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Abstract

Purpose – To develop a simplified robust control scheme for a class of nonlinear time-varying
uncertain chaotic systems.

Design/methodology/approach – By means of input-to-state stability theory, a new robust
adaptive control scheme is designed, which is simpler than the one proposed by Li et al. and applicable
to a larger class of nonlinear systems. Only one parameter is adjusted in the controller and the scheme
assures that all the signals remain bounded. The behavior of the proposed control scheme is also
analyzed through simulations on the Rössler system.

Findings – By adjusting only one parameter in the controller and imposing only one mild
assumption on the time-varying parameters, the proposed control algorithm assures that all the signal
remain bounded and that the state of the original system will follow a desired trajectory defined either
by the trajectory and its first time derivative, or given by a reference model.

Research limitations/implications – The results are limited to a particular class of nonlinear
systems where the dimension of the input vector is equal to the order of the system (dimension of the
state vector).

Practical implications – The main advantage of the proposed method is that the modification
introduced leads to a substantially simpler adaptive robust controller whose practical implementation
will be easier.

Originality/value – The contribution of the proposed method is in the simplification of the control
algorithm applied to a class of nonlinear time-varying uncertain chaotic systems. This will be useful
for control engineers to control complex industrial plants.
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1. Introduction
The study of chaos control starts with Ott et al. (1990). They present a method that
stabilizes the chaotic system in one of the unstable periodic orbits of the attractor, by
means of small disturbances. In the last decade, several ideas and methods have arisen
to control chaos, looking for the stabilization in a desired state or the following of a
desired trajectory. Within these strategies, we can cite the linearization by state
feedback proposed by Shi-Hua and Yu-Ping (2003) applied to Lorenz system, the
stabilization around unstable points by using a PI regulator presented by Jiang et al.
(2002), the adaptive backstepping strategy described by Ge and Wang (1999), the



passivity equivalence technique suggested by Yu (1999) and the adaptive control
strategy using invariant manifold developed by Tian and Yu (2000).

In the case of nonlinear time-varying and chaotic systems, the work by Li et al. (2003)
presents a robust adaptive tracking control so that the state of the original system
asymptotically tracks a desired trajectory by means of the adjustment of only one
parameter. A small variant of this result can be found in Estrada and Duarte-Mermoud
(2004).

In reference Li et al. (2003), propose a robust adaptive controller based on Lyapunov
stability theory for a particular class of nonlinear systems which include chaotic and
time-varying plants. They introduce two assumptions under which the controller
guarantees global asymptotic tracking of a desired trajectory whose first derivative
has to be known. Assumption 2 is quite restrictive since reduces the class of plants that
can be controlled by this controller. Moreover, not always is possible to know
(measure) the derivative of the trajectory to be followed.

In this paper, based on the results of Li et al. (2003), we propose a substantially
simpler robust adaptive control method for a larger class of nonlinear systems. The
solution is given for two cases; first when the derivative of the desired trajectory is
known (measured) and second when the desired trajectory is given by a model
reference. In the following section, by means of input-to-state stability theory, a new
robust adaptive control scheme is designed involving the adjustment of only one
parameter, resulting in boundedness of all the signals in the adaptive system. Besides,
the state of the nonlinear time-varying system asymptotically tracks the desired
trajectory in both cases abovementioned. In Section 3, simulations on the Rössler
system are presented to verify the stability of the resulting adaptive system. Finally, in
Section 4, some conclusions are drawn.

2. Robust adaptive control design
Let us consider the nonlinear plant described by the following relationship:

_xðtÞ ¼ f ðxÞ þ FðxÞuðtÞ þ uðtÞ ð1Þ

where x [ R
n corresponds to the state vector of the system, which is assumed to be

accessible, f ð · Þ : Rn ! R
n and Fð · Þ : Rn ! R

n£p are known continuously
differentiable functions with F(0) ¼ 0 and f(0) ¼ 0. uðtÞ [ R

n is the input to the
plant and uðtÞ [ R

p is the unknown time-varying parameter vector. The unknown
parameter vector uðtÞ [ R

p is known to vary between upper and lower bounds so that
_u
i
# uiðtÞ # �ui for i ¼ 1; 2; . . . ; p;, i.e. we assume they belong to a bounded and

closed set, as stated in the following assumption.
Assumption 1. The unknown parameter vector uTðtÞ ¼ ½u1ðtÞ; u2ðtÞ; . . . ; upðtÞ� [

R
p belongs to a bounded and closed set V where V ¼ ½_u

1
; �u1� £ ½_u

2
; �u2� £ · · · £ ½_u

p
; �up�,

with _u
i
; �ui for i ¼ 1; 2; . . . ; p unknown constants representing the lower and upper

bounds on the components of vector u tð Þ [ R
p.

From Assumption 1, we can immediately write:

kuðtÞk ¼
Xp
i¼1

uiðtÞ
2

 !1=2

#
Xp
i¼1

max½j_u
i
j
2
; j �uij

2
�

 !1=2

; b ð2Þ

where b [ R is an unknown but constant parameter.



The objective is to determine a bounded input u(t) such that x(t) behaves in some
desired fashion. The goal in this study is that x(t) follows a desired trajectory xd(t). In
the solution, we distinguish two cases; the first where xd(t) and _xdðtÞ are known, and the
second where xd(t) is given by a reference model.

2.1 Case when the derivative of the desired trajectory is known
We first address the case when the first time derivative _xdðtÞ of the desired trajectory
xd(t) is known (measurable). It is assumed that _xdðtÞ and xd(t) are continuous and
bounded functions. Defining the tracking error:

eðtÞ ¼ xðtÞ2 xdðtÞ ð3Þ

and subtracting _xdðtÞ from both sides of equation (1) we can write:

_xðtÞ2 _xdðtÞ ¼ _eðtÞ ¼ f ðxÞ2 _xdðtÞ þ FðxÞuðtÞ þ uðtÞ ð4Þ

Next, we choose the control law:

uðtÞ ¼ 2f ðxÞ þ _xdðtÞ2 eðtÞ þ aðe; x;b
_

Þ ð5Þ

where:

aðe; x;b
_

Þ ¼
2FðxÞmðe; xÞb

_ 2

kmðe; xÞkb
_

þ 1kek
2

ð6Þ

and:

mTðe; xÞ ¼ eTFðxÞ ð7Þ

with 1 . 0. The adaptive law for b̂ is chosen as:

_
b
_

ðtÞ ¼ gkmðe; xÞk ð8Þ

with b
_

ðt0Þ . 0 and g . 0. Then we can state the following theorem.
Theorem 2.1. If Assumption 1 is satisfied by system (1), then the control law

given by (5)-(7) with 0 , 1 , 1 and the adaptive law given by equation (8) will
guarantee that all the signals of the adaptive system will remain bounded
and

t!1
lim eðtÞ ¼

t!1
lim ðxðtÞ2 xdðtÞÞ ¼ 0.

Proof. Replacing equations (5) and (6) in equation (4), we can write:

_eðtÞ ¼ 2eðtÞ þ FðxÞuðtÞ2
FðxÞmðe; xÞb

_ 2

kmðe; xÞkb
_

þ 1kek
2

ð9Þ

For systems (8) and (9), u(t) can be seen as input to the system. Then for the unforced
system (u(t) ¼ 0) the equilibrium state is eðtÞ ¼ 0 and b

_

ðtÞ ¼ 0. In order to prove that
systems (8) and (9) is input-to-state stable (Khalil, 2002, p. 175), we choose the following
continuously differentiable function:

V ðe; ~bÞ ¼
1

2
eTeþ

1

2g
~b 2 ð10Þ

where ~bðtÞ ¼ b
_

ðtÞ2 b [ R and g . 0 is the adaptive gain given in equation (8).



The first time derivative of equation (10) along the system trajectory equations (8)
and (9) is given by:

dV ðe; ~bÞ

dt
¼ 2eTeþ eTFðxÞuðtÞ2

eTFðxÞmðe; xÞb
_ 2

kmðe; xÞkb
_

þ 1kek
2
þ

1

g
~b

_
b
_

ð11Þ

Using equation (7) we have:

dV ðe; ~bÞ

dt
¼ 2kek

2
þ mTðe; xÞuðtÞ2

kmðe; xÞk
2
b
_ 2

kmðe; xÞkb
_

þ 1kek
2
þ

1

g
~b

_
b
_

ð12Þ

From Assumption 1 and equation (2), we can write the following inequality:

mTðe; xÞuðtÞ # kmðe; xÞkb ð13Þ

Moreover, the following inequality can be established for the third term of the right
hand side of equation (12):

2
kmðe; xÞk

2
b
_ 2

kmðe; xÞkb
_

þ 1kek
2
¼ kmðe; xÞkb

_

21 þ
1kek

2

kmðe; xÞkb
_

þ 1kek
2

 !

# kmðe; xÞkb
_

21 þ
1kek

2

kmðe; xÞkb
_

 ! ð14Þ

Replacing equations (13) and (14) in equation (12), we get:

dV ðe; ~bÞ

dt
# 2ð1 2 1Þke 2k2 kmðe; xÞk ~bþ

1

g
~b

_
b
_

ð15Þ

Finally, replacing the adaptive law given by equation (8) in equation (15) we obtain:

dV ðe; ~bÞ

dt
# 2ð1 2 1Þke 2k ð16Þ

If we chose 1 such that (1 2 1) . 0 then _V # 0. Since, conditions of Theorem 4.19
(Page 176 of (Khalil, 2002)) are fulfilled, system (8) and (9) is input-to-state stable and
therefore if u(t) is bounded, then e(t), ~bðtÞ and xðtÞ; b̂ðtÞ are bounded. From this fact, we
can conclude that all the signals of the adaptive system remain bounded. Integrating
both sides of equation (16), we can conclude that e(t) is a square integrable signal,
i.e. eðtÞ [ L 2. From equation (4) it follows that _eðtÞ is bounded, since it depends on
bounded functions. Using Barbalat Lemma (Narendra and Annawamy, 1989), we can
conclude that e(t) ! 0 when t ! 1. Therefore, the controller given by equations (5)-(7)
and the adaptive law given by equation (8), guarantees that system (1) asymptotically
tracks the desired signal xd(t). A

Remark 2.1. Unlike the controller proposed in Li et al. (2003), the one proposed here
makes only assumptions on the time-varying parameter vector u(t) [ R

n. No further
assumptions on the form of f(x) are made as it is done in Li et al. (2003). Therefore,
the class of systems being controlled by the controller proposed here is larger than the
one proposed in Li et al. (2003).



Remark 2.2. A closer look at Rössler system reveals that Assumption 2 stated in
Li et al. (2003) is not satisfied and therefore that controller cannot be readily applied.
In order to reach the control goal, an additional term is used in Li et al. (2003) in the
control law but no explanation on its role is given. On the contrary, the controller
proposed here can be readily applied to Rössler system, as will be shown in Section 3.

2.2 Case when the derivative of the desired trajectory is not measurable
Let us now consider the case when the first derivative of the desired trajectory is not
measurable. In this case, we consider a reference model defined as:

_xdðtÞ ¼ f dðxdÞ þ rðtÞ ð17Þ

where fd (xd) [ R
n is a linear or nonlinear vector function, such that the origin of

equation (17) is asymptotically stable (r(t) ; 0) and r(t) [ R
n is a piecewise,

continuous and uniformly bounded reference input.
As before, we define the tracking error eðtÞ ¼ xðtÞ2 xdðtÞ as in equation (3), and we

choose this time the control law as follows:

uðtÞ ¼ 2f ðxÞ2 eðtÞ þ f dðxdÞ þ rðtÞ þ aðe; x;b
_

Þ ð18Þ

where aðe; x;b
_

Þ; mðe; xÞ and
_
b
_

are given by equations (6)-(8), respectively. Notice
that _xdðtÞ it is not explicitly used in the control law (18). Now, we can state the
following corollary from Theorem 2.1.

Corollary 2.1. If Assumption 1 is satisfied by system (1), then the control law given
by equations (18), (6) and (7) with 0 , 1 , 1, together with the adaptive law given by
equation (8), withb

_

ðt0Þ . 0 and g . 0, will guarantee that all the signals of the

adaptive system will remain bounded and
t!1
lim eðtÞ ¼

t!1
lim ðxðtÞ2 xdðtÞÞ ¼ 0, where

xd(t) is the desired trajectory given by equation (17).
Proof. Subtracting equation (17) from equation (1), we obtain:

_xðtÞ2 _xdðtÞ ¼ _eðtÞ ¼ f ðxÞ þ FðxÞuðtÞ2 f dðxdÞ2 rðtÞ þ uðtÞ ð19Þ

Replacing equation (18) in equation (19), we get:

_eðtÞ ¼ 2eðtÞ þ FðxÞuðtÞ2
FðxÞmðe; xÞb

_ 2

kmðe; xÞkb
_

þ 1kek
2

ð20Þ

which has exactly the same form as equation (9). Thus, the rest of the proof follows
along exactly the same lines as in Theorem 2.1. A

Remark 2.3. With minor modifications, similar results for Theorem 2.1 and
Corollary 2.1 can be obtained if in control laws (5) and (18) the term Ame(t) is used
instead of the term 2 e(t), where Am [ R

nxn is any asymptotically stable matrix.
Remark 2.4. In the previous developments, constant adaptive gain g was used in

the adaptive law (8). It can be shown that the same results hold if a positive definite
time-varying adaptive gain is introduced (Narendra and Annawamy, 1989).

3. Simulation results
In order to verify the behavior of the proposed method, we will control the Rössler
system (Strogatz, 2000). This system can be expressed as:



_x ¼

_x1

_x2

_x3

2
664

3
775 ¼

2x2 2 x3

x1

x1x3

2
664

3
775þ

0 0 0

x2 0 0

0 1 2x3

2
664

3
775

a

b

c

2
664
3
775þ u ð21Þ

where u ¼ ½u1 u2 u3�
T [ R

3 is the control vector. If we define:

f ðxÞ ¼

2x2 2 x3

x1

x1x3

2
664

3
775; FðxÞ ¼

0 0 0

x2 0 0

0 1 2x3

2
664

3
775; uðtÞ ¼

a

b

c

2
664
3
775 ð22Þ

the system (2.1) can be expressed in the form (1). The Rössler system exhibits chaotic
behavior when a ¼ b ¼ 0.2, c ¼ 5.7 and u ¼ 0 (Strogatz, 2000).

For simulations, we will choose the initial state vector as:

xð0Þ ¼ ½ 2 2 4 2 0:3 �T

and the time-varying parameter vector as:

uðtÞ ¼ ½ 0:2ð1 2 sinðtÞÞ 0:2 cosðtÞ 5:7 �T:

Clearly, the time-varying parameter vector u(t) satisfies Assumption 1 and it can be
verified that b ¼

ffiffiffiffiffiffiffiffiffiffiffi
32:69

p
. We choose the initial condition for the estimate b

_

ð0Þ ¼ 0:2.
In this study, we will consider the following reference model:

_xdðtÞ ¼ 2xdðtÞ þ rðtÞ ð23Þ

with:

rðtÞ ¼ ½ 0 cosðtÞ sinðtÞ �T

and:

xdð0Þ ¼ ½ 0 1 0 �T:

Figure 1 shows the Rössler system state, model reference state and the estimateb
_

ðtÞwhen
the controller based on the Corollary 2.1 is designed and applied. In all the simulations, we
have chosen 1 ¼ 0.8 and the adaptive gain g ¼ 2. It can be observed that all the signals
remain bounded and the state error converges to zero, that is, the system state tracks the
model reference state. In Figure 2, the evolution of control signals are shown.

4. Conclusions
In this paper, we have introduced some modifications on the adaptive robust controller
proposed by Li et al. (2003), obtaining a substantially simpler controller. This
controller can be applied to a larger class of nonlinear plants, including chaotic systems
with time-varying unknown parameters. Using input-to-state stability theory, it is
demonstrated that the proposed controller, adjusting only one parameter, assures that
all the signals in the adaptive system will remain bounded and the state of the original
system will follow a desired trajectory defined either by the trajectory and its first time
derivative, or given by a reference model.
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