 12.04

Chi-squared test on semi-variogram (lag distance ¼ 10)

10 61.03 69.61 81.39 73.36 128.42

20 70.65 72.39 104.13 73.36 128.42

50 78.78 76.88 103.61 73.36 128.42

100 79.54 77.32 105.35 73.36 128.42

Simulated random field has an isotropic semi-variogram with sill 1 and practical range 40 units. Semi-variograms are calculated along abscissa axis. Bold

numbers correspond to situations for which there is evidence that simulation algorithm fails.
the basic random field Y1, and GD,N the regional semi-
variogram of the asymptotical Gaussian random field.
Then, it can be shown (Appendix B) that the fluctuation
variance of GD,J is

var½GD;JðhÞ� ¼ 1�
1

J

� �
var½GD;1ðhÞ� þ

1

J
var½GD;1ðhÞ�: (19)

This formula indicates that the fluctuation variance of
the regional semi-variogram of Y(J) is not the same as that
of a Gaussian random field, but the bias gets smaller as J

increases. In practice, J is on the order of several hundreds
or several thousands, so that the variance of GD,J(h) should
be close to that of GD,N(h), unless the latter is much
smaller that the variance of GD,1(h). This circumstance
may happen when the norm of h is close to zero (Alfaro,
1979; Matheron, 1989), as it will be seen hereunder.

As an application of formula (19), let us consider the
simulation of a random field with covariance function C by
means of a continuous spectral method (Shinozuka, 1971;
Lantuéjoul, 1994). This method consists in putting

8x 2 Rd; 8j 2 f1; . . . ; Jg; YjðxÞ ¼
ffiffiffi
2
p

cosðhXj;xi þ FjÞ, (20)

where /,S is the standard inner product in Rd, Xj is a
random vector whose distribution is the spectral measure
of C, and Fj is an independent uniform random variable in
[0,2p). After some calculations, one finds the following
expression for the fluctuation variance of the regional
semi-variogram of Y1 at lag h:

varfGD;1ðhÞg ¼
1

2K2
hð0Þ

E sin4 hX1;hi

2

� ��

�

Z
½2 cos2ðhX1;uiÞ þ 1�KhðuÞdu

�
� g2ðhÞ. (21)

The expected value in this expression can be calculated
by Monte Carlo integration.

Table 2 gives the ratio between the variance of GD,J(h)
and that of GD,N(h) for several lag vectors and for several
values of J, when simulating a random field with an
isotropic exponential or Gaussian semi-variogram over a
400� 400�1 domain in R3. The results suggest that the
convergence of Y(J) to a Gaussian random field is faster
when the semi-variogram is smooth at the origin
(Gaussian semi-variogram), which has already be pointed
out by Lantuéjoul (2002, p. 192).

A numerical exercise made on 100 realizations con-
firms that the fluctuation variance is well reproduced
when J is set to 10,000 (Table 3). Besides, Hotelling’s test
for the same lag vectors gives a T99,5

2 statistics of 4.25 and
3.43 for the exponential and Gaussian semi-variograms,
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Fig. 1. Semi-variogram model (solid line) and average regional semi-

variograms (dashed lines) of 100 sequential Gaussian realizations over a

400� 400�1 grid. Simulated random field has an isotropic spherical (A),

exponential (B) and Gaussian (C) semi-variogram with sill 1 and range 40

units. Semi-variograms are calculated along abscissa axis.

Table 2
Ratio of fluctuation variance of regional semi-variogram obtained with

continuous spectral algorithm and fluctuation variance of a Gaussian

random field over a 400� 400�1 grid

Norm of lag vector

10 20 30 40 50

Exponential semi-variogram

J ¼ 1 1819 425 207 143 115

J ¼ 10 183 43.4 21.6 15.2 12.4

J ¼ 100 19.2 5.24 3.06 2.42 2.14

J ¼ 1000 2.82 1.42 1.21 1.14 1.11

J ¼ 10,000 1.18 1.04 1.02 1.01 1.01

Gaussian semi-variogram

J ¼ 1 213 121 67.8 44.5 34.8

J ¼ 10 22.2 13.0 7.68 5.35 4.38

J ¼ 100 3.12 2.20 1.67 1.44 1.34

J ¼ 1000 1.21 1.12 1.07 1.04 1.03

J ¼ 10,000 1.02 1.01 1.01 1.00 1.00

Simulated random field has an isotropic semi-variogram with practical

range 40 units. Lag vector is oriented along abscissa axis.
respectively, therefore no bias is detected in the reproduc-
tion of the prior model (the critical T99,5

2 value is 12.04).

4.3. Simulating a dead leaves random field

We now consider the simulation of a dead leaves
model over a 400� 400�1 grid in R3. This model relies on
a homogeneous Poisson point process in R3

�R+ (space-
time), at each point of which a random set called primary

grain is seeded. In the present case, the primary grain is
chosen as a ball whose diameter is uniformly distributed
in (0,120). Each grain has a constant valuation (a standard
normal random variable) that is independent of the
valuations of the other grains. At any location in R3, the
value of the random field can be defined in two equivalent
fashions (Matheron, 1968; Jeulin, 1997):
(i)
 consider the value of the first primary grain that
covers this location and
(ii)
 consider the value of the last primary grain that covers
this location.
It can be shown that the dead leaves random field has
the following semi-variogram:

8h 2 R3; gðhÞ ¼
2Kð0Þ � 2KðhÞ

2Kð0Þ � KðhÞ
, (22)

where K is the geometric covariogram of the primary
grains (uniform mixture of spherical covariograms)

8h 2 R3;KðhÞ ¼
Z 120

jhj

pa3

6
1�

3

2

jhj

a
þ

1

2

jhj3

a3

� �
da. (23)

In this exercise, we will stop the simulation once the
400� 400�1 grid is completely covered by primary
grains. This construction is exact when retaining at each
location the first grain, as the newer grains do not alter the
simulated field any more. However, it is approximate
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Table 3
Chi-squared test on dispersion of regional semi-variograms of 100 realizations obtained with continuous spectral algorithm (J ¼ 10,000) over a

400� 400�1 grid

Norm of lag vector w99
2 statistics Lower w99

2 bound (2.5%

probability)

Upper w99
2 bound (97.5%

probability)

Exponential semi-

variogram

Gaussian semi-

variogram

10 88.56 99.54 73.36 128.42

20 92.10 95.95 73.36 128.42

30 95.22 91.63 73.36 128.42

40 93.19 90.36 73.36 128.42

50 89.53 92.90 73.36 128.42

Simulated random field has an isotropic semi-variogram with practical range 40. Fluctuation variances are calculated for a lag vector oriented along

abscissa axis.

Fig. 2. Semi-variogram model (solid line) and average regional semi-

variograms (dashed lines) of 100 dead leaves realizations over a

400� 400�1 regular grid. Primary grains are balls with uniform

diameers between 0 and 120. Semi-variograms are calculated along

abscissa axis.

Table 4
Hotelling’s test on average regional semi-variogram of 100 dead leaves

realizations over a 400� 400�1 grid

Convention for overlapping

grains

T2
99,5

statistics

Critical T2
99,5 value (95%

probability)

First grain 8.27 12.04

Last grain 23.64 12.04

Primary grains are balls with uniform diameters between 0 and 120.

Semi-variograms are calculated for lag vectors oriented along abscissa

axis with norms of 10, 20, 30, 40 and 50 units. Bold number corresponds

to situation for which there is evidence that simulation algorithm fails.
when retaining the last grain since, in theory, the stopping
time should be infinite. In particular, as pointed by
Lantuéjoul (2002, p. 178), the last grain that covers the
grid is likely to be bigger than the average. This
approximation causes a bias in the reproduction of the
semi-variogram (Fig. 2), which is detected by Hotelling’s
test (Table 4). In contrast, the first model successfully
passes the test.

4.4. Simulating a truncated Gaussian vector with the Gibbs

sampler

A question that has not been tackled so far is that of
validating algorithms specific to conditional simulations,
in particular iterative algorithms that are used for
conditioning a large variety of random field models (e.g.
Freulon, 1994; Hegstad et al., 1994; Omre and Tjelmeland,
1997; Lantuéjoul, 1997, 2002; Emery, 2007). The definition
of statistical tests to validate such algorithms is arduous,
as the finite-dimensional conditional distributions are
often intractable from an analytical point of view. Also, the
theoretical results on the rate of convergence of iterative
algorithms are often scarce or impractical.

As an example, let us consider the simulation of an
indicator obtained by truncating a stationary Gaussian
random field in R2. Assume that the latter has an isotropic
exponential semi-variogram and that the truncation
threshold is zero. Also suppose that it is of interest to
condition the simulation to indicator data available at a
regular 20�20 grid in R2. A common procedure consists
in simulating the Gaussian random field at the data
locations with the Gibbs sampler (an iterative algorithm
originally proposed by Geman and Geman (1984)), then
simulating the Gaussian random field at other locations of
R2, and finally obtaining the indicator random field by
truncation. Since Gaussian simulation algorithms have
been tested in the previous subsections, here one is
interested in validating the Gibbs sampler. The following
approach is proposed:
(1)
 Draw a non-conditional simulation of the Gaussian
random field over the 20�20 grid, by using the
matrix decomposition method (Davis, 1987). This
method is exact, so no approximation is made at this
step.
(2)
 Truncate this field and obtain a set of indicator data
over the 20�20 grid.
(3)
 Use the Gibbs sampler to construct Gaussian data over
this grid conditioned to the previously defined
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Table 5
Statistical tests on 100 Gaussian realizations over a 20�20 grid obtained

with Gibbs sampler

Number of

iterations

Absolute value of

statistics

95% probability interval

Lower

bound

Upper

bound

Student’s test on mean value

1000 0.043 0 1.984

10,000 0.658 0 1.984

100,000 1.270 0 1.984

1,000,000 1.534 0 1.984

Student’s test on variance

1000 4.750 0 1.984

10,000 1.588 0 1.984

100,000 0.561 0 1.984

1,000,000 0.478 0 1.984

Student’s test on semi-variogram (lag distance ¼ 1)

1000 19.45 0 1.984

10,000 1.054 0 1.984

100,000 0.416 0 1.984

1,000,000 1.416 0 1.984

Hotelling’s test on semi-variogram (lag distances ¼ 1, 2, 3, 4, 5)

1000 544.8 0 12.04

10,000 4.659 0 12.04

100,000 2.354 0 12.04

1,000,000 5.574 0 12.04

Chi-squared test on semi-variogram (lag distance ¼ 1)

1000 183.4 73.36 128.42

10,000 82.01 73.36 128.42

100,000 92.51 73.36 128.42

1,000,000 123.60 73.36 128.42

Simulated random field has an isotropic exponential semi-variogram

with sill 1 and range 5 units. Semi-variograms are calculated along

abscissa axis. Bold numbers correspond to situations for which there is

evidence that simulation algorithm fails.
indicator data. At each iteration, a datum is chosen (in
this case, it is selected uniformly among all the data)
and updated conditionally to the other Gaussian data.
(4)
 Go back to Step (1) until a sufficient number of
conditional realizations are drawn.
Because the conditioning indicator data defined in Step
2 differ at each realization and are drawn from the non-
conditional model, the Gaussian realizations obtained in
Step 3 can be treated as if they were non-conditional. In
particular, one can apply the statistical tests proposed in
Section 3. The results (Table 5) indicate that the Gibbs
sampler fails at reproducing the variance and semi-
variogram when using as few as 1000 iterations, but is
validated from 10,000 iterations onwards, which corre-
sponds to an average of 25 updates for each datum.

5. Conclusions

In this paper, several statistical tests have been
proposed for validating geostatistical simulation algo-
rithms. Student and Hotelling’s tests are robust and
therefore quite general, while the chi-squared tests are
applicable under more restrictive conditions. Of course,
the presented tests are not exhaustive and many other
tests could be designed. Since most simulation algorithms
make simplifications or approximations whose impact is
difficult to assess a priori, the recourse to statistical tests
allow practitioners to decide on appropriate implementa-
tion parameters, e.g. the number of neighboring condi-
tioning data to use when resorting to sequential
simulation, the number of basic random fields to add
when using the continuous spectral method, or the
number of iterations needed for conditioning the realiza-
tions via an iterative algorithm.
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Appendix A. Expected regional semi-variogram of a
conditioned Gaussian random field

Consider a stationary Gaussian random field Y

with covariance function C and semi-variogram g. Let
{xa, a ¼ 1,y, n} be the locations of conditioning data and
{ya, a ¼ 1,y, n} the associated data values. The random
field conditioned to these data can be expressed as follows
(Chilès and Delfiner, 1999, p. 381):

~YðxÞ ¼ ySK ðxÞ þ �ðxÞ, (A.1)

where ySK(x) is the simple kriging prediction of Y(x)
(a deterministic value) and e(x) is the simple kriging error
at location x (a random variable with zero mean).
Accordingly, for any lag vector h, one has

Ef½ ~Yðxþ hÞ � ~YðxÞ�2g ¼ ½ySK ðxþ hÞ � ySK ðxÞ�
2

þ Ef½�ðxþ hÞ � �ðxÞ�2g. (A.2)

This formula entails that the expected regional semi-
variogram of the conditional random field ~Y over a given
domain D is equal to the regional semi-variogram of the
kriging predictions plus the expected regional semi-
variogram of the kriging errors. By using the following
expression for the simple kriging covariance:

cov½�ðxþ hÞ; �ðxÞ� ¼ CðhÞ �
Xn

a¼1

Xn

b¼1

lSK
a ðxÞ

�lSK
b ðxþ hÞCðxa � xbÞ, (A.3)

where lSK
a ðxÞ denotes the kriging weight assigned to ya

when predicting Y(x), one finds

Ef½�ðxþ hÞ � �ðxÞ�2g ¼ cov½�ðxþ hÞ; �ðxþ hÞ�

þ cov½�ðxÞ; �ðxÞ� � 2cov½�ðxþ hÞ; �ðxÞ�

¼ 2½Cð0Þ � CðhÞ� �
Xn

a¼1

Xn

b¼1

½lSK
a ðxþ hÞ � lSK

a ðxÞ�

�½lSK
b ðxþ hÞ � lSK

b ðxÞ�Cðxa � xbÞ. (A.4)
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Hence the expected value of the conditional regional
semi-variogram of ~Y at lag h is (Eqs. (A.2) and (A.4))

E½ ~GDðhÞ� ¼ gðhÞ þ
1

2Khð0Þ

Z
D\D�h

½ySK ðxþ hÞ � ySK ðxÞ�
2dx

�
1

2Khð0Þ

Z
D\D�h

Xn

a¼1

Xn

b¼1

½lSK
a ðxþ hÞ � lSK

a ðxÞ�

�½lSK
b ðxþ hÞ � lSK

b ðxÞ�Cðxa � xbÞdx. (A.5)

In particular, it is seen that the conditional regional
semi-variogram at lag h does not fluctuate around the
prior semi-variogram model g(h). Its expected value
depends on the domain on which it is computed, as well
as the locations and values of the conditioning data
(through the kriging weights and kriging predictions), and
turns out to be unpractical to calculate.

Appendix B. Fluctuation covariance for the regional
semi-variogram of a sum of independent and
identically distributed random fields

Consider a set of independent stationary random fields
{Yj, j ¼ 1,y, J} with covariance function C and the same
finite-dimensional distributions, and let us put

8x 2 Rd;Y ðJÞðxÞ ¼
1ffiffi

J
p XJ

j¼1

YjðxÞ. (B.1)

The random field Y(J) so defined has the same covariance
function as each of the Yj’s. In the sequel, we will express
the fluctuation covariance of its regional semi-variogram
at lags h and h0, denoted by GD,J(h) and GD,J(h0),
respectively. To simplify the notations, let us introduce

8x 2 Rd; 8j 2 f1; . . . ; Jg; Dh
j ðxÞ ¼ Yjðxþ hÞ � YjðxÞ. (B.2)

Then

cov½GD;JðhÞ;GD;Jðh
0
Þ� ¼

1

J2

�
X

j;k; j0 ;k0

R
D\D�h

R
D\D�h0

cov½Dh
j ðxÞD

h
k ðxÞ;D

h0

j0 ðx
0ÞDh0

k0 ðx
0ÞÞ�dx dx0

4Khð0ÞKh0 ð0Þ

(B.3)

Since the Yj’s are independent random fields, the
covariance terms are equal to zero, unless:
�
 j ¼ j0 ¼ k ¼ k0 (J terms), in which case one has

1

J2

XJ

j¼1

R
D\D�h

R
D\D

�h0
cov½Dh

j ðxÞ
2;Dh0

j ðx
0Þ

2
�dx dx0

4Khð0ÞKh0 ð0Þ

¼
1

J
cov½GD;1ðhÞ;GD;1ðh

0
Þ�, (B.4)
�
 j ¼ j0 6¼k ¼ k0, or j ¼ k0 6¼j0 ¼ k (2J2
�2J terms), in which

case one has

cov½Dh
j ðxÞD

h
k ðxÞ;D

h0

j ðx
0ÞDh0

k ðx
0Þ�

¼ cov½Dh
j ðxÞ;D

h0

j ðx
0Þ� � cov½Dh

k ðxÞ;D
h0

k ðx
0Þ�

¼ ½Cðxþ h� x0 � h0Þ � Cðx� x0 � h0Þ

� Cðxþ h� x0Þ þ Cðx� x0Þ�2. (B.5)
This is equal to half the covariance between the squared
increments of a stationary Gaussian random field with
covariance C (Eq. (11)). Accordingly,

1

J2

X
jak

R
D\D�h

R
D\D�h0

cov½Dh
j ðxÞD

h
k ðxÞ;D

h0

j ðx
0ÞDh0

k ðx
0Þ�dx dx0

4Khð0ÞKh0 ð0Þ

¼
2J2
� 2J

J2

1

2
cov½GD;1ðhÞ;GD;1ðh

0
Þ�

¼ 1�
1

J

� �
cov½GD;1ðhÞ;GD;1ðh

0
Þ�, (B.6)

where GD,N is the regional semi-variogram of a Gaussian
random field with covariance C (obtained asymptotically
by letting J tend to infinity). By adding both contributions
(B.4) and (B.6), one finally finds

cov½GD;JðhÞ;GD;Jðh
0
Þ� ¼ 1�

1

J

� �
cov½GD;1ðhÞ;GD;1ðh

0
Þ�

þ
1

J
cov½GD;1ðhÞ;GD;1ðh

0
Þ�. (B.7)

Appendix C. Supplementary materials

Supplementary data associated with this article can be
found in the online version at doi:10.1016/j.cageo.
2007.12.012.
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Academic, Dordrecht, pp. 179–199.
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