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Automated consistency checking of UML models becomes necessary as models grow in
size and complexity. Since the UML metamodel does not enforce model consistency,
there are no fixed guidelines on how to approach the consistency problem. Current
solutions are generally partial. The translation of the metamodel and the user designed
model into Description Logics has proved to provide a solution in detecting a large set
of inconsistencies. In order to make this solution available to system designers, we have

implemented MCC+, a UML model consistency checker, built as a plug-in for Poseidon
for UML, and relying on Jena as a reasoning engine. Compared to other approaches, we
propose a usable and scalable solution, interoperable with a known modeling tool. We
show the application of MCC+ to a real world large example of a meshing tool.

Keywords: Model consistency checking; UML modeling; description logics.

1. Introduction

UML, as a visual modeling language, provides a family of diagrams with which
aspects like the structure and behavior of a system can be defined. A system design
is defined by a model composed of a collection of diagrams where each one shows
a different view of the system [7]. As these views are different representations of
possibly overlapping definitions of the same system, inconsistencies could arise. The
final system modeled using UML is a unique piece of software so inconsistencies in
the design mean contradictory structure or behavior descriptions; this situation
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may mislead development teams or it may be impossible to use the model as a
basis for automatic code generation.

The UML language is defined by its metamodel where only the elements that
may be included in each diagram and the well formedness rules are established. The
UML metamodel specification does not require that UML CASE tools implement
consistency control either between model diagrams or among individual diagram
elements. The main reason for this is that temporary model inconsistencies are not
only introduced accidentally but sometimes are intentional, mainly when they are
the result of intermediate steps during the design process. Transient inconsisten-
cies can be tolerated, but final models must be consistent. As models grow larger
and more complex, automatic consistency checking becomes necessary in order to
determine whether a proposed model is valid or not.

Different approaches have been used to deal with inconsistencies in UML models,
most of them treating specific types of inconsistencies with a particular formalism.
There are also a few tools integrated into modeling frameworks for consistency
checking. Theoretical feasibility is not enough for a formalism to be useful; it needs
to be available for the user in the form of a user-friendly tool. We originally devel-
oped MCC [27], a framework that provided UML 2.0 model checking using auto-
mated reasoning Racer as the reasoning engine. Here we present the newer version,
MCC+, where we substituted Racer for Jena, an open source DL based reasoning
engine that improves the tool availability and avoids the need for tool configuration.

MCC+ uses knowledge representation systems with Description Logics (DL) [1]
as a representation language. DL are decidable fragments of first-order logic that
possess sound and complete reasoning mechanisms. In order to be able to reason
about UML models using DL, the UML metamodel represents the domain knowl-
edge and user models are translated as individual knowledge. These representations
can be used for model consistency checking [31, 32]. A set of 18 different consistency
checks for UML 1.5 were identified and the feasibility of solving them using DL was
shown [26]. Although there are some scalability problems found in reasoning on
UML class diagrams using DL, the complete size of the metamodel is fixed and
bounded. Also, in our tool approach, we decided to calculate all the implicit knowl-
edge when the user model is translated into DL so that querying the knowledge
base is faster.

MCC+ is built as a plug-in integrated into Poseidon for UML, as a way of
offering user-friendly consistency checking through a known user interface. We take
advantage of the rich user interface provided by Poseidon, while using the power
of the DL engine Jena [24] behind the scenes. Both Poseidon and Jena are robust
systems, integrated using well defined public APIs.

We have designed a 3D moving boundary meshing software intended to model
tree growth using UML diagrams. The model for this software manages around
30 classes, but it can manage thousands and even millions of instances at runtime.
Checking for consistency in this model has a high impact on the quality of the result-
ing software, and also the inherent complexity of solving meshing problems could
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be faced relying on MCC+ for consistency details. We have applied the abstract
object, disconnected sequence diagram, disconnected state diagram and incompatible
behavior consistency checks in the application example. Even though theoretically
DL could be a non-scalable solution, the strategy used in implementing our tool
proved to be usable in this large system.

This paper is structured as follows. Related work is presented in Sec. 2. Section 3
explains how DL is used to reason about UML models and to check for consistency.
The MCC+ tool is presented in Sec. 4. The application example is shown in Sec. 5
along with a discussion about complexity and scalability. Finally, some conclusions
are included in Sec. 6.

2. Related Work

A wide range of different approaches for checking consistency in UML models has
been proposed in the literature. Engels et al. [11] motivated a general methodology
to deal with consistency problems based on the problem of protocol statechart in-
heritance. Communicating Sequential Processes (CSP) are used as a mathematical
model for describing the consistency requirements. Ehrig and Tsiolakis [9] inves-
tigated the consistency between UML class and sequence diagrams. UML class
diagrams are represented by attributed type graphs with graphical constraints, and
UML sequence diagrams by attributed graph grammars. The problem of verifying
whether the interactions expressed by a collaboration diagram can be realized by a
set of state machines, has been treated by Schäfer et al. [25]. They have developed
HUGO, a prototype tool that checks if state machines compiled into PROMELA [16]
models, and collaborations translated into sets of Buchic automata match up, using
the SPIN model checker to verify the model against the automata. This problem
has also been analyzed by Litvak et al. [20], using an algorithmic approach, in-
stead of using external model checkers. They have put their ideas into practice
by implementing the BVUML tool, that receives the state and sequence diagrams
as XMI files produced by ArgoUML. Using HUGO requires that the user trans-
late his UML model into two different formalisms. This can be cumbersome and
error-prone if the state machine that needs to be checked is complex, even though
BVUML skips the user translation problem. MCC+ has a homogeneous approach
for dealing with all consistency problems, using the metamodel definition as a basis
for finding inconsistencies in user defined models.

Rational Rose [18], a popular UML CASE tool, also incorporates ad-hoc model
consistency checking. It checks the whole model, applying all the checks available.
The user cannot specify which consistency checks are applied. If the model is more
or less complex, the process can be quite lengthy. The output that is presented to
the user is cryptic and is displayed into the error log. The Rose Model Checker [21]
is a script that takes the output from the model checks and gives it a more user-
friendly interface, but it basically reports only broken links between model elements
and model statistics, and does not provide more complex checks like incompatible



December 10, 2008 9:9 WSPC/117-ijseke 00382

behavior. MCC+ addresses model consistency checking on a one by one basis for
several reasons: it is clearer for the user to select a type of consistency check based
on the context and the diagram he/she is working on, and accordingly it is also
easier to interpret the results. Also, performing a single check is certainly faster
than checking the whole model and generally this all that is needed.

In Van Der Straeten et al. [30], DL is used as the underlying formalism, but
Loom is used as the reasoning engine. MCC+ uses Jena, which is a more modern
and flexible tool. Initially, in order to prove that DL was indeed of practical use
in this domain, a rudimentary tool chain that offered some automation was de-
vised [26]. This tool chain was successfully applied [28]. Van Der Straeten included
these ideas in creating RACOoN [29] — which offers model refactorings in addition
to that provided by MCC. RACOoN is based on UML 1.5 diagrams and presents
a chain structure instead of the plug-in structure of MCC+ that manages UML
2.0 diagrams. Even though a tool chain allows interchangeability of the integrated
tools more easily, it is less transparent for end users and its architecture does not
promote high performance, a key issue in reasoning about UML diagrams [4].

The first MCC [27] used Racer [15] as its reasoning engine. Even though Racer
is a robust and efficient product, it has become commercial in the last year, lim-
iting MCC’s availability. In MCC+ the reasoning engine has been substituted
by Jena [24] because it follows the W3C standards OWL and RDF for resource
description, and SPARQL for querying the knowledge base.

3. Reasoning about UML models using DL

UML is defined by its metamodel, and the metamodel only establishes the elements
that may be included in each diagram as well as the well formedness rules. So,
as UML lacks formal semantics, consistency problems may arise in models and
diagrams. In order to allow manipulation of models and diagrams based on the
meaning of the diagrams and not just their visual representation, a formalism is
required.

Knowledge representation systems (KRS) are focused on providing high-level
descriptions of problem domains, in order to reason and to allow the discovery
of implicit consequences of the explicitly represented knowledge. We decided to
use KRSs that have DL variants as the concept representation language for UML
models for several reasons. The first one is that DL is decidable, that is, given
a concept definition, it is possible to determine if this definition is consistent or
not with the existing concept definitions. Given an instance definition, it can also
be decided which is the concept definition that suits it most. DL also offers con-
cept subsumption, that is, it builds a concept hierarchy by classifying their defini-
tions, finding which are the more general concepts for a specific concept; we use
subsumption when modeling generalizations between metaclasses. Finally, DL sup-
ports open-world semantics; this means that when translating UML models, con-
sidering that these models are rarely syntactically complete, we are able to specify
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incomplete instances, inferring the rest of the instance specifications from the con-
cept definitions.

Even though reasoning on UML class diagrams using DL is EXPTIME-hard [4],
the complete size of the metamodel is bounded to around 250 classes and each con-
sistency check is independently applied, so the complexity of the reasoning only
depends on the number of elements defined in the user defined model at hand.
Moreover, MCC+ deals with only a part of the UML metamodel — class, compo-
nent, state and sequence diagrams — so a universe of approximately 100 metamodel
classes is considered. For the consistency checks already implemented, MCC+ cur-
rently deals with around 30 classes.

Modern DL reasoning engines are quite efficient, using tableau-based algo-
rithms [13]. This is a key point when arguing about tool usability, as results of
model checking should be available in a reasonable amount of time. Various rea-
soning engines based on description logics have been implemented, each with its
own expressive power [14, 17, 19, 24]. We can take advantage of these tools and
integrate them with existing UML CASE tools in order to be able to reason au-
tomatically about UML models. Each of these systems has a concept specification
language that allows the definition of the terminology to be used in the creation of
knowledge bases, where inferences can be performed later. The set of concept defini-
tions is called the Terminological-Box (Tbox ). The part of the knowledge base that
contains the individuals that instantiate the concepts defined in the Tbox, is called
the Assertional-Box (Abox ). The Abox contains extensional knowledge about the
domain of interest as a finite set of expressions relating concepts and relationships
to individuals.

Figure 1 illustrates the relationship that exists between the UML metamodel
and different user model diagrams. The metamodel shown is just a small part
of the complete UML metamodel; we have included some of the metaclasses and
meta-associations necessary for the specification of class, component and sequence
diagrams. The metamodel is completely specified using class diagrams, and each
element created in a user model instantiates the corresponding metaclass. For
example, in the class diagram, ShoppingCart is a UML class, instantiating the
UML metaclass Class. The association between ShoppingCart and Customer is
an instance of the Association metaclass. The generalization relationship be-
tween Customer and PremiumCustomer instantiates the metaclass Generalization.
These <<instantiate>> relationships also apply to the elements used in other dia-
grams. For example, in the component diagram, the component Order is an instance
of the Component metaclass. In the sequence diagram, the objects instantiate the
Object metaclass.

Figure 2 shows the translation into DL of a small part of the UML metamodel in
Fig. 1, so it is part of the Tbox. ModelElement, the metaclass from which all meta-
classes inherit, defines an attribute name. Model is by definition a Model-Element,
as it inherits from this class, but it also defines the role owned-element, as a model
is a namespace. In the same manner, Class is a ModelElement and defines two
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Fig. 1. Relationship between the UML metamodel and user models.

attributes: isAbstract and isLeaf. In the definition of the Object concept, qual-
ified role restrictions are used to enforce the fact that an Object can only be the
instance one Class.
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(implies ModelElement (a name))
(implies Model

(and ModelElement (all owned-element ModelElement)))

(implies Class
(and ModelElement
(a isAbstract)
(a isLeaf)))

(implies Object
(and ModelElement
(exactly 1 instance-of)
(all instance-of Class)))

Fig. 2. Part of the Tbox for Fig. 1.

Figure 3 shows a class diagram for an ATM machine model taken from [26]
and originally developed by Russell Bjork for a computer science course at Gordon
University [5]. Figure 4 shows the translation into DL of a part of this class diagram,
and so it is part of the Abox. All the diagrams belong to a model called model1, so
an instance of this concept is created and its name is set to the value “model1”.

Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String,
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestReEnterPIN()
+reportCardRetained()
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String,
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+retainCard()
+checkIfCardInserted()

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

0..*

1

1

1

1

1
1

1

1

1

1

1

Fig. 3. Class diagram for an ATM machine model.



December 10, 2008 9:9 WSPC/117-ijseke 00382

; Instance representing model1
(instance inst-model1 model)
(constrained inst-model1 name-of-model1 name)
(constraints (string= name-of-model1 “model1”))

; Instance representing ATM class
(instance inst-ATM class);
(constrained inst-ATM name-of-ATM name)
(constraints (string= name-of-ATM “ATM”))
(related inst-model1 inst-ATM owned-element)
(constrained inst-ATM abstract-ATM isAbstract)
(constraints (string= abstract-ATM “false”))
(constrained inst-ATM leaf-ATM isLeaf)
(constraints (string= leaf-ATM “true”))

; Instance representing anATM object
(instance inst-anATM object)
(constrained inst-anATM name-of-anATM name)
(constraints (string= name-of-anATM “anATM”))
(related inst-model1 inst-anATM owned-element)
(related inst-anATM inst-ATM instance-of)

Fig. 4. Part of the Abox (for Fig. 3).

The second set of definitions corresponds to the translation of the class ATM.
First, its name is set to the value “ATM”. It is then related to the model instance
inst-model1, as the ATM class belongs to model1. Extra details about the ATM class
are stored: in this case the fact that the class is concrete and that it is a leaf. The
last set of definitions corresponds to the translation of the object anATM. The name
of the object instance is set to the value “anATM”. This object also belongs to
model1, so it is also related to inst-model1 using the owned-element role. Finally,
the relationship between ATM and anATM is registered, relating the instances of the
two model elements using the instance-of role.

The UML metamodel is completely defined in terms of class diagrams [22], and
according to Cali et al. [6], class diagrams can be completely described in terms
of DL, so the UML metamodel can be completely described in terms of DL. Also,
all well formed user-defined UML models are instantiations of the UML meta-
model [23], so all user defined UML models can also be completely described in
terms of DL. In summary, both the Tbox and the Abox can be built using the infor-
mation contained in the UML metamodel and the user defined model, respectively.
Consistency checks are then implemented as queries to retrieve objects that obey
certain conditions.

4. The Tool: MCC+

MCC+ (Model Consistency Checker) is an interactive tool that allows consistency
checking at the UML level. This has the advantage that the system abstractions
can be captured and shown in a visual manner. As a result, the authors believe that
by giving the designer the opportunity to deal only with UML diagrams will make
it easier to maintain evolving systems, as designers only focus on the modeling level
of abstraction.
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4.1. Existing functionality

A set of 18 consistency relationships not forced by the UML metamodel defini-
tion has been identified [26]. From this list, four consistency checks are already
implemented as part of MCC+: abstract object, disconnected sequence diagram,
disconnected state diagram, and incompatible behavior. Abstract object refers to
the case in which an abstract class that has no concrete subclasses in the class di-
agrams of the model is instantiated in a sequence diagram. Disconnected sequence
diagram arises when a sequence diagram has one or more objects that are not con-
nected to the main diagram; it usually occurs when a lifeline is accidentally deleted.
Disconnected state diagram ocurrs when a diagram has one or more states or tran-
sitions that are not connected with the main diagram; it usually happens when a
state or a transition are accidentally deleted. Incompatible behavior arises when
the ordered collection of stimuli received by an object in a sequence diagram does
not exist as a sequence of events in the protocol state machine of the object’s class.

The definition of these consistency checks was originally for UML 1.5 so they had
to be updated to comply with the new UML specification (2.0). Most changes had
to be applied to the predicates that involve sequence diagrams, as the metamodel
for this diagram changed dramatically.

4.2. Design decisions

The Poseidon plug-in API is used to obtain the objects that represent the user model
elements. These are passed to the translator, a singleton instance that returns the
translation of the objects into DL. The translator instance uses the model element’s
dynamic type in order to determine which individual translation method should be
invoked. This allows the seamless integration of translation methods for new element
types and the application of changes to existing translations.

Model loading from the modeling tool into the inference engine and model check-
ing by querying the knowledge base are independent actions. Any number of consis-
tency checks can be applied without the extra overhead of re-translating the model
between checks. The user only needs to reload the model when major changes are
introduced.

In order to ensure usability, inconsistency detection and solution is a user acti-
vated process. This is due to the fact that while a model is being edited, it is usually
in a temporary inconsistent state. Activating inconsistency detection automatically
would imply developing predicate application strategies, for example, defining mile-
stones at which model consistency should be checked, or macro-changes after which
consistency should be checked. The development of this type of heuristics is an open
problem [12]. Our decision has two direct consequences: the user is always in control
and the implementation of the tool is simpler.



December 10, 2008 9:9 WSPC/117-ijseke 00382

Fig. 5. MCC+ components.

4.3. Implementation issues

Figure 5 shows the components that make up the MCC+ tool and the relationships
between MCC+, Poseidon and Jena.

• Query Visual Interface: interface that provides easy access to existing inconsis-
tency detection predicates in an encapsulated manner. Also allows Tbox loading.

• Fact Extractor: provides facts needed in order to populate the Abox using a
user-created UML model.

• Query Processing: acts as the communication channel between the Query Visual
Interface and Jena.

Poseidon provides a graphical interface where UML models can be designed by
dragging and dropping UML element templates. This software has a large amount
of users because, even though it is not open-source, it is free (Community edition)
and evaluation (Standard edition) versions are available.a It is implemented in Java,
which makes it completely portable. This software is robust, currently version 4.2,
and releases updates on a monthly basis. It also provides facilities for third-party
extensions, through a plug-in API which allows access to all model elements and
the graphical display. This makes MCC+ user-friendly for previous Poseidon users,
as we only require that the user know UML and invoke the consistency checker
through the existing, known interface.

Jena was chosen as the inference engine because it uses W3C standard languages,
such as OWL-DL for ontology definition and SPARQL for queries. It provides a
series of classes and methods that allow easy model manipulation, managing classes

aThe plug-in requires the Standard edition, since plug-ins cannot be loaded into the Community
version.
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and instances, creating constraints, applying queries, reading and writing OWL-DL
files, and may offer other functionalities defined by its API.

Creating a model in Jena is done through the class ModelFactory. It provides
access for creating different types of models such as RDF and OWL, among others.
In our case, we use the createOntologyModelwith the OntModelSpec.OWL DL MEM

parameter that specifies that an OWL-DL model will be managed in main memory.
This method returns an instance of the Model class representing our ontology. This
class also contains a series of methods that allow us to create classes, properties,
data types, and constrains.

As an example, Fig. 6 shows the creation of a fragment of the Tbox represented
in Fig. 7 using Jena’s API.

//First we create an OWL-DL ontology
OntModel umlModel = ModelFactory.createOntologyModel(OntModelSpec.OWL DL MEM);
//We define a string that will be the basis for all other elements
String base = ”http://mcc/”;

//Now we create the class ModelElement using a String
OntClass ModelElement = umlModel.createClass(base + ”ModelElement”);
//We create the attribute name and we define it as a String
DatatypeProperty atributoName= umlModel.createDatatypeProperty(base +”atributoName”);
atributoName.addRange(XSD.xstring);
//Finally we state that ModelElement has a name
umlModel.createCardinalityRestriction(ModelElement.getURI(), atributoName, 1);

//We create the ontologic class Object
OntClass Object = umlModel.createClass(base + ”Object”);
//We state that Object inherits the properties from ModelElement
Object.addSuperClass(ModelElement);
//Finally we create the constraints over instance of
umlModel.createCardinalityRestriction(Object.getURI(),instance of, 1);
umlModel.createAllValuesFromRestriction(Object.getURI(),instance of, Class);

Fig. 6. Partial Tbox created using Jena’s API.

<!– ModelElement concept definition –>
<rdf:Description rdf:about=”http://mcc/ModelElement”>

<rdf:type rdf:resource=”http://www.w3.org/2002/07/owl#Class”/>
<rdf:type rdf:resource=”http://www.w3.org/2002/07/owl#Restriction”/>
<owl:onProperty rdf:resource=”http://mcc/atributoName”/>
<owl:cardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>1
</owl:cardinality>

</rdf:Description>

<!– Object concept definition –>
<rdf:Description rdf:about=”http://mcc/Object”>

<rdf:type rdf:resource=”http://www.w3.org/2002/07/owl#Class”/>
<rdfs:subClassOf rdf:resource=”http://mcc/ModelElement”/>
<rdf:type rdf:resource=”http://www.w3.org/2002/07/owl#Restriction”/>
<owl:onProperty rdf:resource=”http://mcc/instance of”/>
<owl:cardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”¿1¡/owl:cardinality>
<owl:allValuesFrom rdf:resource=”http://mcc/Class”/>

</rdf:Description>

Fig. 7. Partial Tbox in OWL-DL.
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Similarly, Jena provides an API for creating model individuals that populate
the Abox. For this purpose it is necessary to use the OntClass objects already built
and ask it to create an individual with a specific name. Afterwards, we can add the
values of these individuals’ attributes and properties. Figure 8 shows a fragment of
the Jena code used for creating the OWL-DL individual presented in Fig. 9.

OntClass Class, Model;
OntProperty owned element;
...

Individual model1 = Model.createIndividual(”inst-model1”)
...

Individual client = Class. createIndividual(”inst-Client”);
client.addProperty(attribute name, ”Client”);
client.addProperty(owned element, model1);
client.addProperty(attributeIsAbstract, false);
client.addProperty(attributeIsLeaf, false);

Fig. 8. Creation of an individual of class Client using the Jena API.

<!– Individual representing the Client class –>
<rdf:Description rdf:about=”http://mcc/inst-Client”>

<rdf:type rdf:resource=”http://mcc/Class”/>
<j.0:attributeName>Client</j.0:attributeName>
<j.0:owned element rdf:resource=”http://mcc/inst-model1”/>
<j.0: attributeIsAbstract>false</j.0: atributeIsAbstract>
<j.0: attributeIsLeaf>false</j.0: attributeIsLeaf>

</rdf:Description>

Fig. 9. OWL-DL individual of the Client class.

Similar to the one for creating ontologies, Jena provides an API for creat-
ing and executing SPARQL queries. For this purpose it is necessary to use the
QueryFactory for creating a query from a String, and QueryExecutionFactory

for instantiating the execution of a query created over a certain model. Afterwards,
and using the object returned by QueryExecutionFactory, the query can be exe-
cuted and we obtain a result set that can be sequentially traversed. If we execute
the code in Fig. 10 we will obtain the SPARQL query in Fig. 11, and executing the
query on the model we will obtain the result “Name: Client”.

5. Application Example

The development of meshing technologies has become an intense theoretical and
practical research area. In spite of its complexity, and perhaps due to its complexity,
only in the last years the development of meshing software has been researched
from the software engineering point of view, mainly by using formal methods for
improving reliability of mesh generation software [10], by applying object-oriented
design and programming [2], and by proposing a meshing tool architecture for a
family of meshing tool [3].
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String NL = System.getProperty(”line.separator”);
String queryString = ”PREFIX j.0: <http://mcc/>” + NL +

” SELECT ?name ” +
” WHERE { ” +
” <http://mcc/ins-Client> j.0:attributeName?name” +
” } ”;

Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, umlModel) ;
try {

ResultSet rs = qexec.execSelect() ;

while(rs.hasNext()){
QuerySolution rb = rs.nextSolution() ;
Resource name = rb.getResource(”name”).getString();
System.out.println(”Name: ” + name);

}

} finally{
qexec.close() ;

}

Fig. 10. Building a SPARQL query using Jena.

PREFIX j.0: <http://mcc/>

SELECT ?name
WHERE { <http://mcc/ins-Client> j.0:attributeName ?name }

Fig. 11. SPARQL query.

5.1. The meshing tool

One of the meshing tools that we have developed using object-oriented techniques
is a tree growth mesh generator (TGMG). We here describe part of the TGMG
UML model and how its design was checked using MCC+.

The auxin is a plant hormone that influences the regulation of the tree cell divi-
sion and cell expansion. There is a mathematical model for the auxin transport in
conifer trees including gravity dependence that was implemented using Comsol [8],
and TGMG generates the appropriate meshes for this model.

The tree growth modeling process is as follows:

• Generate (or read) a proper initial surface mesh that represents the tree surface
• For each simulation step:

— Simulate the phenomena using Comsol in order to compute the offset of each
mesh point. The offset is defined by a vector.

— Build the new surface mesh

* Compute the new coordinates of each mesh point
* Detect possible collisions
* Solve the collisions

— Improve/refine/derefine the mesh according to the modeling requirements
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Fig. 12. Moving boundary meshing tool.

The tool’s user interface lets the user choose from a list of possible moving
boundary, improvement and refinenement strategies. Among the moving boundary
strategies, we can find LocalVerification and NoVerification. Figure 12 shows
an example of a sequence of tree stem meshes where the left one represents the
initial situation and the following are two possible simulated growths.

For the tool both modeling elements and algorithms were designed as classes in
order to achieve modifiability by extensibility. This diverse set of classes and their
sophisticated interaction yield a complex model, possibly difficult to test. The tool
class diagram has around 30 classes and it is shown in Fig. 13. Figure 14 shows the
state diagram for the Mesh class; here the correct use of the mesh is described: first
it needs to be initialized, then we can ask for its nodes, then query it for its edges
and only then it is possible to check for its values of volume zero generated when
two neighbor mesh elements overlap.

Finally, Fig. 15 shows a sequence diagram representing the Move operation using
the LocalVerification algorithm. We first apply the initialization of the moving
algorithm to be used which, in this case, is the LocalVerificationalgorithm. Next,
by using this algorithm, all edges are traversed so that the first inconsistency can
be detected, if it actually exists. Once a proportion value is determined, all vertices
are traversed so that they are moved a distance proportional to this value. If there
is no collision, all vertices are moved following the complete distance specified by
the simulation step.
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Fig. 13. Class model for the TGMG tool.

Fig. 14. State diagram for the Mesh class.

5.2. Applying MCC+

Using MCC+ requires three steps: loading the plug-in, translating the user defined
model into DL assertions, and applying concrete consistency checks to the model.
These three operations are applied at different times during the user work, and
optimizing one of them may make the others worse. In the design of MCC+ we
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Fig. 15. Sequence diagram for the Move operation.
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take the approach of including as much processing as possible before the model
checking, so that this process that may be repeatedly applied can be faster.

When loading MCC+ as a plug-in, it translates the UML metamodel into DL
and loads it as the Tbox; this operation is independent of the model at hand. The
complete operation currently takes around ten seconds.

Once the model is complete or partially complete, or when the user decides
to apply certain consistency checks, the model needs to be translated into DL in
order to populate the Abox. In the case of the meshing tool, the whole assertion
generation took around five seconds.

Loading the Abox not only inserts assertions into Jena, but also calculates all
the implicit knowledge and stores it in the knowledge base. This extra work makes
it possible to save processing time during model consistency checking. This design
decision allows MCC+ to balance the work load, provided that multiple consistency
checks may be applied before the model is changed and it should be reloaded. All
this performance information certainly depends on the power of the computer at
hand, but it provides a clear idea of a reasonable response time, mainly if compared
to the large amount of time that may be saved during development due to fewer
inconsistencies in the models.

The example in Figs. 13–15 represents only a small portion of the complete
model for representing the application. The presence of inconsistencies in these
diagrams may clearly result in several errors during the application development.
All implemented consistency checks were applied to the example model. For the
three basic checks, the results were successful. However, when the “incompatible
behavior” was applied, the result was what is shown in Fig. 16.

Fig. 16. Applying “incompatible behavior” consistency check to Figs. 13, 14 and 15.
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Fig. 17. Corrected sequence diagram for the Move operation.
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Fig. 18. Applying “incompatible behavior” consistency check to Figs. 13, 14 and 17.

The observed results indicate that it is necessary to initialize the instance of the
Mesh by executing the class constructor before invoking any other operation. The
result of making this modification is shown in Fig. 17.

We reapply the “incompatible behavior” check and the results obtained are
shown in Fig. 18. The errors reported reveal that according to the state diagram in
Fig. 14, after instantiating the Mesh class, we get to the “Initialized” state and it
does not have the “getArcos” operation as a valid output. Thus, it can be deduced
by examining both diagrams, the problem is that we need to invoke the “getNodos”
operation before invoquing “getArcos”. Fixing this error in the sequence diagram,
we get the one shown in Fig. 19. Rechecking for “incompatible behavior” we no
longer have any errors of this type, as shown in Fig. 20.

6. Conclusion

We offer a generic tool for working with evolving UML models, with functional con-
sistency checking schemes. Unlike other studies that are dedicated to the exhaustive
study of a few consistency problems with a certain technique, we can detect a large
set of possible consistency problems and we use the same approach to deal with
them all. We believe that this approach will be considered useful by users, as it
provides uniform support for the different consistency problems, with the possibil-
ity of integrating additional consistency detection easily. By using this tool, users
can generate models that are consistent through a user-friendly tool.

The currently available version of MCC+ is an academic prototype, providing
a reduced list of implemented consistency checks. The remaining identified checks
must also be added to the tool. New checks concerning other diagrams can also be
included, as well as translating new diagrams.
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Fig. 19. Final sequence diagram for the Move operation.
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Fig. 20. Applying “incompatible behavior” consistency check to Figs. 13, 14 and 19.

In this paper we showed that MCC+ is not only able to check academic toy
examples, but also real world real size complex examples in a reasonable time.
Meshing tools are very good candidates for consistency checking because they are
inherently complex pieces of software, naturally object-oriented and potentially
composed of millions of objects at runtime.
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