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Abstract

In this article we prove that the semi-linear elliptic partial differential equation

−�u + u = up in Ω,

u > 0 in Ω, u = 0 on ∂Ω

possesses a unique positive radially symmetric solution. Here p > 1 and Ω is the annulus {x ∈ RN | a <

|x| < b}, with N � 2, 0 < a < b � ∞. We also show the positive solution is non-degenerate.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this article we study the uniqueness of radially symmetric positive solution of the semi-
linear elliptic problem

−�u + u = up in Ω, (1)

u > 0 in Ω, u = 0 on ∂Ω, (2)
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where Ω is the annulus {x ∈ RN | a < |x| < b} with 0 < a < b � ∞, N ∈ N and p > 1. When
b = ∞ the boundary condition is interpreted as lim|x|→∞ u(x) = 0.

The problem of uniqueness for (1)–(2) has been recently solved in the case N � 3 by
Tang [18], but it seems that the case N = 2 still is not known. It is the purpose of this article
to give a proof of uniqueness in the case N = 2 for a more general version of (1)–(2). Our ap-
proach can also be applied for the case N � 3, providing in this way of another proof of the result
by Tang.

The problem of uniqueness for positive solutions of (1)–(2), but when Ω is the ball {x ∈ RN |
|x| < b} or the entire space, has been solved by Kwong [11] after a long history and contributions
of many authors, among whom we mention Coffman [3,4], Peletier and Serrin [16], Mc Leod and
Serrin [14] and Mc Leod [15]. After the result of Kwong there have been many extensions and
refinements of this theorem and we cannot quote them all, but we would like to mention the work
by Clemons and Jones [2], Erbe and Tang [5,6], Kabeya and Tanaka [9].

The problem in the annulus has a shorter history, starting with the work by Coffman [4],
following with Yadava [19,20] and concluding with Tang [18], for the case N � 3. We refer to
[18] for a detailed discussion. Worth mentioning here are the contributions Kwong and Zhang
[13] and Kwong and Li [12] for related questions on the annulus.

Now we present our results in a precise way. First we write our theorem for N = 2, which is
our main result.

Theorem 1.1. For N = 2 and 0 < a < b � ∞, the Dirichlet problem (1)–(2) has a unique radi-
ally symmetric positive solution. Moreover the unique solutions is non-degenerate in the space
of H 1-radially symmetric functions.

For radially symmetric solutions, writing r = |x|, Eqs. (1)–(2) becomes

u′′ + N − 1

r
u′ + up − u = 0 in (a, b), (3)

u(r) > 0, r ∈ (a, b), u(a) = 0, u(b) = 0, (4)

where ′ means derivative with respect to r . As we mentioned before we will consider a more
general equation, namely

u′′ + ν

r
u′ + up − V (r)u = 0 in (a, b), (5)

u(r) > 0, r ∈ (a, b), u(a) = 0, u(b) = 0, (6)

where ν � 0, p ∈ (1,∞) and V (r) ∈ C1([a, b],R) satisfies the following conditions:

(V1) 0 < infV (r) � supV (r) < ∞.
(V2) If b < ∞, then

U(r) = V ′(r)r3 + βV (r)r2 + (β − 2)L

is either:
(i) negative in (a, b),

(ii) positive in (a, b) or



(iii) U(a) < 0 and changes sign only once in (a, b).
(V2′) If b = ∞, then U satisfies (ii) or (iii) and in both cases lim infr→∞ U(r) > 0.

Here

α = 2ν

p + 3
, β = (p − 1)α and L = α(ν − 1 − α). (7)

We prove the following theorem

Theorem 1.2. Assume that ν � 0, p ∈ (1,∞) and V satisfies (V1), (V2) if b < ∞ and (V1),
(V2′) if b = ∞. Then (5)–(6) possesses at most one positive solution. Moreover the unique posi-
tive solution is non-degenerate in the space of H 1-radially symmetric functions provided b < ∞
or ν > 0.

Remark 1.3.

(i) For any N ∈ N and p ∈ (1,∞) we have that ν = N − 1 and V (r) ≡ 1 satisfies (V1)–(V2) if
b < ∞ and (V1), (V2′) if b = ∞. Thus Theorem 1.2 is applicable to (1)–(2) in any dimen-
sion.

(ii) We observe that when b = ∞, (V2)(i) is incompatible with (V1). In fact, if (V2)(i) holds,
then for ε ∈ (0, β) and r large V ′(r) < −(β − ε)

V (r)
r

holds and thus V (r) � C
rβ−ε .

We write the result for the whole range of ν ∈ [0,∞), since this is of interest in some applica-
tions, as in the work by Felmer and Martínez [7]. There, the parameter ν is a homotopy variable
in [0,N − 1] and the uniqueness result is needed to apply the Nehari method in the construction
of highly oscillatory solutions for a singularly perturbed problem.

It is clear that Theorem 1.1 follows directly from Theorem 1.2. The proof of these theorems
is based on the ideas developed by Kabeya and Tanaka in [9] for the problem in the entire space.
First we proceed to prove that the solution is unique by a contradiction argument, assuming there
are more than one solution. In doing so, we first characterize two possible positive solutions by
the number of crossing points and then we use an energy analysis to get a contradiction. Second,
we prove the non-degeneracy of the positive solution by analyzing its Morse index as a critical
point of a perturbed functional which has the mountain pass geometry.

We end this introduction with some words about the existence of positive solutions of (3)–(4).
One possible approach to existence is the variational method through the mountain pass theorem.
Special mention deserves the case b = ∞, where some extra compactness arguments have to
be used, based on the Strauss’ compactness embedding of H 1

rad(R
N) = {u ∈ H 1

0 (RN) | u(x) =
u(|x|)} in Lr(RN), where 2 < r < 2N

N−2 for N � 3, 2 < r < ∞ for N = 2. See Strauss [17] and
Berestycki and Lions [1]. In this unbounded situation we have to exclude ν = 0, where problem
(3)–(4) does not have a solution.

2. Uniqueness of radially symmetric positive solutions

In this section we consider the uniqueness part of Theorem 1.2, that is, we prove that (5)–(6)
has at most one positive solution. In case b = ∞, we change the boundary condition u(b) = 0
by limr→∞ u(r) = 0. Under this boundary condition, using hypothesis (V1) and comparison
arguments it can be proved that u(r), |u′(r)|, |u′′(r)| � e−Cr , for some C > 0 and all r large.



We assume, for contradiction, that (5)–(6) possesses two distinct positive solutions u1(r)

and u2(r), and we consider the number of points of intersection between them, that is,
N(u1, u2) = #{r ∈ (a, b) | u1(r) = u2(r)}.

We assume (V1)–(V2) or (V1)–(V2′) throughout this paper.

Proposition 2.1. Suppose that (5)–(6) has two distinct solutions u1(r) and u2(r) such that
u′

1(a) < u′
2(a). Then there exists a radially symmetric positive solution u3(r) of (5)–(6) such

that

u′
3(a) � u′

2(a) and N(u1, u3) � 1.

Proof. The proof of this proposition is given in Appendix A of [9], we include it here for com-
pleteness. We use a shooting argument, so we consider the initial value problem:

u′′ + ν

r
u′ + up − V (r)u = 0,

u(a) = 0, u′(a) = α > 0.

We denote by u(r;α) the solution of this equation, and we notice that u(r;α) varies continuously
as a function of α. We assume N(u1, u2) � 2, because in the contrary, we just take u3(r) = u2(r),
as the desired solution. We set α1 = u′

1(0) < α2 = u′
2(0).

We start with α = α2 and increase α progressively. We keep track the position of the first and
second intersection point of u(r;α) and u1(r), denoting them by σ1(α) and σ2(α), respectively.
We see that σ1(α), σ2(α) ∈ (a, b) for α close to α2 and

u(r;α) > 0 in
(
a,σ2(α)

)
.

On the other hand, since p > 1 we can prove that for large α > α2, the solution u(r;α) is
the solution of the Dirichlet boundary value problem for (5) in (a, r0), for r0 close to a. Thus,
u(r0, α) = 0 and #{r ∈ (a, r0) | u(r;α) = u1(r)} = 1.

By continuity of the point of intersection σ2(α), we can find α3 ∈ (α2, α) such that for α close
to α3 and α < α3 we have σ2(α) < b and σ2(α3) = b. We conclude that u3(r) = u(r;α3) is the
desired solution. �

In the rest of the section, we assume that u1(r) and u2(r) are two distinct solutions of (5)–(6)
with at most one intersection in (a, b). Next we study some properties of these functions and
then we will reach to a contradiction. We have

Lemma 2.2. Suppose that u1(r) and u2(r) are two distinct solutions of (5)–(6), with at most one
intersection in (a, b), and assume that u′

1(a) < u′
2(a). Then

d

dr

(
u1(r)

u2(r)

)
> 0 in (a, b). (8)

Proof. Setting f (r) = rν(u′ (r)u2(r) − u1(r)u
′ (r)), we have
1 2



d

dr

(
u1(r)

u2(r)

)
= 1

rνu2(r)2
f (r),

df

dr
(r) = rνu1u2

(
u

p−1
2 − u

p−1
1

)
.

Under our assumption on u1 and u2 we have that either

(i) f ′(r) > 0 in (a, σ ) and f ′(r) < 0 in (σ, b), for some σ ∈ (a, b), or
(ii) f ′(r) > 0 in (a, b).

Since f (a) = f (b) = 0, (ii) cannot take place. (i) implies that f (r) > 0 in (a, b), from where
the conclusion follows. �

Next we introduce the change of variable w(r) = rαu(r), where α is defined in (7) and u(r)

is a solution of (5)–(6), following [12] and [9]. Then w(r) satisfies

rβw′′ + β

2
rβ−1w′ + wp − (

V (r)rβ + Lrβ−2)w = 0,

where β and L are given in (7). For the two solutions under consideration we define, wj(r) =
rαuj (r) and

E(r;wj) = 1

2
rβw′

j (r)
2 + 1

p + 1
wj(r)

p+1 − 1

2
G(r)wj (r)

2,

where G(r) = V (r)rβ + Lrβ−2 and j = 1,2. We have the following

Lemma 2.3. E(r;wj) > 0 for r ∈ [a, b] if b < ∞ and for r ∈ [a, b) if b = ∞.

Proof. We see that

d

dr
E(r;wj) = −1

2
G′(r)wj (r)

2,

with G′(r) = rβ−3U(r). But we have that E(a;wj) > 0 and E(b;wj) > 0 for j = 1,2, in
case b < ∞, so that the conclusion follows from the hypothesis (V2). If b = ∞, wj(r) decays
exponentially as r → ∞ and we have limr→∞ E(r;wj) = 0 for j = 1,2. Thus we conclude
from (V2′). �

Next we set

F(r) = E(r;w2) −
(

w2

w1

)2

E(r;w1), (9)

as in the work by Kawano, Yanagida and Yotsutani [10]. Then we have

d
F(r) = −

{
d

((
w2

)2)}
E(r;w1). (10)
dr dr w1



Noting w2
w1

= u2
u1

, it follows from Lemmas 2.2 and 2.3 that d
dr

(w2
w1

) < 0 and d
dr

F (r) > 0 in (a, b).
Thus we have

F(b) − F(a) > 0. (11)

End of the proof of uniqueness. We claim that F(a) = F(b) = 0, contradicting (11). To prove
the claim we compute F(a) as

F(a) = lim
r→a+

F(r) = E(a;w2) −
(

w′
2(a)

w′
1(a)

)2

E(a;w1) = 0.

When b < ∞, we argue in a similar way to get F(b) = 0. When b = ∞, it follows from (8) that
d
dr

(w2
w1

) < 0. Thus

0 <
w2(r)

w1(r)
� w2(a)

w1(a)
for all r ∈ (a,∞).

As before, we have E(r;wj) → 0 as r → ∞ and then F(∞) = 0. Thus, the claim is proved and
(5)–(6) has at most one positive solution. �
3. Non-degeneracy of the positive solution

In this section we prove the non-degeneracy of the unique solution by an indirect argument
based on the analysis of the Morse index of a perturbed functional.

We first consider the case b is finite. Let ϕ(r) be the unique positive solution of (5)–(6), then
ϕ is a critical point of the functional

I (u) =
b∫

a

(
1

2

(|u′|2 + V (r)u2) − 1

p + 1
u

p+1
+

)
rν dr,

where I : H 1
0 (a, b) → R is of class C2. This functional has the mountain pass structure and the

unique solution corresponds to a mountain pass solution. If we define the Morse index of ϕ as

i(I, ϕ) = max
{
dimH

∣∣ H ⊂ H 1
0 (a, b) is a subspace such that

I ′′(ϕ)(h,h) < 0 for all h ∈ H \ {0}}.
Then i(I, ϕ) � 1, as follows from the work by Hofer [8]. Next, as in [9], we introduce a perturbed
functional for small δ > 0

Jδ(u) = I (u) − δ

b∫
a

(
1

p + 1
u

p+1
+ − 1

2
ϕ(r)p−1u2

)
rν dr.

By the maximum principle, we see that non-trivial critical points u of Jδ are positive solutions
of the equation



u′′ + ν

r
u′ + (1 + δ)up − (

V (r) + δϕ(r)p−1)u = 0, (12)

u(a) = u(b) = 0, (13)

and we see that ϕ(r) is one of such positive solutions. Actually it is the only one, as we prove
next.

Proposition 3.1. Assume b < ∞, ν � 0. For sufficiently small δ > 0, (12)–(13) has at most one
positive solution.

Proof. We would like to apply the results of Section 2 to Eqs. (12)–(13), but we cannot guarantee
that the potential Vδ(r) = V (r) + δϕ(r)p−1 satisfies hypothesis (V2). Let Sδ denote the set of all
positive solutions of (12)–(13) and let w = rαu for u ∈ Sδ . Then we define

Gδ(r) = Vδ(r)r
β + Lrβ−2

and the energy function

Eδ(r;w) = 1

2
rβw′(r)2 + 1

p + 1
w(r)p+1 − 1

2
Gδ(r)w(r)2.

We remark that the hypothesis (V2) was only used in the proof of Lemma 2.3 and for the proof
of this proposition it suffices to show that for some δ0 > 0

Eδ(r;w) > 0 for all δ ∈ (0, δ0], r ∈ [a, b] and u ∈ Sδ . (14)

In fact, if there exist two distinct positive solutions u1, u2 ∈ Sδ , as before we may assume that
they have at most one intersection in (a, b). Define Fδ(r) by (9). Then Fδ(b)−Fδ(a) > 0 follows
from (10) and (14). However we also have Fδ(a) = Fδ(b) = 0 and it is a contradiction.

To show (14), we first claim that there exist C0 > 0, δ0 > 0 such that

‖u‖L∞(a,b) � C0, for all δ ∈ (0, δ0) and u ∈ Sδ .

We argue indirectly and assume that there exist δn > 0, un ∈ Sδn and rn ∈ (a, b) such that δn → 0
and θn ≡ un(rn) = ‖un‖L∞(a,b) → ∞ as n → ∞. Then we use a standard rescaling argument
setting

vn(y) = θ−1
n un

(
θ

−(p−1)/2
n y + rn

)
.

We find that, up to a subsequence, vn(y) converges in C2
loc to a solution v(y) of

vyy + vp = 0 in I, (15)

with 0 � v(y) � 1 in I , v(0) = 1 and where I is an unbounded interval. We notice that it is
crucial that a > 0 to get this autonomous equation. We have reached a contradiction, since every
non-zero solution of (15) has a zero in a finite y, proving the claim.



Since each u ∈ Sδ solves (12)–(13), we can easily see that
⋃

δ∈[0,δ0] Sδ is a compact subset of

C1([a, b]). Since S0 = {ϕ(r)}, we have

sup
u∈Sδ

‖u − ϕ‖C1([a,b]) → 0 as δ → 0.

Thus, since E(r;ϕ) > 0 in [a, b]—which is proved in Lemma 2.3—, (14) holds all δ ∈ (0, δ0],
for a possibly smaller δ0 > 0. Thus the proof of Proposition 3.1 is completed. �
Proof of non-degeneracy for b < ∞ and ν ��� 0. We argue indirectly assuming that the unique
solution ϕ(r) of (5)–(6) is degenerate, that is, there is a 2-dimensional subspace H ⊂ H 1

0 (a, b)

such that

I ′′(ϕ)(h,h) � 0 for all h ∈ H.

Since

J ′′
δ (u)(h,h) = I ′′(u)(h,h) − δ

b∫
a

(
pu

p−1
+ − ϕ(r)p−1)h2rν dr,

we have

J ′′
δ (ϕ)(h,h) = I ′′(ϕ)(h,h) − δ(p − 1)

b∫
a

ϕ(r)p−1h2rν dr

and we see that

J ′′
δ (ϕ)(h,h) < 0 for all h ∈ H \ {0}

and then i(Jδ, ϕ) � 2. On the other hand, since Jδ has the mountain pass structure and (12)–(13)
has ϕ as its unique solution, we must have i(Jδ, ϕ) � 1. This completes the proof. �

Next we consider the case b = ∞, ν > 0. We introduce function spaces H 1
0,ν(a,∞) for ν > 0

by

H 1
0,ν(a,∞) =

{
u ∈ H 1

0 (a,∞)

∣∣∣ ‖u‖2
ν =

∞∫
a

(|u′|2 + |u|2)rν dr < ∞
}

.

We see that the unique solution ϕ(r) of (5)–(6) is a critical point of the functional

I (u) =
∞∫ (

1

2

(|u′|2 + V (r)u2) − 1

p + 1
u

p+1
+

)
rν dr ∈ C2(H 1

0,ν(a,∞),R
)
.

a



As in the case b < ∞, we introduce the perturbed functional for small δ > 0

Jδ(u) = I (u) − δ

∞∫
a

(
1

p + 1
u

p+1
+ − 1

2
ϕ(r)p−1u2

)
rν dr ∈ C2(H 1

0,ν(a,∞),R
)
.

Following the arguments for that case, we see that we only need to prove that Jδ(u) has a unique
critical point to complete the proof of non-degeneracy. We devote the rest of the paper to prove
this uniqueness statement, starting with the following estimate for ϕ, in addition to its exponential
decay at infinity.

Lemma 3.2. Let ϕ(r) be the unique solution of (5)–(6) in (a,∞). Then there are positive con-
stants r0 > 0,C1 and C2 such that

C1ϕ(r) � −ϕ′(r) � C2ϕ(r), for r ∈ [r0,∞). (16)

Proof. Let W(r) = V (r) − ϕ(r)p−1. Then there are constants 0 < W0 < W1 such that
W(r) ∈ [W0,W1] for large r and we can write (5) as(

rνϕ′)′ − W(r)rνϕ = 0.

Next we introduce the Prüfer transformation by

rνϕ(r) = R(r) sin θ(r), rνϕ′(r) = R(r) cos θ(r).

Since (rνϕ′)′ = W(r)rνϕ > 0 and rνϕ′(r) → 0 as r → ∞, we have rνϕ′(r) < 0 for large r . Thus
we may assume

θ(r) ∈
(

π

2
,π

)
for large r . (17)

Using the equation for ϕ we see that θ ′ = cos2 θ − W(r) sin2 θ + ν
r

cos θ sin θ, and we can find
δ > 0, σ > 0 such that for large r

cos2 θ − W(r) sin2 θ + ν

r
cos θ sin θ

{
< −σ in [π

2 , π
2 + δ],

> σ in [π − δ,π].
From this fact, we can easily see that if θ0(r0) ∈ (π

2 , π
2 + δ) holds for some large r0, θ(r) reaches

π
2 in a finite r . This is a contradiction and we have θ(r) � π

2 + δ for large r . In a similar way
we can show θ(r) < π − δ. Thus we have θ(r) ∈ [π

2 + δ,π − δ] for large r , from where (16)
follows. �
Proposition 3.3. Assume b = ∞, ν > 0. For sufficiently small δ > 0, (12)–(13) has at most one
positive solution.

Proof. As in the case b < ∞, uniqueness follows after we establish

Eδ(r;w) > 0 for all δ ∈ (0, δ0), r ∈ [a,∞) and u ∈ Sδ. (18)



We argue indirectly and assume the existence of a sequence δn → 0 and un ∈ Sδn such that
Eδn(r;wn) � 0 for some r ∈ [a,∞). We remark that

d

dr
Eδn(r;wn) = −1

2
G′

δn
(r)wn(r)

2,

and that G′
δn

(r) = rβ−3U(r)+ δn(ϕ(r)p−1rβ)′. Thus, by Lemma 3.2 and hypothesis (V2′), there
exist c1 > 0 and r1 > a such that

G′
δ(r) � c1r

β−3 > 0 in [r1,∞) for small δ > 0, (19)

which implies d
dr

Eδn(r;wn) < 0 in [r1,∞) and then Eδn(r;wn) > 0 in [r1,∞). Therefore there
exists rn ∈ [a, r1] such that

Eδn(rn;wn) = inf
r∈[a,∞)

Eδn(r;wn) � 0 (20)

and, since Eδn(a;wn) > 0, rn satisfies G′
δn

(rn) = 0. By the argument in the proof of Proposi-
tion 3.1, (un) is uniformly bounded in L∞(a,∞) and then there exists a solution u0 of (5) such
that, up to a subsequence, un → u0 in C2

loc([a,∞)) and rn → r ∈ [a, r1]. We claim that u0 
≡ 0.
Assuming this for the moment we see that u0(r) is a bounded, positive and u(a) = 0. Moreover
we have

E
(
r,w0(r̄)

)
� 0 and G′(r) = 0 if r > a.

By the hypothesis (V2′) and G′(r) = rβ−3U(r), we have

(a) r = a, or
(b) r > a and U(r) = 0, that implies, G′(r) < 0 in (a, r).

But these cases cannot take place. In fact, if r = a, then E(r;w) = E(a;w) > 0. Otherwise,
we have d

dr
E(r;w0) = − 1

2G′(r)w2
0 > 0 in (a, r) and thus E(r;w0) � E(a;w0) > 0. Thus (18)

holds.
Finally we prove the claim by contradiction, assuming that u0 ≡ 0. From Eqs. (12)–(13) we

see that ‖un‖L∞ � (infV/2)1/(p−1), then for every ε0 > 0 small there exists r̃n > a such that

r̃n = inf
{
r ∈ [a,∞)

∣∣ un(r) � ε0
}
.

Since u0(r) ≡ 0, we have r̃n → ∞ as n → ∞ and, making ε0 smaller if necessary, by using the
maximum principle we can prove that∣∣un(r1)

∣∣ + ∣∣u′
n(r1)

∣∣ � c2e
−c3(r̃n−r1), (21)

for some c2, c3 independent of n, with r1 given by (19). Now we see that for a constant c4
independent of n it holds

‖un‖L2(r̃n,r̃n+1) � c4. (22)

Since wn(r) = rαun(r) satisfies



rβw′′
n + β

2
rβ−1w′

n + (1 + δn)w
p
n − Gδn(r)wn = 0,

wn(a) = 0, rβ/2wn(r), r
β/2w′

n(r) → 0 as r → ∞,

multiplying by w′
n and integrating from r1 to ∞ we find

1

2
r
β

1

∣∣w′
n(r1)

∣∣2 + 1 + δn

p + 1
wn(r1)

p+1 − 1

2
Gδn(r1)wn(r1)

2 = 1

2

∞∫
r1

G′
δn

(r)w2
n dr. (23)

By (21), the left-hand side of (23) can be estimated from above by C′e−2c3(r̃n−r1). On the other
hand, by (19), (22), we can find a constant C′′ so that

∞∫
r1

G′
δn

(r)w2
n dr �

r̃n+1∫
r̃n

c1r
β−3w2

n dr =
r̃n+1∫
r̃n

c1r
2α+β−3u2

n dr � C′′r̃2α+β−3
n .

For large n this leads to a contradiction, completing the proof of the claim. �
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