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Identification of nonlinear dynamic coefficients in plain journal bearings
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Abstract

This work proposes a framework to the numerical identification of nonlinear fluid film bearing parameters from large journal orbital

motion (20–60% of the bearing clearance). Nonlinear coefficients are defined by a third order Taylor expansion of bearing reaction

forces and are evaluated through a least mean square in time domain technique. The journal response is obtained from a computational

fluid dynamic (CFD) model of a plain journal bearing on high dynamic loading conditions. The model considers fluid–structure

interaction between the fluid flow and the journal. The case in study considers a laboratory test rig. Results indicate that nonlinear

coefficients have an important effect on stiffness and damping. It was found a change on nonlinear behavior occurred when the Oil Whirl

phenomenon starts, which it is not seen in classical linear models.
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1. Introduction

Hydrodynamic-type journal bearings are widely used in
rotating machinery. This kind of bearing supports large
radial loads under high-speed operating conditions. In
some special conditions, they suffer from self-excited
vibrations which may lead to catastrophic failures. In
order to prevent such vibrations, a full understanding of
the instability mechanisms is needed. Such knowledge may
be used during the design stage and later during operation
as a diagnosis tool.

In order to get accurate predictions of the dynamics of
these bearings, it is necessary to estimate the forces
produced by the fluid flow. These forces can be expressed
in terms of hydrodynamic coefficients related to stiffness
and damping. Linearized stiffness and damping coefficients
are widely used for the stability and response analysis of
rotor bearing systems.

Linearized coefficients can be predicted analytically by
means of a perturbation about the equilibrium. Childs [1],
Yamamoto and Ishida [2] described a methodology for the
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determination of linearized coefficients based on the long
bearing and short bearing approximations. Rao et al. [3]
determined linearized coefficients for finite length bearings
based on an harmonic combination of the long and short
bearings approximations (the inverse sum of the inverse of
both pressures) initially proposed by Hirani et al. [4].
Numerical techniques may produce very accurate results,

i.e., finite differences or finite elements methods. Linearized
coefficients are predicted by means of a numerical
integration of pressure gradients which are determined by
a first order perturbation of the pressure distribution.
Turaga et al. [5] predicted linear coefficients with a finite
element method considering roughness on the surface. Rao
and Sawicki [6] evaluated linear coefficients of a plain
journal bearing considering cavitation effects and later
(Rao and Sawicki [7]) for different types of multi-lobe
bearings. Singal and Khonsari [8] presented a methodology
for the determination of linearized coefficients considering
the effect of inlet temperature and viscosity.
Rotors mounted on journal bearings experiment large

vibrations amplitudes when traversing critical speeds.
Classical numerical or analytical derivation of linearized
dynamic coefficients may not be reliable for troubleshoot-
ing predictive analysis on design state. Pettinato et al. [9]
studied the effect of orbit magnitude on experimentally
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derived bearing coefficients for a highly preloaded three-
lobe journal bearing, they obtained that the coefficients
remains linear for orbit sizes ranging up to 30% of
the bearing clearance. San-Andrés and Santiago [10]
determined experimentally the coefficients of a journal
bearing under high dynamic loading conditions inducing
large orbital motion (50% of bearing clearance). Their
results agree favorably with analytical derived linearized
coefficients.

In order to determine the validity of the linear model, it
is necessary to study first the effect of nonlinearities on oil
film forces. Choy et al. [11] predict nonlinear bearing
stiffness coefficients of the order of odd power perturba-
tions displacements. Linear stiffness was evaluated at the
equilibrium position, while exact stiffness was obtained
by a finite perturbation approach. Numerical results [12]
were evaluated on different conditions in terms of the
external load, rotational speed and axial misalignment.
They show that for displacements far away from the
equilibrium position, nonlinearities on oil film forces are
significant. Sawicki and Rao [13] studied the variation of
nonlinear stiffness and damping coefficients around the
equilibrium position with a finite differences method. Their
results indicated that oil film nonlinearities affect
the journal motion at low eccentricity ratios (high
Sommerfeld number) with a wide variation on the stiffness
and damping coefficients.

In this work the linear and nonlinear stiffness and
damping coefficients are estimated from medium to large
journal orbit (whirl orbit ratio from 20% to 60% of the
bearing clearance) on operating conditions, by means of a
least mean square in time domain technique originally
proposed by Zhou et al. [14]. It considers a 3D plain
journal bearing under transient conditions with fluid–
structure interaction between the lubricant and the journal.
Solving the fully coupled solution of fluid flows with
structural interactions give us a powerful tool that allows
to directly obtain the nonlinear transient response under
different operation conditions.

The remainder of this work is organized as follows.
Section 2 presents general antecedents and related research
on journal bearing coefficients. Section 3 presents the
nonlinear model proposed and the parameter identification
method used. Section 4 shows a general outline of the
numerical identification method proposed. Section 5
presents the case in study, defining the journal bearing
properties and dimensions. Section 5.1 provides numerical
issues, assumptions and properties used in the computa-
tional fluid dynamics (CFD) simulation. Section 5.2 shows
the numerical results obtained in the CFD simulation in
terms of both the nonlinear transient journal orbit and
pressure distribution for different journal eccentricities.
The numerical results are compared with analytical
expressions for pressure distribution with the long, the
short and the harmonic combination bearing approxima-
tions. The predicted linear stiffness and damping coeffi-
cients are compared with linearized analytical expressions
derived from the short and long bearing approximations.
Nonlinear damping and stiffness coefficients are deter-
mined and the effects of nonlinearities in the journal
response are studied. Finally, the conclusions and forth-
coming work are presented.

2. Theoretical background

This section contains the theoretical background neces-
sary for the validation of the numerical results. In order to
be self-contained we explain some concepts already
formulated in literature.
The Reynolds differential equation for a dynamically

loaded journal bearing with the assumptions of isoviscous,
Newtonian, incompressible and laminar flow is given as
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where R is the journal radius, y is the circumferential
coordinate in a fixed frame, h is the film thickness, z is the
axial coordinate, m is the fluid dynamic viscosity, and U is
the journal tangential velocity.
Pinkus and Sternlicht [15] presented some analytical

solutions to Eq. (1), but an analytical solution of Eq. (1)
for arbitrary geometry cylindrical bearings is in general not
feasible. Most frequently, numerical methods are employed to
solve the Reynolds equation and to obtain the performance
characteristics of bearing configurations of particular interest.
Eq. (1) can also be solved using the assumption of 1-D

bearing, i.e., infinitely long or infinitely short bearing
approximations. Hori [19] [1959] simplified the equation
assuming that the length of the bearing is infinitely long
(the long bearing approximation). Funakawa and Tatara
[20] [1964] explained experimental results more accurately
assuming that the bearing is infinitely short (the short

bearing approximation). The short bearing approximation
gives accurate results for ratios of the bearing length and
diameter under 0.5 (L=D on Fig. 1) and for small to
moderate values of the journal eccentricity (eccentricity
ratios e=co0:7). The long bearing approximation gives
accurate results for values of ðL=DÞ higher than 2.
Industrial bearings usually have a ratio L=D in the range
ð0:5; 1Þ, for such values, Eq. (1) is solved numerically.
In the short bearing approximation, it is considered that

the pressure gradient in the z direction (Fig. 1) is
considerably larger than that in the y direction ðqp=qy5
qp=qzÞ. The pressure distribution can be obtained by direct
integration of the Reynolds equation after ignoring the
term representing the pressure variation in the y direction:

Psðj; zÞ ¼
3m

c2ð1þ k cosjÞ3

�ð2 _k cosj� kðoþ 2_yÞ sinjÞ z2 �
L2

4

� �
, (2)

where k is the journal eccentricity ratio ðe=cÞ and j is the
circumferential coordinate in a rotating frame (Fig. 1). The
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Fig. 1. Oil film forces and journal loci: (a) pressure distribution; (b) pressure distribution and oil film force.
long bearing approximation assumes that the pressure does
not change in the z direction (i.e., qp=qz ¼ 0):

PlðjÞ ¼
�6mr2

c2ð1þ k cosjÞ2
_k cosj�

k
ð2þ k2Þ

ðo� 2_yÞ sinj
� �

�ð2þ k cosjÞ. (3)

As previously mentioned, for L=D in the range ð0:5; 1Þ both
the short and long bearing approximations are inadequate.
Hirani et al. [4] defined an expression for the pressure
distribution in a finite length bearing by combining
harmonically the short and long bearing solutions in
the form:

1

P
¼

1

Ps
þ

1

Pl
. (4)

From the given expressions for the pressure distribution we
know that when the journal is rotating in the equilibrium
position ð _k ¼ _j ¼ 0Þ, the peripheral pressure distribution
in the z plane is symmetrical about the point j ¼ 0 to p and
is negative in the zone from j ¼ p to 2p in Fig. 1. This
pressure distribution is called Sommerfeld condition and
holds when the pressure magnitude is very small. However,
in practical journal bearings in the zone from j ¼ p to 2p
may occur evaporation of the lubricant and axial airflow
from both ends, this leads to the pressure in this zone to be
almost zero (i.e., the atmospheric pressure) instead of
negative. Taking this situation into consideration, the
pressure in the zone from j ¼ p to 2p is set as p ¼ 0, which
is known as the Gumbel condition.

The fluid film forces (Fig. 1) are given by
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where a ¼ p for the Gumbel condition (p-film) and 2p for
the Sommerfeld condition. These expressions for the fluid
film forces are valid only in the equilibrium position. Under
dynamic conditions the film length would vary.
The Sommerfeld short bearing approximation results in

the following expressions for the oil film forces:
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and for the Sommerfeld long bearing approximation,
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The equilibrium position of the journal center is deter-
mined by the balance between the gravity load W and the
oil film forces ðF 0;N0Þ. The equilibrium position is given by
the bearing geometry and by the Sommerfeld number
S ¼ ðr

c
Þ
2mn=pm, where n(rps) is the rotational speed and

pm ¼ F0=2rl is the average bearing pressure. To determine
the bearing dynamic coefficients, the expression for the
equilibrium forces are derived when the rotor deviates
slightly from the equilibrium and then are linearized.

3. Numerical identification method

Stiffness and damping coefficients are obtained from a
Taylor series expansion of the bearing fluid film forces in
terms of both perturbation displacements and velocities.
Nonlinearities in bearing forces are obtained by including
high order displacements and velocity perturbations on oil
film formula. choy et al. [11] included coefficients of odd
power (3rd, 5th, 7th) for displacements. Sawicki and Rao
[13] included the first and second order terms for
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Fig. 2. Proposed scheme.
displacements and velocities, they also considered the cross
combination terms (i.e., DxDy). In this work we considered
until third order terms on the Taylor expansion. The oil
film force increment (dynamic oil film force) is a function
of the displacements ðx; yÞ and velocities ð _x; _yÞ to the static
position ðx0; y0Þ, which can be represented as follows:
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where kij are the bearing stiffness coefficients, cij are the
bearing damping coefficients, and Df i is the recognized oil
film forced increment. The damping and stiffness coeffi-
cients can be represented as follows:

kij ¼ kij0 þ kijxDxþ kijyDyþ kijxxDx2

þ kijxyDxDyþ kijyyDy2, (11)

cij ¼ cij0 þ cijxD _xþ cijyD _yþ cijxxD _x2 þ cijxyD _xD _y

þ cijyyD _y2, (12)

where kij0 , cij0 are the linear stiffness and damping
coefficients. kijk, cijk are the second order nonlinear stiffness
and damping coefficients, and kijkm, cijkm are the third
order nonlinear stiffness and damping coefficients. Non-
dimensional values of these coefficients can be represented
as follows:

Kij ¼
ckij

F 0
; Kijk ¼

c2kijk

F0
; Kijkm ¼

c3kijkm

F0
, (13)
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F 0
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c3o3cijkm

F0
. (14)

The coefficients are estimated from the journal response to
an external excitation load. If the external forces acting on
the bearing are known, the oil film forces ðf x; f yÞ can be
calculated as

f x ¼ FxðtÞ �mD €x,

f y ¼ F yðtÞ �mD €y, (15)

where Fx, Fx are external excitation forces, and €x, €y are the
journal accelerations in the x and y directions. The bearing
dynamic parameters can be determined then by minimizing
the difference between f x and Df x. The correlation is made
by means of a least mean square method, the error function
is defined as [14]:

�k ¼ f xðkÞ � Df xðkÞ. (16)

The sum of the square of the errors is given by
E ¼

P4
n¼1

PP
k¼1ð�kÞ

2. The coefficients are then estimated
by minimizing this error function.
4. Proposed scheme

In Fig. 2 is outlined the proposed scheme for the
numerical identification method. The numerical model is
developed on the CFD software ADINA 8.1, and it is
defined by a fluid and a solid model. The solid model
represents the journal/shaft that is excited by two
independent sinusoidal forces. The fluid model represents
the oil film. The bearing as modelled has a plain journal
bearing.
The journal bearing properties were obtained from a real

test rig described in Section 5. Numerical assumptions,
boundary conditions and the numerical method used are
described in Section 5.1. Both the solid and fluid models
are fully coupled and solve iteratively in order to obtain the
nonlinear transient response of the bearing.
The magnitude of the excitation force is defined as half

of the bearing load (journal and shaft weight), in this way
assuring a large journal orbital motion.
Finally, the linear and nonlinear dynamic parameters are

obtained from the nonlinear journal response as described
in Section 3, by fitting a model with concentrated
parameters based on a third order Taylor expansion of
the oil film formula.

5. Case study

The bearing properties were obtained from a plain
journal bearing which is part of the Rotor Kit Bently
Nevada 2000 [16] available (Fig. 3).
This rotor contains an oil pump that feeds the journal

bearing with an inlet pressure up to 120 kPa. This pump is
connected to the oil bearing assembly which contains the
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Fig. 3. Laboratory test rig.

Table 1

Journal bearing properties

Symbol Description Value Unit

c Radial clearance 6:5 mils

D Journal diameter 1 in

L Bearing length 1 in

W Journal load 9:6 N

r Lubricant density 870 kg=m3

m Lubricant viscosity 2:5� 10�2 kg=m s

Table 2

Mesh-density sensitivity analysis

ðr; zÞ ¼ ð5; 10Þ ðy; rÞ ¼ ð100; 3Þ ðy; zÞ ¼ ð100; 20Þ

y Pmax

(Pa)

Dif.

(%)

z Pmax

(Pa)

Dif.

(%)

r Pmax

(Pa)

Dif.

(%)

60 19 438 5.031 10 18 262 1.191 3 18 262 5.496

80 18 608 0.546 20 18 092 0.249 4 18 426 4.647

100 18 492 0.081 30 18 046 0.006 5 19 170 0.797

120 18 507 – 40 18 047 – 6 19 324 –

Maximum pressure vs number of divisions ðr; y; zÞ.
bearing supporting structure and the oil recipient. Shaft
rotational speed varies between 500 and 8000 rpm. The
journal bearing properties are listed in Table 1.

5.1. CFD simulation

Although the scope of CFD applications include heat
transfer, variable fluid properties, no Newtonian fluids and
turbulent model, this work focuses on determining the
dynamic bearing coefficients. The model considers constant
fluid properties, no slip on the boundaries, incompressible
and laminar flow.

In a realistic model it would be necessary to implement a
thermohydrodynamic analysis of the bearing. Since the
lubricant viscosity strongly depends on temperature and
the assumptions of constant viscosity or effective viscosity
become untenable.

The model does not consider cavitation, so is expected to
obtain a solution similar to the analytical one with the
Sommerfeld condition ð2pfilmÞ.

The fluid external wall is fixed and the moving (interior)
wall interacts with the solid and has a tangential velocity
equal to the rotational speed. Side walls have zero pressure.

The external wall of the solid model has a fluid–solid
interaction condition. The solid model is modelled with
body load gravity and the hypothesis of large displace-
ments and small strains kinematics which implies a total
Lagrangian formulation.
A transient simulation was performed in ADINA 8.1

2003 [17]. Time integration is handled through a second
order trapezoidal method (TR-BDF Trapezoidal Rule
Backward Differentiation Formula). The iteration method
used is the Newton–Raphson method, with a direct solver
based on the Gauss elimination method (solver sparse of
ADINA) which preserves the matrix sparsity, thus redu-
cing dramatically the storage and computer time. The
interaction between the fluid film and the solid parts of
the bearing is solved by using an iterative method. In this
solution, the fluid and solid equations are solved individu-
ally and sequentially, using the latest information provided
from another part of the coupled system considering
displacements and stress relaxation factors. This iteration is
continued until convergence is reached. Convergence speed
was accelerated by using relaxation factors of 0.5 for
displacements and stress.
Mesh aspect ratio influences the quality of the results and it

is usually chosen in a value below 2. Such rule is difficult to
follow in this application due to the magnitude difference
between the thickness of the fluid and the dimensions of the
bearing. It would need extremely large number of mesh
elements. Previous works show that it is possible to handle
greater mesh aspect ratio in the journal bearing case, Keogh
et al. [18] used a mesh aspect ratio of 500, because flows change
very slowly in circumferential and axial directions. Mesh
density was selected after a sensitivity analysis on the
maximum pressure as a function of the number of divisions
in the circumferential ðyÞ, radial (r) and axial (z) directions with
the journal fixed in the center position. Results are given in
Table 2 with respect to the situation with highest density mesh.
The solution is more sensitive to the circumferential and

radial mesh density. The final fluid model was defined with
5� 120� 10 ðr; y; zÞ divisions (mesh aspect ratio of 77),
with a total of 36 000 3D fluid elements. The solid model
was defined with 3� 120� 2 ðr; y; zÞ divisions, with a total
of 480 3D solid elements.
Total integration time was defined until a permanent

oscillation orbit was reached. Fig. 4 shows that for a
nondimensional time ðt ¼ otÞ of 400 this condition is
reached. In each simulation 1000 time steps were
performed with a nondimensional time step of Dt ¼ 0:4.
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5.2. Numerical results

Fig. 5 shows the free response of the journal obtained at
different rotational speeds with the CFD model. The rotor
shows sub-harmonic vibrations as it is shown in Fig. 6. The
dominant frequency is 0:48� which corresponds to the
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Fig. 4. Journal oscillation orbit at 1000 rpm.
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Fig. 5. Journal whirl orbit: (a) 1000 rpm; (b
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3000 rpm starts the Oil Whirl phenomenon. This is
consistent with the experimental experience that shows
that there is a velocity from which the Oil Whirl starts. Let
us recall that this is a self-excited vibration since no
dynamic external forces act on the system.

Fig. 7(a) shows the pressure distribution obtained
numerically with a rotational speed of 1000 rpm, at this
velocity the equilibrium position has an eccentricity ratio of
k0 ¼ 0:37. The pressure distribution is compared to the
expressions for short bearing, long bearing and their
harmonic combination (Fig. 7). The numerical solution is
very similar to the one obtained with the harmonic
combination.
Fig. 7. Pressure distribution using different models at 1000 rpm and k ¼ 0

combination.
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Fig. 8. Average pressure distribution in the z direction, at 1000 rpm for
A sensitivity analysis was performed for others eccen-
tricity ratios as it is shown in Fig. 8, where the average
pressure is plotted in the z direction for three different
eccentricity ratios.
Fig. 8 shows that for this bearing configuration, i.e.,

L=D ¼ 1, the harmonic combination gives the best
approximation near the equilibrium position and for large
eccentricity ratios. From this, it can also be seen that the
short bearing and long bearing approximation are valid
only for small eccentricity ratios, for large eccentricity
ratios these approximations give pressure values to high.
In the identification parameter procedure the journal

was excited by two independent sinusoidal forces in the
:37. (a) Numerical; (b) short bearing; (c) long bearing; (d) harmonic
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three different eccentricities. (a) k ¼ 0:13; (b) k ¼ 0:37; (c) k ¼ 0:54.
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horizontal x and vertical y directions. The magnitude of the
excitation force was defined as half of the bearing load (journal
and shaft weight). Fig. 9 shows forced response before
(2000 rpm) and after (2500 rpm) the Oil Whirl phenomenon.

Journal coefficients were determined by minimizing the
quadratic error function between f and Df as was defined
in Section 3. The optimization method used is the
generalized reduced gradient, GRG2, presented by Lasdon
and Waren (1979 [21], 1984 [22]) which solves an
160 180 200 220 240 260
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Fig. 10. Fitting of (a) Df x and (b) Df y for a rota
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optimization problem with a nonlinear objective function
and nonlinear constraints. Fig. 10 shows the resultant
fitting of Df x and Df y when a model with only linear
coefficients is used and considering the nonlinear terms.
Fig. 11 shows the same as Fig. 10 but after Oil Whirl.
The results show a much better fit with the nonlinear

model. It is also possible to see that the Oil Whirl

phenomenon does not affect the fitting and therefore
neither the parameter identification procedure.
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Fig. 12. Nondimensional linear stiffness coefficients. (a) Kxx0
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Figs. 12 and 13 show the linear stiffness and damping
coefficients obtained with the proposed numerical method.
The coefficients are compared to the analytical values
expected for the short and long bearing approximations.

Linear stiffness coefficients are surprisingly close to
the analytically linearized coefficients for the short
bearing approximation. On the other hand, linear damping
coefficients are between the long and the short bearing
approximations for Cxx and they are closer to the short
bearing approximation for Cyy.

Nonlinear stiffness coefficients obtained are shown in
Fig. 14. A change in the coefficients values can be observed
when the Oil Whirl phenomenon starts ðS ¼ 0:21Þ, this
shows a change in the bearing behavior when this
phenomenon occurs.
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To study the effect of nonlinear terms in the effective
stiffness, the coefficients were evaluated from Eq. (9) for
the orbital motions obtained on simulations. Fig. 15 shows
the absolute variation on nondimensional stiffness coeffi-
cients along the journal orbit before and after Oil Whirl.
It is observed from Fig. 15 that before Oil Whirl occurs

(1000 rpm) the absolute variation on nondimensional
stiffness coefficients because of nonlinearities is about 0.2.
When Oil Whirl starts (3500 rpm) this variation is increased
into a value of 0.7 approximately. In both the cases oil film
nonlinearities have an important effect on the effective
stiffness and must be considered.
Fig. 16 shows the nonlinear damping coefficients

obtained. If the absolute variation of the nondimensional
damping coefficients along the journal orbit is analyzed
0.1 0.15 0.2 0.25 0.3
5

0

5

0

5

Sommerfeld number S

Kyxx
Kyxy, Kyyx
Kyyy

0.1 0.15 0.2 0.25 0.3
5

0

5

0

5

Sommerfeld number S

Kyxxx
Kyxyy, Kyyxy
Kyxxy, Kyyxx
Kyyyy

inear stiffness coefficients.

0 100 200 300 400
-1

.5

0

.5

1

τ

Δ Kxx
Δ Kxy
Δ Kyx
Δ Kyy

re and after the Oil Whirl phenomenon. (a) 2000 rpm; (b) 2500 rpm.
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Fig. 16. Nondimensional nonlinear damping coefficients.
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Fig. 17. Absolute variation on nondimensional damping coefficients before and after the Oil Whirl phenomenon. (a) 2000 rpm; (b) 2500 rpm.
(Fig. 17), it is obtained that before the Oil Whirl this
variation gets to a value of 2 and during the Oil Whirl

phenomenon has an important increase getting to a variation
up to 7. The absolute variation on damping coefficients is in
the same order of magnitude that the coefficients, obtaining a
variation of about 90% for Cyy. This shows the importance
of nonlinearities on the damping coefficients.

6. Closure

The present work introduces a general framework to
identify linear and nonlinear stiffness and damping
coefficients on journal bearings. Coefficients were esti-
mated in typical operation conditions, this implies large
journal orbital motion and even during the Oil Whirl

phenomenon. The framework proposed here has the
advantage to determine accurately the nonlinear transient
response for different operational conditions. It is able
to identify dynamic parameters and it allows to make
stability analysis on design state saving all the experimental
effort. The formulation improves results since it considers
large journal orbit due to high dynamic loading which
is usual on real industrial cases where this type of bearing is
used.
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The results of the case in the study show that linearized
analytical coefficients agree reasonably with linear coeffi-
cients estimated numerically considering a nonlinear
model. Nonlinear coefficients were found to have an
important effect on effective stiffness and damping.

It was found that the Oil Whirl phenomenon causes a
change on the nonlinear behavior of the bearing (changing
nonlinear coefficients), which it is not seen when using
linear models. Considering this, it is important in a stability
analysis to consider the nonlinear terms and their change
when Oil Whirl phenomenon starts.

The parameter identification method defined shows to be
an efficient and fast algorithm to determine the stiffness
and damping coefficients from the journal forced response
with large journal orbit motion, considering linear and
nonlinear terms in the Taylor expansion.

The present model represents a powerful tool to predict
accurately non linear transient phenomena like response to
starts, stops and Oil Whirl/Whip phenomena. Although the
simulated model was very simple (no cavitation, constant
fluid properties, etc.), the extension to handle more realistic
cases is straightforward. Further works consider develop-
ing a 3D CFD model taking into account cavitation,
temperature distribution and the external oil inlet pressure.
The study of instabilities is also important when a
nonlinear model is considered.
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