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Abstract This paper presents random field models with Gaussian or gamma univari-
ate distributions and isofactorial bivariate distributions, constructed by composing
two independent random fields: a directing function with stationary Gaussian incre-
ments and a stationary coding process with bivariate Gaussian or gamma distribu-
tions. Two variations are proposed, by considering a multivariate directing function
and a coding process with a separable covariance, or by including drift components
in the directing function. Iterative algorithms based on the Gibbs sampler allow one
to condition the realizations of the substitution random fields to a set of data, while
the inference of the model parameters relies on simple tools such as indicator vari-
ograms and variograms of different orders. A case study in polluted soil management
is presented, for which a gamma model is used to quantify the risk that pollutant
concentrations over remediation units exceed a given toxicity level. Unlike the mul-
tivariate Gaussian model, the proposed gamma model accounts for an asymmetry in
the spatial correlation of the indicator functions around the median and for a spatial
clustering of high pollutant concentrations.

Keywords Conditional simulation · Isofactorial bivariate distribution · Bivariate
Gaussian distribution · Bivariate gamma distribution · Gibbs sampler

1 Introduction

An important aspect in the analysis of regionalized variables is the modeling of lo-
cal uncertainty and its incorporation in decision-making processes. In polluted site
management, the planner is interested in mapping the probability that the concen-
tration of a pollutant exceeds a regulatory threshold, given the information available
at data locations. This problem can be solved by using nonlinear kriging techniques
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like indicator, disjunctive, or multi-Gaussian kriging (Emery 2006a; Journel 1984;
Matheron 1976a; Oliver et al. 1996).

In general, the decision-making process involves a more complex transfer function
of the pollutant concentration. In particular, this concentration must be upscaled from
the data support to that of remediation units. One possibility is to define a change-
of-support model and to combine it with one of the previous nonlinear kriging tech-
niques (Emery and Soto-Torres 2005; Matheron 1976b, 1984). Another possibility
is to use conditional simulation, which provides alternative realizations of the pollu-
tant concentration that can be averaged to the support of the remediation units. This
approach is flexible as it can be used when the upscaling differs from an arithmetic
averaging. For instance, the decision-maker may be concerned with the impact of
short-term exposure on human health and be interested in knowing whether the max-
imal point-support concentration (not the average) within a remediation unit exceeds
a given threshold or not.

This article deals with a family of random field models that can be used to simulate
pollutant concentrations and, more generally, regionalized variables measured on a
continuous quantitative scale. In the following three sections we present the models
and investigate their properties. Then we describe tools to infer and validate the model
parameters from a set of data. In the last section, the concepts are illustrated through
a case study in polluted soil management.

2 Substitution Random Fields

2.1 Definition and Properties

A random field on R
d , Y = {Y(x),x ∈ R

d}, is called a substitution random field if it
can be written in the following fashion (Lantuéjoul 1991, 1993, 2002)

∀x ∈ R
d, Y (x) = X

[
T (x)

]
, (1)

where T = {T (x),x ∈ R
d} is a random field on R

d called a directing function, and
X = {X(t), t ∈ R} is a random field on R called a coding process. The univariate
and bivariate distributions of Y can be determined under the assumptions that the
coding process and directing function are independent; the former is stationary and
the latter has stationary increments. If these conditions are satisfied, the following
results hold:

(1) X and Y have the same univariate distributions.
(2) If X has a covariance function CX , then Y has a covariance function CY such that

(Lantuéjoul 1991, p. 402)

∀h ∈ R
d , CY (h) = E

{
CX

[
T (h) − T (0)

]}
, (2)

where h is the lag separation vector.
(3) Isofactorial permanence: if X has isofactorial bivariate distributions, then so

does Y . Moreover, if χp(X) is the pth factor of the bivariate distributions of



X, then χp(Y ) is the pth factor of the bivariate distributions of Y . The covari-
ance functions of these factors are linked by the following relationship (Matheron
1989b, p. 313)

∀h ∈ R
d, C(p)

Y (h) = E
{
C(p)

X

[
T (h) − T (0)

]}
. (3)

Examples and properties of isofactorial bivariate distributions can be found in the
literature (Chilès and Delfiner 1999; Johnson and Kotz 1972; Lancaster 1958). In
this article, we focus on two particular examples of such distributions, for which
the marginals are Gaussian and gamma, and the factors are Hermite and Laguerre
polynomials, respectively. Following Chilès and Delfiner (1999, p. 406) and Wack-
ernagel (2003, p. 254–256), these isofactorial bivariate distributions will be called
“Hermitian” and “Laguerre” distributions.

2.2 Conditional Simulation

Consider the problem of simulating a substitution random field and conditioning the
realizations to a set of data {Y(xα) = yα,α = 1, . . . , n}. This problem can be solved
in four steps:

(a) Simulate {T (xα),α = 1, . . . , n} conditionally to {Y(xα) = yα,α = 1, . . . , n}. Ob-
tain a set of values {tα, α = 1, . . . , n}.

(b) Simulate T conditionally to {T (xα) = tα, α = 1, . . . , n}.
(c) Simulate X conditionally to {X(tα) = yα,α = 1, . . . , n}.
(d) Obtain the simulated random field Y as per (1).

Steps (b) and (c) do not present any difficulty if conditional simulation algorithms
are available for both the directing function and the coding process. As for step (a),
an iterative algorithm based on the Gibbs sampler can be used. The idea is to start
from a non-conditional simulation of the random variables {T (xα),α = 1, . . . , n} and
to progressively modify the simulation to obtain random variables whose distribution
converges to that of {T (xα),α = 1, . . . , n} conditional to {Y(xα) = yα,α = 1, . . . , n}.
Because the convergence is asymptotical, in practice the algorithm requires defin-
ing a maximum number of iterations. Theoretical and empirical results on the rate
of convergence of the Gibbs sampler and guidelines for choosing the number of it-
erations have been presented by many authors (Emery 2007; Galli and Gao 2001;
Lantuéjoul 2002; Tierney 1994).

Specifically, the following algorithm is proposed (Lantuéjoul 2002, p. 233; Emery
2007):

(a1) Simulate {T (xα),α = 1, . . . , n} without conditioning constraints. Obtain a set
of values {tα, α = 1, . . . , n}.

(a2) Select an index α0 at random (uniformly) in {1, . . . , n}.
(a3) Simulate T (xα0) conditionally to {T (xα) = tα, α �= α0}. Obtain a new value t ′α0

.
(a4) Calculate the probabilities pα0 and p′

α0
of the events {X(tα0) = yα0} and

{X(t ′α0
) = yα0} given {X(tα) = yα,α �= α0}.

(a5) Generate a uniform value u in [0,1].
(a6) If upα0 ≤ p′

α0
, replace tα0 by t ′α0

(Metropolis acceptance criterion).
(a7) Go back to (a2) until the maximum number of iterations has been reached.



Fig. 1 Partial realizations of
substitution random fields with
bivariate Hermitian
distributions. In every case, the
directing function has a linear
variogram and stationary
Gaussian increments

Step (a4) assumes that the coding process has a discrete distribution. This step can
be extended to the case of a continuous distribution by substituting a probability den-
sity function for a probability mass function (Tierney 1994). For practical reasons,
the coding process is often assumed Markovian, which results in important simplifi-
cations in steps (a4) and (c). However, this assumption allows little flexibility in the
choice of the covariance function of the substitution random field (2) as the covari-
ance function of a Markovian process is an exponential function. The objectives of
the next two sections are to remove the Markovian restriction for the coding process
and to broaden the class of substitution random fields that can be simulated.

3 Substitution Random Fields with Bivariate Hermitian Distributions

3.1 Gaussian Coding Process

Let X be a stationary Gaussian random field on R with covariance function ρ. Its
bivariate distributions have an isofactorial representation with the Hermite polynomi-
als as the factors (Lancaster 1957). Due to isofactorial permanence, the substitution
random field Y has bivariate Hermitian distributions characterized by the following
factor covariance functions (3)

∀h ∈ R
d, ∀p ∈ N

∗, C(p)
Y (h) = E

{
ρp

[
T (h) − T (0)

]}
. (4)

The Markovian restriction is not necessary: the conditional distributions needed in
step (a4) are Gaussian, with mean and variance equal to simple kriging predictions
and simple kriging variances, respectively. Accordingly, the coding process can have
any covariance model (positive semi-definite function), not just an exponential co-
variance.

3.2 Examples

Henceforth, we assume that the directing function T has stationary Gaussian incre-
ments (i.e. increments with multivariate Gaussian distributions) with variogram γT .
We consider two types of covariance functions for the coding process: (1) an ex-
ponential covariance (Fig. 1A) where ρ(�t) = exp(−a|�t |) with a > 0; and (2) a



Table 1 Covariance functions for the factors of the bivariate distributions of the substitution random
field. The notation a ∼ b means that a/b tends to 1. G(.) represents the standard Gaussian cumulative
distribution function, γT the variogram of the directing function, and c a positive real number

Covariance function Covariance for the pth factor of the bivariate Asymptotic behavior for

of the coding process distributions of the substitution random field fixed p

Exponential C(p)
Y

= 2 exp(
p2a2γT

2 )G(−pa
√

γT ) C(p)
Y

(h) ∼|h|→+∞
c√

γT (h)

Gaussian C(p)
Y

= 1√
1+2paγT

C(p)
Y

(h) ∼|h|→+∞
c√

γT (h)

Gaussian covariance (Fig. 1B) where ρ(�t) = exp(−a|�t |2) with a > 0. Table 1
gives the covariance functions for the factors of the bivariate distributions of Y ; these
covariance functions tend to zero if γT is unbounded. Even so, they are not integrable
on R

d . Their integral ranges are infinite, since the growth rate of γT is necessarily
less than quadratic.

Having infinite integral ranges restricts the class of available covariance models
and affects the properties of the substitution random field. The realizations (Fig. 1)
exhibit large-range structures and appear as non-homogeneous at any scale of ob-
servation. The notion of integral range is also related to the property of ergodicity
(Lantuéjoul 1991), which allows one to infer parameters such as the mean, the vari-
ance, or the variogram from a single realization of the random field. When the integral
range is infinite, the realization must be known over a very large domain to accurately
estimate these parameters. In the following subsections, two variations are proposed
to construct models with finite integral ranges.

3.3 First Variation: Multivariate Directing Function

(1) Consider a multivariate directing function T with N mutually independent com-
ponents, each of them with stationary Gaussian increments and variogram γT

∀x ∈ R
d, T (x) = (

T1(x), . . . , TN(x)
)

(5)

and a stationary Gaussian coding process in R
N , X = {X(t), t ∈ R

N }, with a
separable covariance

CX(�t) = CX(�t1, . . . ,�tN) =
N∏

i=1

ρ(�ti). (6)

Since the coding process has bivariate Gaussian distributions, the substitution ran-
dom field Y defined by putting Y(x) = X[T (x)] for every x in R

d has bivariate Her-
mitian distributions (isofactorial permanence). The covariance function of the pth
factor is (3)

∀h ∈ R
d, C(p)

Y (h) = E

{
N∏

i=1

ρp
[
Ti(h) − Ti(0)

]
}

=
N∏

i=1

E
{
ρp

[
Ti(h) − Ti(0)

]}

= E
{
ρp

[
T1(h) − T1(0)

]}N
. (7)



Fig. 2 Partial realizations of
substitution random fields with
bivariate Hermitian
distributions, obtained by using
a directing function with A,
multiple components, and B,
drift components

The second equality in (7) is justified by the independence of the components
of the directing function. The factor covariance functions in (7) are simply the N th
powers of those in (4), so their integral ranges may be finite if N is large enough.
Here, there are three free parameters that facilitate the modeling: (1) the variogram γT

of the directing function; (2) the covariance ρ that characterizes the coding process;
and (3) the number N of components of the directing function. Figure 2A shows a
realization of a substitution random field constructed by considering a quadrivariate
directing function with a linear variogram and a coding process with a separable
exponential covariance.

3.4 Second Variation: Directing Function with Drift Components

First, consider a multivariate directing function T with N + d components such
that the first N components are mutually independent random fields with station-
ary Gaussian increments and variogram γT ; and the last d components correspond to
drift terms of the form

∀i ∈ {1, . . . , d}, ∀x ∈ R
d, TN+i (x) = εibxi (8)

with εi = 1 or −1 with equal probability 0.5, b is a nonnegative real number, and xi

is the ith coordinate of vector x.
Second, consider a stationary Gaussian coding process X = {X(t), t ∈ R

N+d}
whose covariance is the product of a separable covariance on R

N and an isotropic
covariance on R

d

CX(�t) = CX(�t1, . . . ,�tN+d) =
N∏

i=1

ρ(�ti)×ρ′(
√

�t2
N+1 + · · · + �t2

N+d

)
. (9)

The resulting substitution random field has bivariate Hermitian distributions, charac-
terized by the following factor covariances

∀h ∈ R
d, ∀p ∈ N

∗, C(p)
Y (h) = E

{
ρp

[
T1(h) − T1(0)

]}N × ρ′p(
b‖h‖). (10)

To obtain factor covariances with finite integral ranges, it is sufficient that ρ′ has a
finite range and that b is not zero. A realization of the proposed random field model
is shown in Fig. 2B, where the covariance functions ρ and ρ′ are exponential and
spherical.



Fig. 3 A, non-conditional realization of a substitution random field with bivariate Hermitian distributions,
B, conditioning data points, C and D, two conditioned realizations (the conditioning points are superim-
posed)

3.5 Conditional Simulation

The algorithm presented in the previous section (steps (a) to (d)) can be used to con-
dition the realizations to a set of data. Concerning step (a), one has to work with
vectorial components {tα,α = 1, . . . , n} instead of scalar components. As an illustra-
tion, a non-conditional realization is generated on a 400 × 400 grid (Fig. 3A), with
the following parameters

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N = 1,

b = 0.01,

∀h ∈ R
d, γT (h) = ‖h‖,

∀�t ≥ 0, ρ(�t) = exp
(−0.1�t2

)
,

∀�t ≥ 0, ρ′(�t) = 1 − 1.5 min(�t,1) + 0.5 min
(
�t3,1

)
.

(11)



One hundred locations are then selected at random (uniformly) from the 160,000
grid nodes (Fig. 3B). The values at these locations are used as conditioning data for
two new realizations (Fig. 3C and D). Note that the realizations of the substitution
random field show well-structured patterns, in particular a spatial clustering of the
extreme (high or low) values. These patterns are very different from those observed
on realizations of stationary Gaussian random fields, for which the extreme values
tend to be scattered in space (Goovaerts 1997, p. 278).

4 Substitution Random Fields with Bivariate Laguerre Distributions

4.1 Gamma Coding Process

First, consider a multivariate directing function T = {T (x),x ∈ R
d} with N +d com-

ponents such that the first N components are mutually independent random fields
with stationary Gaussian increments and variogram γT ; the last d components are
drift terms defined as per (8). Second, consider a vectorial standard Gaussian random
field U = {U(t), t ∈ R

N+d} with m stationary mutually independent components,
each with a covariance of the form

CU(�t) =
N∏

i=1

r(�ti) × r ′(
√

�t2
N+1 + · · · + �t2

N+d

)
, (12)

where r is a covariance function on R and r ′ an isotropic covariance function on R
d .

From this vectorial Gaussian field, one can define a coding process X with a standard
gamma univariate distribution with shape parameter m/2, by putting

∀t ∈ R
N+d, X(t) = 1

2

∥∥U(t)
∥∥2 = 1

2

m∑

j=1

U2
j (t). (13)

The correlation function of the gamma coding process is given by (9), with ρ = r2

and ρ′ = r ′2. It can be shown (Emery 2005b) that the bivariate distributions of this
process have an isofactorial representation with Laguerre polynomials as the factors.

The substitution random field Y is defined as follows

∀x ∈ R
d , Y (x) = 1

2

∥∥U
[
T (x)

]∥∥2
. (14)

Because of isofactorial permanence, Y has bivariate Laguerre distributions. The co-
variance functions of the factors are still given by (10).

4.2 Conditional Simulation

Let {xα,α = 1, . . . , n} be the locations of the conditioning data and {yα,α = 1, . . . , n}
the values of the substitution random field observed at these locations. We suggest the
following algorithm for simulating Y :



(a) Simulate {T (xα),α = 1, . . . , n} and {U [T (xα)], α = 1, . . . , n} conditionally to
{Y(xα) = yα,α = 1, . . . , n}. Obtain two sets of vectors {tα,α = 1, . . . , n} and
{uα,α = 1, . . . , n}.

(b) Simulate T conditionally to {T (xα) = tα,α = 1, . . . , n}.
(c) Simulate U conditionally to {U(tα) = uα,α = 1, . . . , n}.
(d) Obtain the substitution random field as per (14).

Concerning step (a), the following iterative algorithm is proposed:

(a1) Simulate {T (xα),α = 1, . . . , n} without conditioning constraints. Obtain a set
of values {tα,α = 1, . . . , n}.

(a2) Initialize {U [T (xα)], α = 1, . . . , n}, by putting

∀α ∈ {1, . . . , n}, uα =
√

2yα

m
εα, (15)

where {εα,α = 1, . . . , n} are mutually independent random vectors, each with
m independent components taking 1 or −1 with equal probability.

(a3) Select an index α0 at random (uniformly) in {1, . . . , n}.
(a4) Generate a uniform value v in [0,1].
(a5) If v > 0.5, simulate T (xα0) conditionally to {T (xα) = tα,α �= α0}, obtain a

new value t ′
α0

and put u′
α0

= uα0 . If v ≤ 0.5, put t ′
α0

= tα0 and generate a vector
u′

α0
uniform on the hypersphere of R

m centered on 0 with squared radius 2yα .
The threshold 0.5 has been chosen so that there is a 50% chance of updating a
T -component and 50% chance of updating a U -component.

(a6) Calculate the probability densities of U(tα0) and U(t ′
α0

) conditionally to
{U(tα) = uα,α �= α0}

pα0 = 1

(2π)m/2σm
SK

exp

{
− 1

2σ 2
SK

‖uα0 − uSK‖2
}
,

(16)

p′
α0

= 1

(2π)m/2σ ′m
SK

exp

{
− 1

2σ ′2
SK

‖u′
α0

− u′
SK‖2

}
,

where uSK and u′
SK are the simple kriging predictions of U(tα0) and U(t ′

α0
)

from {U(tα) = uα,α �= α0}, and σSK and σ ′
SK are the corresponding kriging

standard deviations.
(a7) Generate a uniform value u in [0,1].
(a8) If upα0 ≤ p′

α0
, replace the former vectors (tα0,uα0) by the new vectors

(t ′α0
,u′

α0
).

(a9) Go back to (a3) until the maximal number of iterations has been reached.

Note that, at each iteration, one has ‖uα‖2 = 2yα for any α in {1, . . . , n}. Even if the
Gibbs sampler is stopped before convergence, (14) will therefore be satisfied at the
data locations {xα,α = 1, . . . , n}.



5 Parameter Inference and Validation

In general, the available data do not have a Gaussian or gamma univariate distribution,
so that a transformation is required to turn these data into normal or gamma scores
(Chilès and Delfiner 1999, p. 406). The parameters of the random field model are then
chosen in order to fit the empirical bivariate distributions of the transformed data.

5.1 Inference

The general substitution model (with multivariate directing function and drift compo-
nents) is characterized by the following parameters: the covariance functions ρ and ρ′
that define the coding process, the scalar parameters b and N , and the variogram γT .

The following trial-and-error strategy is proposed to infer the model parameters:

(1) Turn the original data into standard Gaussian or gamma data. A declustering
technique may be needed if the data locations are not regularly spaced in R

d . The
gamma transformation requires choosing a half-integer shape parameter m/2,
which gives the number of components of the Gaussian field U (13).

(2) Choose a set of parameters (b, N , γT , ρ, and ρ′) so as to fit the covariance of the
transformed data or, equivalently, the covariance of the first-order factor [(10)
with p = 1]. To ease the simulation of the directing function, it is convenient
to use a linear or a power variogram model for γT , for which many simulation
algorithms are available (Chilès and Delfiner 1999; Emery and Lantuéjoul 2006).
The slope of γT may depend on the direction under consideration if the spatial
correlation of the transformed data is not isotropic.

(3) Check whether the bivariate distributions are properly fitted or not (see next sub-
section). If so, accept the model. Otherwise, go back to step (2) or change the
target univariate distribution for data transformation (step (1)).

5.2 Validation of the Bivariate Distribution Model

Common methods to validate a bivariate distribution model rely on the analysis of
indicator variograms and variograms of different orders (Emery 2005a; Goovaerts
1997).

5.2.1 Indicator Variograms

An indicator is a binary variable defined in relation to a threshold value. Its variogram
can be determined by an expansion into the factor covariances (10) and computed nu-
merically by truncating this expansion at a high order (Emery 2006b). The validation
procedure consists in comparing the theoretically expected indicator variograms for
several thresholds with the corresponding sample variograms.

5.2.2 Variograms of Order ω

The variogram of order ω (with ω > 0) is defined as follows (Matheron 1989a, p. 30)

∀h ∈ R
d, γ (Y )

ω (h) = 1

2
E
{∣∣Y(x + h) − Y(x)

∣
∣ω}

. (17)



Fig. 4 A, data locations, and B, declustered lead concentration histogram. The last bar of the histogram
represents concentrations greater than 2000 ppm

For a random field with bivariate Hermitian or Laguerre distributions characterized
by the factor covariances {C(p)

Y ,p ∈ N
∗}, one has (Emery 2005a, 2005c)

γ (Y )
ω (h) ∝

{
1 +

∑

p≥1

�(p − ω/2)

p!�(−ω/2)
C(p)

Y (h)

}
. (18)

In practice, this formula can be approximated by truncating the expansion at a high
order.

6 Application to a Pollution Data Set

In this section, the substitution model is used to characterize the concentration of a
heavy metal in the topsoil of a smelter site and to determine which sub-areas of this
site should be remediated.

6.1 Presentation of the Data Set

The case study deals with a soil sampling campaign performed at a smelter site in
Dallas, Texas, under guidance of the U.S. Environmental Protection Agency. The
lead concentration has been measured on a set of 180 soil samples located at a quasi-
regular spacing of 750 feet (Fig. 4A). The area of interest is a one-mile radius circle
centered on the smelter location. The lead concentration histogram shows a highly
positively skewed distribution, with more than 70% of the data below 300 ppm and
less than 6% above 2000 ppm (Fig. 4B). The maximum measured concentration is
10,400 ppm and is located in a junkyard on the eastern part of the area under study.
This database has been documented by Isaaks (1984).

6.2 Choice of the Model and Definition of its Parameters

To decide which type of isofactorial model is more appropriate for the data, let us
consider the indicator variograms for the lower and upper quartiles of the univariate



Fig. 5 A, B, C, quartile indicator variograms, and D, E, F, variograms of orders 2, 1, and 0.5 for the
gamma scores data. The sample variograms are represented with dots and dashed lines and the fitted
models with solid lines

distribution, i.e., 78.7 ppm and 325.44 ppm. The omni-directional sample variograms
(Fig. 5A, C) show that the upper quartile indicator has a greater spatial correlation
and lower nugget effect than the lower quartile indicator. A Gaussian model, either
bivariate Gaussian or Hermitian, would therefore be ill suited as it provides the same
theoretical variogram for both indicators.

Instead, a gamma model is preferred. In this model, the spatial correlation of the
indicators is not symmetrical around the median threshold. The covariance of the
indicator for a quantile p greater than 0.5 (above the median) has a lower slope at
the origin than that of the indicator for quantile 1 − p (Emery 2005b, p. 428). This



asymmetry is more pronounced when the shape parameter of the gamma distribution
is small. Because the proposed substitution models only allow a half-integer shape
parameter (13), we set this parameter to 0.5 in order to make the asymmetry in the
indicator correlation as strong as possible. Accordingly, the original lead concentra-
tions are transformed into a set of values with standard gamma univariate distribution,
following the methodology proposed by Emery (2006b).

The remaining parameters of the substitution model are determined through a vi-
sual fit of the quartile indicator variograms and the variograms of order 2, 1, and 0.5
of the gamma scores data (Fig. 5). Only omni-directional variograms are considered,
since the limited number of data does not allow one to detect a clear anisotropy in
the spatial distribution of lead concentrations. A trial-and-error procedure leads to the
following parameters

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N = 1,

b = 8000,

∀h ∈ R
d, γT (h) = ‖h‖,

∀�t > 0, ρ(�t) = 0.98 exp

(
− �t2

30,000

)
,

∀�t ≥ 0, ρ′(�t) = (
1 − 1.5 min(�t,1) + 0.5 min

(
�t3,1

))2
.

(19)

The model reproduces the greatest spatial correlation of the upper quartile indica-
tor in comparison with the lower quartile and median indicators (Fig. 5A, B, and C).
In the realizations, the high-value areas are expected to be spatially more continuous
than the low-value and medium-value areas.

6.3 Conditional Simulation of Lead Concentrations

The lead concentrations can now be simulated conditionally to the available data.
As an illustration, two realizations are displayed in Fig. 6, together with two realiza-
tions obtained by assuming that the normal scores of the lead concentrations have a
multivariate Gaussian distribution (multi-Gaussian model).

By construction, all the realizations in Fig. 6 reproduce the conditioning data.
However, the multi-Gaussian model does not account for the asymmetry in the spatial
correlation of the indicators around the median quantile and for the spatial clustering
of the high values (Chilès and Delfiner 1999, p. 101; Goovaerts 1997, p. 278). In
practice, these defects are attenuated because the conditioning data tend to impose
their own spatial structure over the theoretical model. But their incidence in risk as-
sessment and decision-making in the planning of remediation measures may not be
negligible, as will be illustrated in the next subsection.

6.4 Application to Site Management

Suppose that the entire area is divided into remediation units with size 60 ft × 60 ft
and that the local planner decides to clean the units in which the average lead concen-
tration is greater than 500 ppm. One is interested in knowing the distribution of the
average lead concentrations over blocks with a support of 3600 ft2, not the distribu-
tion of the point-support concentrations. In practice, the block-support concentrations



Fig. 6 A, B, two realizations of the substitution random field, and C, D, two realizations of a transformed
Gaussian random field (gray shades in logarithmic scale)

are calculated by averaging the point-support concentrations simulated within each
block. To minimize the effect of discretizing the block into a finite number of points,
the simulation of lead concentrations should be performed on a fine grid (Chilès and
Delfiner 1999, p. 572); in the present case, a 10 ft × 10 ft grid mesh was used.

As shown in Fig. 7A and B, the distribution of block-support concentrations de-
pends on the model used for constructing the realizations. If the remediation decision
is based on the multi-Gaussian model, more units have to be cleaned (17.4% of the
total, while the substitution model gives a proportion of 15.3% of remediation units
with concentrations above 500 ppm). If the criterion for remediation is the maxi-
mum point-support concentration over a unit instead of the average concentration,
again the multi-Gaussian model overstates the proportion of units to be cleaned with
respect to the substitution model (28.9% versus 23.0%) (Fig. 7C and D). These differ-
ences can be explained by the “destructuring” of the extreme values that takes place in
the multi-Gaussian model; the extreme high lead concentrations tend to be scattered
over the entire area, so that more units are likely to have an unacceptable average (or
maximum) lead concentration (Fig. 8). The numerical results given in this example
reflect the importance of the choice of the random field model representing the pol-
lutant concentration when a change of support has to be considered for remediation
decisions.



Fig. 7 Distributions of the average (A, B) and maximum (C, D) lead concentrations over remediation
units with size 60 ft × 60 ft, calculated from 50 realizations. The darker bars correspond to upscaled
concentrations above 500 ppm. The last bar of each histogram represents concentrations greater than
2000 ppm

7 Conclusions

Substitution random fields with Gaussian or gamma univariate distributions and iso-
factorial bivariate distributions can be constructed by composing two random fields:
a directing function with Gaussian increments and a coding process with bivariate
Gaussian or gamma distributions. Despite their limited number of parameters, these
substitution models are flexible and allow one to represent regionalized variables with
diverse features, such as a spatial clustering of the high values or an asymmetry in
the correlation of the quantile indicators around the median threshold.

Indicator variograms and variograms of different orders can help decide which
model is suitable for the available data and to infer and validate its parameters. The
conditional simulation of substitution random fields requires using iterative algo-
rithms based on the Gibbs sampler. Even if the number of iterations is limited and
the Gibbs sampler is stopped before convergence, the final realizations always repro-
duce the conditioning data. The presented case study may encourage practitioners
to use substitution random fields in application domains where modeling the spatial



Fig. 8 Maps of the probability that the average (A, B) or maximum (C, D) lead concentrations over the
remediation units exceed a toxic level of 500 ppm, calculated from 50 realizations

clustering of high values is critical to assess the risk of exceeding given levels, such
as soil and environmental sciences.
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