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Abstract

Undesirable splashing appears in copper converters when air is injected into the molten matte to trigger the conversion
process. We consider here a cylindrical container horizontally placed and containing water, where gravity waves on the
liquid surface are generated due to water injection through a lateral submerged nozzle. The fluid dynamics in a transversal
section of the converter is modeled by a 2-D inviscid potential flow involving a gravity wave equation with local damping
on the liquid surface. Once the model is established, using a finite element method, the corresponding natural frequencies
and normal modes are numerically computed in the absence of injection, and the solution of the system with injection is
obtained using the spectrum. If a finite number of modes is considered, this approximation leads to a system of ordinary
differential equations where the input is represented by the fluid injection. The dynamics is simulated as perturbations
around a constant fluid injection solution, which is the desired operating state of the system, considering that the conver-
sion process does not have to be stopped or seriously affected by the control. The solution is naturally unstable without
control and the resulting increase of amplitude of the surface waves are assimilable to the splashing inside the converter.
We show numerically that a variable flow around the operating injection is able to sensibly reduce these waves. This con-
trol is obtained by a LQG feedback law by measuring the elevation of the free surface at the point corresponding to the
opposite extreme to where the nozzle injection is placed.
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1. Introduction

Copper converters carry out the copper concentrate fusion and conversion process. The injection of air jets
into the molten matte bath through submerged tuyeres plays a fundamental role because the interaction
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between air and matte produces the necessary chemical reactions required for the conversion process [1]. Nev-
ertheless, the air jets also cause undesirable effects, such as excessive splashing and bath agitation. Over time,
this splashing spoils the internal walls, shortening the converter’s useful life. Therefore, to find a way to reduce
this splashing could become an important technological progress.

In [2], Valencia et al. have numerically studied splashing by air injection through a tuyere into water within
a cylindrical vessel. They have implemented the numerical simulations using the commercial software Fluent,
involving a complex 3-D biphasic turbulent flow slice model. The standing waves on the liquid surface have
been also calculated by assuming potential flow and gravity waves. They model the gas jet trajectory into the
liquid following the theoretical equation of Temelis et al. [3].

Complementing this previous study, the present study proposes a simplified mathematical model of gravity
waves in a copper converter and their control by variable fluid injection. Similarly, as done in [2] for standing
waves, the fluid dynamics is described as a 2-D inviscid potential flow and a gravity wave equation posed on
the liquid free surface. The jet effect is simplified assuming that water instead of gas is injected through a sub-
merged horizontal nozzle. A second nozzle is placed on the converter bottom, which extracts the injected
water, in such a way that the fluid volume inside the converter is constant. In order to better describe the phys-
ical phenomena, a local damping term is added to the wave equation on the free surface, which makes the
model energy-dissipative. A general work on this matter is [4], where Burns and King have presented a note
on the modeling of second-order systems subjected to different kinds of local damping. In [5], Liu and Rao
have mathematically analyzed the exponential stability of the wave equation with Kelvin–Voigt local
damping.

The numerical computation of the natural frequencies and normal modes in the 2-D domain allows the
transformation of the time-dependent part of the damped gravity wave equation on the free surface into a lin-
ear first-order ODE’s system. This system can be used to implement a gravity wave control method based on
the time-variable fluid injection rate. It is important to note that this injection rate can not be chosen arbi-
trarily since it is necessary to control without considerably interfering in the processes that take place in
the converter. Therefore, we assume that only small variations of this injection rate around a reference value
(characterized by some given Froude number) are allowed. In order to find an appropriate time-variable injec-
tion, we consider the linear quadratic gaussian LQG control (cf. [6]) taking into account the reference injection
constraint, the errors of the model, the observations, and a minimal norm control criteria.

Let us mention other previous studies for controlling gravity waves and related to this work. In [7], the
author has studied the control and stabilization of a perfect fluid in a channel by means of wave generators,
whereas in [8], he has solved a similar problem to the one studied here that involves a liquid inside a rectan-
gular container during transportation. In both cases, the liquid elevation at the extremes of the container rep-
resents the observation or output. We consider here the same type of observation, more precisely, the surface
elevation measured at the opposite extreme where the injection nozzle is placed.
2. Problem statement

2.1. Mathematical model

Let us consider a transversal section of the converter, containing a certain amount of water. The domain
corresponds to the area X � R2 filled with water at rest (see Fig. 1). Its boundary oX is divided in two parts,
the converter lower rigid boundary C0 and the liquid surface at rest C. Additionally, we consider cin; cout � C0

the inlet and outlet boundaries, respectively, and din and dout their diameters.
The fluid is assumed to be inviscid, irrotational and incompressible, then there exists a scalar velocity poten-

tial / such that:
D/ðx; tÞ ¼ 0; x 2 X; t > 0: ð2:1Þ
On the free surface C, the classic approximation of surface gravity waves (cf. [9,10]) is considered. Let g be the
free surface elevation relative to equilibrium position. Thus the functions / and g satisfy the next set of
relations:



Fig. 1. Domain geometry showing the free surface C and the inlet and outlet of fluid.
o/
on
ðx; tÞ ¼ gtðx; tÞ; x 2 C; t > 0; ð2:2aÞ

/tðx; tÞ þ ggðx; tÞ ¼ 0; x 2 C; t > 0; ð2:2bÞZ
C

gðx; tÞdsðxÞ ¼ 0; t > 0; ð2:2cÞ
where o=on denotes the normal derivative in direction of the external normal vector n to X. The subindex t

denotes the partial derivative with respect to time and dsðxÞ denotes the surface length element. By elimination
of g from (2.2a) and (2.2b), we obtain that / satisfies the wave equation:
1

g
/ttðx; tÞ þ

o/
on
ðx; tÞ ¼ 0; x 2 C; t > 0: ð2:3Þ
From (2.2b), we choose / so that:
Z
C

/ðx; tÞdsðxÞ ¼ 0; t > 0: ð2:4Þ
On the rigid boundary C0 (excluding nozzles), the boundary condition of non-penetration of the fluid into the
container wall, is assumed. On the other hand, on the inlet cin and outlet cout, the normal component of the
velocity is given by injection and suction. For the sake of simplicity, we assume separation of variables in this
component on C0:
o/
on
ðx; tÞ ¼ vðxÞuðtÞ; x 2 C0; t > 0; ð2:5Þ
where v : C0 ! R is the following piecewise constant function:
vðxÞ ¼
0 if x 2 C0 n ðcin [ coutÞ;
V if x 2 cin;

V 0 if x 2 cout:

8><
>: ð2:6Þ
Here u(t) is a given control scalar function, whereas V and V0 are constant reference velocities. It is clear that
they cannot be arbitrarily chosen: since the fluid is injected at cin and extracted at cout, it holds that V 6 0 and
V 0 P 0. Integrating (2.1) in X, using the divergence’s theorem, and combining with (2.5) and (2.6) yields
to:
 Z

C

o/
on
ðx; tÞdsðxÞ þ ðd inV þ doutV 0ÞuðtÞ ¼ 0; ð2:7Þ
however, integrating (2.3) on C and combining with (2.4), it is straightforward to check that the first term in
(2.7) is identically null. Consequently, as u(t) is any arbitrary function of t, we obtain the following condition
for mass conservation:
d inV þ doutV 0 ¼ 0: ð2:8Þ



The injection fluid rate in function of time is characterized by the Froude number based on nozzle diameter,
defined as follows:
FrðtÞ ¼ Vffiffiffiffiffiffiffiffi
gd in

p uðtÞ: ð2:9Þ
On the other hand, in order to consider energy dissipation, we add a Kelvin–Voigt local damping term (cf. [4])
in (2.3). With this modification we obtain:
1

g
/ttðx; tÞ þ e

o/t

on
ðx; tÞ þ o/

on
ðx; tÞ ¼ 0; x 2 C; t > 0; ð2:10Þ
where e > 0 is a parameter that determines the damping magnitude. In the numerical calculations of the next
sections, we take e sufficiently small, in such a way that (2.8) remains approximately valid. Hence, the math-
ematical model of a converter with fluid injection is the following:
D/ðx; tÞ ¼ 0 in X��0;1½; ð2:11aÞ
1

g
/ttðx; tÞ þ e

o/t

on
ðx; tÞ þ o/

on
ðx; tÞ ¼ 0 on C��0;1½; ð2:11bÞ

o/
on
ðx; tÞ ¼ uðtÞvðxÞ on C0��0;1½; ð2:11cÞ

/ðx; 0Þ ¼ /0ðxÞ in X; ð2:11dÞ
/tðx; 0Þ ¼ /1ðxÞ in X; ð2:11eÞZ

C
/ðx; tÞdsðxÞ ¼ 0; ð2:11fÞ
where /0 and /1 are given initial conditions. The elevation of surface g can be obtained in function of / from
(2.2b):
gðx; tÞ ¼ � 1

g
/tðx; tÞ: ð2:12Þ
2.2. Spectral analysis

Here we consider the model (2.11), in the conservative case (e = 0) and without fluid injection (uðtÞ ¼ 0).
Assuming the potential / has the form:
/ðx; tÞ ¼ UðxÞe�ixt; x > 0 ð2:13Þ
yields the next spectral problem for U:
DUðxÞ ¼ 0 in X; ð2:14aÞ
oU
on
ðxÞ ¼ kUðxÞ on C; ð2:14bÞ

oU
on
ðxÞ ¼ 0 on C0; ð2:14cÞ
where k ¼ x2

g corresponds to an eigenvalue of (2.14), and U is the associated eigenfunction. Note that k = 0 is
not an eigenvalue under the restriction (2.11f) since in this case U is constant and (2.11f) implies that this con-
stant is zero. So we will assume k 6¼ 0, in which case (2.11f) is automatically satisfied. From a physical point of
view, x is a natural frequency and U is a normal mode of the system.

In order to solve (2.14), we define the following functional space:
HC ¼ W 2 H 1ðXÞ;
Z

C
WðxÞdsðxÞ ¼ 0

� �
; ð2:15Þ



and we pose (2.14) in variational form on HC as follows:
Find k 2 R and U 2 HC such that :

8W 2 HC

Z
X
rUðxÞ � rWðxÞdx ¼ k

Z
C

UðxÞWðxÞdsðxÞ: ð2:16Þ
This variational problem can be led to the context of the Hilbert–Schmidt’s spectral theorem (cf. [11]). It is not
difficult to show that the eigenvalues of (2.16) are the characteristic values of a compact self-adjoint operator G

defined from L2
0ðCÞ to itself, where L2

0ðCÞ is the space of zero mean L2 functions defined on C. Consequently,
the eigenvalues of (2.16) can be chosen as an strictly positive sequence ðkkÞk2N which increases to infinity;
whereas the associated eigenfunctions ðUkÞk2N are such that their traces restricted to C, denoted by
ðUkjCÞk2N, form an orthogonal basis of L2

0ðCÞ. The natural frequencies ðxkÞk2N are related to eigenvalues by
the following relation, valid for all k 2 N:
x2
k ¼ kkg; ð2:17Þ
and we deal with the next normal modes ðgkÞ which are inspired by (2.12):
gk ¼
xk

g
Uk: ð2:18Þ
This modes are interpreted as the standing waves in the converter.

2.3. Energy

The energy of system E is defined as the sum of the kinetic energy K and the potential energy U,
where:
KðtÞ ¼ q
2

Z
X
jr/ðx; tÞj2dx; ð2:19aÞ

UðtÞ ¼ q
2g

Z
C
j/tðx; tÞj

2dsðxÞ: ð2:19bÞ
Integrating by parts (2.19a) and combining with (2.11a) and (2.11c) yields that KðtÞ can be expressed as a sum
of boundary integrals:
KðtÞ ¼ q
2

Z
C

o/
on
ðx; tÞ/ðx; tÞdsðxÞ þ uðtÞ

Z
C0

vðxÞ/ðx; tÞdsðxÞ
� �

: ð2:20Þ
It is straightforward to obtain an identity for the energy EðtÞ directly from (2.11). Multiplying (2.11a) by /t,
integrating by parts in X, combining with (2.11b) and (2.11c), and arranging terms, we obtain the next
relation:
dE

dt
ðtÞ ¼ �qe

Z
X
jr/tðx; tÞj

2dxþ quðtÞ
Z

C0

vðxÞ/tðx; tÞdsðxÞ: ð2:21Þ
Let E(t) denote the natural energy of system, that is, such part of EðtÞ that does not depend explicitly on u(t):
EðtÞ ¼ q
2

Z
C

o/
on
ðx; tÞ/ðx; tÞdsðxÞ þ q

2g

Z
C
j/tðx; tÞj

2dsðxÞ: ð2:22Þ
Hence when not injecting fluid ðuðtÞ ¼ 0Þ, relation (2.21) becomes:
dE
dt
ðtÞ ¼ �qe

Z
X
jr/tðx; tÞj

2dx < 0: ð2:23Þ
that is, the system is dissipative.



3. Resolution of time-dependent problem

The main objective of this section is to reduce the partial differential equation model (2.11) to a system of
ordinary differential equations. This is done in three steps. First, we eliminate the boundary conditions of inlet
and outlet flows by centering the analysis around the operational regime of the converter. We obtain the cen-
tered model (3.3). Then, we introduce a Dirichlet-to-Neumann operator to obtain the model (3.11) posed on
the free surface. This step enormously decreases the degrees of freedom of the model. Finally, we arrive to an
approximate system of ordinary differential equations (3.22) after considering a finite number of spectral
modes. At the end of the section, we also include the observation equation which corresponds to the elevation
of the free surface at the point corresponding to the opposite extreme to where the nozzle injection is placed.
3.1. Decoupling of boundary conditions

The idea of this section is to characterize the typical stationary regime of the converter. It depends only on
the geometry and on the inlet and outlet velocities V, V0. In fact, this is given by the function w solution of the
next auxiliary problem (see (2.6) for the definition of the piecewise constant function v(x)):
DwðxÞ ¼ 0 in X; ð3:1aÞ
wðxÞ ¼ 0 on C; ð3:1bÞ
ow
on
ðxÞ ¼ vðxÞ on C0: ð3:1cÞ
Now, we will reformulate the model (2.11), by considering a centered function e/ such that:
/ðx; tÞ ¼ e/ðx; tÞ þ uðtÞwðxÞ; ð3:2Þ
where / is the solution of (2.11). Hence the centered e/ solves the following problem:
De/ðx; tÞ ¼ 0 in X��0;1½; ð3:3aÞ
1

g
e/ttðx; tÞ þ e

oe/t

on
ðx; tÞ þ oe/

on
ðx; tÞ ¼ �ðuðtÞ þ e _uðtÞÞ ow

on
ðxÞ on C��0;1½; ð3:3bÞ

oe/
on
ðx; tÞ ¼ 0 on C0��0;1½; ð3:3cÞ

e/ðx; 0Þ ¼ /0ðxÞ � uð0ÞwðxÞ in X; ð3:3dÞe/tðx; 0Þ ¼ /1ðxÞ � _uð0ÞwðxÞ in X; ð3:3eÞZ
C

e/ðx; tÞdsðxÞ ¼ 0: ð3:3fÞ
Hence the problem of solving (2.11) is reduced to solving two auxiliary problems, where the first one is given
by the stationary problem (3.1) with non-homogeneous Neumann boundary conditions on C0 and homoge-
neous Dirichlet boundary conditions on C, and whereas the second one given by (3.3), is a time-dependent
problem similar to (2.11), but with homogeneous Neumann boundary conditions on cin and cout.
3.2. Dirichlet-to-Neumann operator and one-dimensional model

For a zero mean function u on C, we define the operator A as follows:
AuðxÞ :¼ oU
on
ðxÞ
����
C

; ð3:4Þ
where U is the unique solution of the following problem:



DUðxÞ ¼ 0 in X; ð3:5aÞ
UðxÞ ¼ uðxÞ on C; ð3:5bÞ
oU
on
ðxÞ ¼ 0 on C0: ð3:5cÞ
The operator A is the so-called Dirichlet-to-Neumann operator, which is a pseudo-differential operator, linear
continuous from H 1ðCÞ to L2ðCÞ (cf. [7,8]). It is straightforward to check that the spectrum of A corresponds
to ðkkÞk2N, namely, the spectrum of (2.14). Moreover, the associated eigenfunctions of A, denoted by ðukÞk2N,
are the eigenfunctions ðUkÞk2N of (2.14) restricted to C. Consequently, the next spectral relation holds for all
k 2 N:
AukðxÞ ¼ kkukðxÞ on C; ð3:6Þ
and the functions ðukÞk2N form an orthogonal basis of L2
0ðCÞ:
Z

C
ukðxÞulðxÞdsðxÞ ¼ dklkukk

2
0;C; ð3:7Þ
where k � k0;C denotes the norm in L2ðCÞ and dkl is the Kronecker’s delta.
The operator A allows rewriting of the centered model (3.3) on the free surface as follows. Let u be the

restriction of e/ to C. Hence by definition of A, the next relation holds on C:
oe/
on

�����
C

¼Au: ð3:8Þ
Moreover, from (3.2) it follows that:
/jC ¼ u; ð3:9Þ
since w vanishes on C. Then from (3.2) and (3.8), the normal derivative of / on C is computed as follows:
o/
on
ðx; tÞ

����
C

¼Auðx; tÞ þ uðtÞow
on
ðxÞ
����
C

: ð3:10Þ
Consequently, the model (3.3) can be expressed as the next simplified form:
1

g
€uðx; tÞ þ eA _uðx; tÞ þAuðx; tÞ ¼ �ðuðtÞ þ e _uðtÞÞ ow

on
ðxÞ; ð3:11aÞ

uðx; 0Þ ¼ u0ðxÞ; ð3:11bÞ
_uðx; 0Þ ¼ u1ðxÞ; ð3:11cÞ
where u0 ¼ /0jC and u1 ¼ /1jC. The free surface elevation g is calculated by combining (2.12) and (3.9):
gðx; tÞ ¼ � 1

g
_uðx; tÞ; ð3:12Þ
and replacing (3.9) and (3.10) (for uðtÞ ¼ 0) into (2.22), we obtain the natural energy E(t) in terms of u:
EðtÞ ¼ 1

2
q
Z

C
Auðx; tÞuðx; tÞdsðxÞ þ 1

2

q
g

Z
C
j _uðx; tÞj2dsðxÞ: ð3:13Þ
3.3. Spectral resolution and linear first-order system

The differential system (3.11) is approximately solved by the spectral method: we look for solutions to
(3.11a) as linear combinations of a finite number N of eigenfunctions ðukÞk2N, that is:
uðx; tÞ ¼
XN

k¼1

zkðtÞukðxÞ; ð3:14Þ



where zkðtÞ are unknowns functions of time to determine below. Next, we approximate the initial conditions u0

and u1 in the basis given by the first N eigenfunctions, namely:
u0ðxÞ ¼
XN

k¼1

z0
kukðxÞ; u1ðxÞ ¼

XN

k¼1

z1
kukðxÞ; ð3:15Þ
where z0
k and z1

k are the kth Fourier’s coefficients of u0 and u1 in this basis. Analogously:
� ow
on
ðx; tÞ ¼

XN

k¼1

bkukðxÞ; ð3:16Þ
where bk, is the kth Fourier’s coefficient of � ow
on in the same basis. Substituting (3.14) into (3.11a) and combin-

ing with (3.6) and (2.17) yields that the functions zkðtÞ satisfy the following second-order system of ODEs:
€zkðtÞ þ ex2
k _zkðtÞ þ x2

kzkðtÞ ¼ gbkðuðtÞ þ e _uðtÞÞ; ð3:17aÞ
zkð0Þ ¼ z0

k ; ð3:17bÞ
_zkð0Þ ¼ z1

k : ð3:17cÞ
Finally, substituting (3.14) into (3.13) and combining with (3.6), (3.7), and (2.17) yields that E(t) can be
expressed as follows:
EðtÞ ¼ q
2g

XN

k¼1

_zkðtÞ2 þ x2
kzkðtÞ2

� 	
kukk

2
0;C: ð3:18Þ
Next, the model (3.17) is led to a linear first-order system, which is feasible to be used in an implementation of
a feedback control. For this, let x(t) be the next state vector:
xðtÞ ¼ ðz1ðtÞ; _z1ðtÞ; z2ðtÞ; _z2ðtÞ; . . . ; zN ðtÞ; _zN ðtÞÞ; ð3:19Þ
and let x0 be the next initial vector:
x0 ¼ ðz0
1; z

1
1; z

0
2; z

1
2; . . . ; z0

N ; z
1
NÞ:
In terms of x(t), system (3.17) can be written as follows:
_xðtÞ ¼ AN xðtÞ þ BN ðuðtÞ þ e _uðtÞÞ; ð3:20aÞ
xð0Þ ¼ x0; ð3:20bÞ
where AN and BN are the following matrices defined by blocks:
AN ¼ diagða1; a2; . . . ; aN Þ; BN ¼ ðb1; b2; . . . ; bN Þt;
where
ak ¼
0 1

�x2
k �ex2

k

� �
; bk ¼

0

gbk

� �
:

The function u will be the system input, hence the term proportional to _u that appears in the right-hand side of
(3.20a) constitutes a disadvantage, which can be overcome by introducing the next change of variable:
xeðtÞ ¼ xðtÞ � eBN uðtÞ: ð3:21Þ
Replacing (3.21) into (3.20b) yields the following linear system for xe:
_xeðtÞ ¼ AN xeðtÞ þ ðIN þ eAN ÞBN uðtÞ; ð3:22aÞ
xeð0Þ ¼ x0 � eBN uð0Þ; ð3:22bÞ



where IN is the identity matrix of size 2N. The system (3.22) is a linear first-order system that depends only on
u. Its explicit solution is given by the following formula:
xeðtÞ ¼ eAN tðx0 � eBN uð0ÞÞ þ
Z t

0

eAN ðt�sÞðIN þ eAN ÞBN uðsÞds: ð3:23Þ
System (3.22) is numerically solved by a discrete approximation of formula (3.23). Let Dt be a fixed time step,
and let tk ¼ kDt be the associated discrete time instants for k 2 N. We denote by xe

k an approximation of xeðtkÞ.
The input u(t) is assumed to be locally constant at the intervals ½tk; tkþ1�, denoting uk ¼ uðtÞj½tk ;tkþ1�. This allows
approximation of the formula (3.23) by a discrete version given by:
xe
kþ1 ¼ eAN Dtxe

k � A�1
N ðIN � eAN DtÞðIN þ eANÞBN uk: ð3:24Þ
The energy E(t) can be expressed in terms of xeðtÞ and u(t) as follows:
EðtÞ ¼ xeðtÞTQN xeðtÞ þ 2exeðtÞTQN BN uðtÞ; ð3:25Þ
where the quadratic term in e has been neglected. The matrix QN is defined by blocks as:
QN ¼ diagðq1; q2; . . . ; qN Þ;
where
qk ¼
q
2g
kukk

2
0;C

x2
k 0

0 1

� �
:

Moreover, we add as output yðtÞ ¼ gðx‘; tÞ, where x‘ is the left extreme point of C (opposite to side where the
injection nozzle is placed). From (3.12) and (3.14) we obtain y(t) as function of xe:
yðtÞ ¼ gðx‘; tÞ ¼ �
1

g

Xn

k¼1

_zkðtÞukðx‘Þ;
and in terms of xeðtÞ and u(t), y(t) is written as follows:
yðtÞ ¼ CN xeðtÞ þ eCN BN uðtÞ; ð3:26Þ
where the matrix CN is defined by blocks as:
CN ¼ c1 c2 . . . cNð Þ;
where
ck ¼ 0 � 1

g
ukðx‘Þ

� �
:

4. LQG control applied to the fluid inside the vessel

Our goal is to control the surface waves produced inside the converter, by slightly varying the fluid injection
rate around a prescript value. The tool utilized for this aim is the LQG (linear quadratic gaussian) control
theory (cf. [6]). Hence we consider a given reference input u0, which is a constant rate of injection that must
be conserved in order to continuously maintain the conversion process within the converter. Nevertheless, we
make the assumption that slight variations of this rate value are allowed. Thus we deal with an input in the
form uðtÞ ¼ u0 þ ucðtÞ, where uc is a function that could vary with time, but always satisfying a condition as
jucðtÞj 6 d for sufficiently small d. This function ucðtÞ will be the control of the system.

Next, we briefly describe the method of building a LQG control to a system under restrictions as previously
described. Let us consider the system given by (3.22)–(3.26). We introduce stochastic modifications as follows:
_xeðtÞ ¼ AN xeðtÞ þ ðIN þ eAN ÞBN uðtÞ þ wðtÞ; ð4:1aÞ
yðtÞ ¼ CN xeðtÞ þ eCN BN uðtÞ þ mðtÞ; ð4:1bÞ



where w(t) and mðtÞ are the model and observation errors, respectively. They are supposed gaussian with zero
mean and covariance matrices given by
Table
Main p

Mesh

1
2
3

W ¼ E½wwT�; V ¼ E½mmT�; ð4:2Þ
where E½�� denotes the expected value. The matrices V and W are positive definite and positive semidefinite,
respectively, and w and m are not mutually correlated, that is, the following relation holds:
E½wmT� ¼ 0: ð4:3Þ
We look for a control uc ¼ ucðtÞ, such that the following functional is minimized:
J ¼ E

Z 1

0

ðEðtÞ þ hucðtÞ2Þdt

 �

; ð4:4Þ
where h > 0 is a penalization parameter, which must be sufficiently large so that the minimization holds at a
control ucðtÞ sufficiently small, which satisfies the process restrictions. This problem is solved by means of the
separation principle (cf. [6]), which is divided in two parts. Firstly, we build an optimal estimator x̂ of xe, which
must be such that the error variance, given by E½ðxe � x̂Þðxe � x̂ÞT�, is minimized. For this, we use the Kalman
filter (cf. [6]), which builds the estimator x̂ as the solution of the linear system:
_̂xðtÞ ¼ ðAN � LCN Þx̂ðtÞ þ ðBN þ eðAN BN � LCN BN ÞÞuðtÞ þ LyðtÞ; ð4:5Þ
where the matrix L is given by L ¼ SCT
N V �1 and S is the solution of the Ricatti’s equation:
AN S þ SAT
N � SCT

N V �1CN S þ W ¼ 0: ð4:6Þ
Secondly, we apply a linear quadratic regulator (LQR) (see [12]) to the deterministic system (3.22), using a
linear feedback law depending on the estimate state x̂, that is, ucðtÞ ¼ �Kx̂ðtÞ, where the matrix K is given
by K ¼ h�1DT

N , where
DN ¼ PBN þ eðPAN BN þ QN BN Þ
and P is the solution of the LQR Ricatti’s equation:
AT
N P þ PAN � h�1DN DT

N þ QN ¼ 0: ð4:7Þ
The separation principle states that L and K can be separately calculated.

5. Results

5.1. Natural frequencies and normal modes

In the next calculations, we consider a cylindrical converter with a radius of R = 40 cm and filled with water
until half. This dimensions are similar to the ones used in experimental and numerical simulations in [2]. The
gravity acceleration is g ¼ 9:806 m=s2 and the water density is q ¼ 997:8 kg=m3.

The spectral variational problem (2.16) is numerically solved by triangular finite elements of P1 type, that
is, the shape functions are linear in each triangle and globally continuous. We deal with special meshes involv-
ing a larger refinement close to the free surface and such that the restriction of the mesh to C forms a 1-D
equispaced partition. In order to take into account the zero mean condition on C when approximating the
space HC, a base change is made by means of passage matrices, which yields shape functions satisfying this
1
arameters of three meshes considered to compute the eigenmodes of (2.16)

No. triangles No. vertex No. points on C Space step on C [cm]

515 285 43 1.9047
724 402 85 0.9523

2431 1291 169 0.4761



Table 2
First 12 natural frequencies of (2.16) approximated for three different meshes

k xk mesh 1 [Rad/s] xk mesh 2 [Rad/s] xk mesh 3 [Rad/s]

1 5.7682 5.7664 5.7642
2 8.6710 8.6485 8.6295
3 10.8294 10.7462 10.6996
4 12.6903 12.4927 12.4107
5 14.4368 14.0461 13.9172
6 16.1099 15.4698 15.2835
7 17.7817 16.8066 16.5468
8 19.5013 18.0845 17.7300
9 21.2383 19.3299 18.8513

10 23.0078 20.5337 19.9206
11 24.9038 21.7263 20.9454
12 26.8645 22.9120 21.9362

mode 1 mode 2 mode 3

mode 4 mode 5 mode 6

Fig. 2. First 6 normal modes.
condition. Three meshes are generated with different refinement levels. Their characteristics are indicated in
Table 1.

The natural frequencies and normal modes are computed in the three meshes. Table 2 shows the first 12
natural frequencies obtained. It is clear that highest frequencies are more sensible to mesh refinement, which
suggests to consider the finest mesh in the subsequent calculations. Fig. 2 shows the first 6 normal modes com-
puted (functions gk, see (2.18)).

Each graph represents a transversal cut of the converter, where the fluid surface has been deformed as each
mode. The modes 1 and 2 correspond to the so-called antisymmetrical first mode and symmetrical first mode,
respectively, which are the standing waves having the main influence on the fluid dynamics inside the converter
[2].

5.2. Non-controlled time-dependent problem

Next, we present a numerical result of waves produced inside the converter by constant fluid injection. The
considered diameters of lateral and bottom nozzles are d in ¼ 4 cm and dout ¼ 5 cm, respectively, whereas the
lateral nozzle is placed at a height of 15 cm. The natural frequencies and normal modes numerically computed
in the finest mesh are used in the spectral solution (3.14) and the assemblage of matrices AN, BN, CN and QN. A
dissipation parameter of e ¼ 5� 10�4 is assumed, and the function w is computed by solving (3.1) with stan-
dard finite elements of P1 type. Its normal derivative on C is numerically obtained, which allows calculation of
the coefficients bk. The spectral solution is computed considering N = 16 eigenfunctions.



t = 1 s t = 4 s t = 7 s

t = 10 s t = 13 s t = 16 s

Fig. 3. Non-controlled waves inside the converter at various instants of time.
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Fig. 4. Non-controlled evolution of the left-side surface elevation and the energy.
We consider a constant Froude number Fr ¼ 30, and 16 s of time are numerically simulated. Fig. 3 shows
various diagrams of the obtained waves inside the converter for different instants of times. The presence of
both the first and second normal modes into the dynamics is evident, comprising an active part of high
amplitude waves. These waves are assimilable to the splashing within the copper converter. Fig. 4a presents
the surface elevation at the left extreme as a function of time. The evolution of energy with time is shown
in Fig. 4b. In both cases an oscillating behavior is observed, which tends to stay over time, hence there is
no form to solve the problem of excessive splashing if the constant rate injection is maintained. A time-var-
iable rate injection arises as a possible alternative, as long as the conversion process is not stopped.
5.3. Controlled time-dependent problem

Next, the previous numerical example is modified by application of the modified LQG control beforehand
described. The recently considered Froude number is regarded as a reference mean value, denoted by Fr0. The
time-variable Froude number FrðtÞ is obtained from the following relation:
FrðtÞ ¼ Fr0uðtÞ; ð5:1Þ



t = 1 s t = 4 s t = 7 s

t = 10 s t = 13 s t = 16 s

Fig. 5. Controlled waves inside the converter at various instants of time.
where as previously explained, the input is chosen as uðtÞ ¼ u0 þ ucðtÞ. In order to deal with a Froude number
near the mean value, it is necessary to impose u0 ¼ 1. Furthermore, the penalization parameter must be chosen
large enough so that jucðtÞj is small. We pose h ¼ 5� 103. On the other hand the following covariance matrices
are assumed: V ¼ 5� 10�3 and W ¼ 10�2BN BT

N . The Riccati’s equations (4.6) and (4.7) are numerically solved
by appropriate solvers.

In order to apply the LQG control, the Kalman filter system (4.5) is numerically approximated at the same
time as (3.22), using a discrete formula analogous to (3.24). Once 3 s have passed, the control begins to work
on the system and is continuously applied until reaching the final time. Fig. 5 shows diagrams of the resulting
waves for the instants already considered. The high amplitude waves obtained in the non-controlled case
clearly have been diminished by the control action.

Notice that the mean injection value is always around uðtÞ ¼ 1 (see Fig. 7), which means that the conversion
process continues with diminished gravity waves and it is not affected by the control activation, even though
the control has to always be active.

Fig. 6a and b shows the evolution of the left-side surface elevation and the energy, respectively, in the pres-
ence of control. The previous existing oscillations have been considerably reduced. The low, stable energy level
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Fig. 6. Controlled evolution of the left-side surface elevation and the energy.
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Fig. 7. Evolution of system input and the output.
reached, observable in Fig. 6b, is interpreted as a converter having a quiet bath, while at the same time it is
carrying out the conversion process.

The input u(t) and output y(t) (including noise) are presented in Fig. 7a and b, respectively. The obtained
time-variable injection is successful in controlling the waves inside the converter. This shows that the proposed
modified LQG control is a useful tool for solving the splashing problem in our model of a copper converter,
satisfying process constraints.
6. Final conclusions and extensions

This paper proposes a simple model of attenuation of waves in a copper converter, which is based on 2-D
potential flow and damped gravity waves on the liquid surface. This model predicts in an approximate form
the fluid dynamics produced by air injection into the bath inside the converter. The principal natural frequen-
cies and normal modes of the converter have been numerically computed with finite elements, which provide
the standing waves. To solve the time-dependent part, the boundary conditions have been decoupled and the
spectral method has been applied, leading to a linear first-order system describing the perturbations around
the converter’s operating state and forced by the the injection rate.

We have shown the feasibility of regulating the agitation produced inside the converter by time-variable
injection. Moreover, it is important to emphasize that the feedback law depends on a simple measurement
and not on the full system state. Indeed, it suffices to measure the elevation of the free surface at some given
point, which could be feasible in real applications by external thermography measurements for example.

Some extensions to more complex modeling could be considered. For instance, the model could be replaced
by a shallow-water equation with variable height in the converter’s transversal direction. The same idea used
here can be extended to the more realistic three-dimensional domain by considering not only transversal but
longitudinal surface waves. The model presented in this article can be also extended to a more realistic case
where gas injection is considered. Indeed, the trajectory of the gas jet into the liquid can be modeled following
the theoretical equation of Temelis et al. [3]. In fact, the corresponding spectral modes for this case were
already published in [2].

The proposed control method has demonstrated to be a robust tool, which is able to regulate the excessive
large surface waves in presence of noise, without considerably interfering in the processes that take place in the
converter. We think this result could constitute a first step in the design of a technological control device in
real copper conversion.
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