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ic model subject to random disturbances for a semiautogenous grinding (SAG)
circuit is developed that is able to handle changes in the characteristics of the new feed ore. This dynamic
model, which is adjusted using data from a large mineral processing plant, has been developed with the
objective of being useful for design and testing of fault identification and detection (FDI) systems, soft-
sensors, automatic control systems, etc. The reduced dimension is a requirement in order to be able to obtain
in a reasonable time statistical results to evaluate such systems. In this paper this SAG circuit dynamic model
is used to test a method for detecting changes and identifying the grindability of the ore being processed by
the SAG circuit. The method used — based on the variance of the continuous wavelet transform of measured
circuit variables — incorporates improvements of a previous method. Results show that a step change of new
feed ore is detected in about 30 to 80 min depending on the grindability change. This result may be
considered to be adequate when taking into account that the response time for the mill hold-up to attain a
new equilibrium value after the ensuing transient is of about 3 h. Identification of grindability in stationary
operation gives near 100% of correct classification under the analysed conditions. The sensitivity of the FDI
method to changes in circuit characteristics is also assessed and acceptable results are obtained.
1. Introduction

The principal aim of this work is to develop a method for on-line
detection and identification of grindability of the ore being processed
by a SAG mill. To test this procedure a SAG circuit model is developed
which is able to handle changes in the characteristics of the fresh feed
ore. The purpose of themodel of the SAGmill circuit developed here is
that it should behave like a real circuit from a qualitative point of view,
and that from a quantitative point of view it should be within what
might be expected of such circuits. Therefore the model must
reproduce the main features of actual SAG mills in general, so that it
may be used for designing and testing identification and detection
systems for faults and operating conditions, automatic control
systems, test soft-sensor designs, etc. The model developed here is
of reduced dimension (i.e., five) in order to be able to obtain in
reasonable time statistical results to evaluate such systems. The
resulting systems may then be expected to be successfully tuned to a
particular SAG mill or SAG circuit by adjusting their parameters, since
the principal characteristics of these mills have been implicitly taken
into account due to the involvement of the mill model in their design.
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Such special dynamic model is not intended for mill design nor layout
designs.

The quality of automatic control performance achievable in a
closed circuit grinding operation is determined to a large extent by the
ability to measure circuit variables and identify disturbances. Ore
grindability is often one of the most important disturbances in
grinding operations but, unfortunately, the possibility of measuring
grindability on-line has seemed too remote, so the possibility of taking
opportune corrective actions has been thwarted.

An estimation or measurement of ore grindability is also required
for an optimal operation of mining facilities. A modern approach to
grinding operations in the mining industry considers mining and
mineral processing operations in a holistic manner, as in the Mine to
Mill methods (JKTech, 2004). Mill throughput depends on ore
grindability, usually characterized off-line for some ore samples
(Morrell, 2004). Another possibility is to estimate the ore grindability
from lithological characterization by image analysis and on-line
measurements (Casali et al., 2001). However the mill is usually fed
with ores from different mine sectors and also the ore is mixed in ore
pass, stock piles, and so on. To overcome this problem it is better to
identify on-line the grindability of the ore in the mill, so it can be
correlated with the different ore types fed to the plant and with the
mill throughput. A supervisory control system may be then designed
to take the SAG mill circuit to optimal operating points by acting on
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Table 1
Ore particle size intervals

Size Name Interval Interval [mm]

1 Lumps +4″ ∞, 101.6
2 Coarse ore −4″, +2.1″ 101.6, 53.3
3 Pebbles −2.1″, +0.5″ 53.3, 12.7
4 Fine ore −0.5″, +35# 12.7, 0.4
5 Extra fine ore −35# 0.4, 0
the set points (e.g., of hold-up) of the lower level SAG mill circuit
control systems.

Fault detection and identification (FDI) methods will be used here
to detect and identify the grindability of the ore, considering that
different grindabilities produce different operating conditions which,
although not considered fault situations, give rise to different
characteristics of measured variables, some of which may serve to
estimate the grindability of the ore in the mill. The variance of the
continuous wavelet transform (Daubechies, 1992; Gonzalez, 2003,
2006) of the measured plant variables has been used in FDI methods.
The method developed in Gonzalez et al. (2003, 2006) has been
applied here to the identification of a grindability index, but also
incorporating mean values directly in order to better discriminate
between operating conditions determined by the grindability indexes.

2. The SAG circuit and its model for two kinds of ore

2.1. The SAG circuit model

Following the general objective stated above a SAG mill circuit
dynamic model has been adjusted using data collected from a large
mineral processing plant in Chile, in order to produce results
approaching those which would be obtained for actual mills. In
order to test the developed method, the SAG mill circuit dynamic
model has to be able to handle changes in the feed ore characteristics.

The SAG circuit consists of a SAG mill and a screen as shown in the
schematic diagram of Fig. 1. The dynamic model for the SAG mill is
based on the constant ore model given in Amestica et al. (1993) and
Amestica et al. (1996). In this case the ore sizes to be considered have
been reduced to the five intervals shown in Table 1. This is required in
order to have reasonably fast runs of this dynamicmodel, since several
runs are necessary in order to generate statistical data.

An improvement with respect to the previous model (Amestica
et al., 1996) is that the model has been expanded so that it is able now
to keep track of two different kinds of ore. The reason for this is that if
the characteristics of the feed ore change from a type A to type B set of
characteristics, the ore in themill is initially of type A and it takes time
before it is ground out to the extent that all of it exits trough the mill
grate. At the same time ore type B progressively increases inside the
mill until all the ore hold-up in the mill is of type B. If ore grindability
may be expressed as a combination of type A and type B ores, then the
model is able to handle feed ores whose grindability changes as any
given function of time.

Let the feed oreflowconsist of two ore types A andB having different
grindabilities indexes ΓA and ΓB and different size distributions given by
column vectors fA=[ fA1 fA2 fA3 fA4 fA5]T and fB=[ fB1 fB2 fB3 fB4 fB5]T. The
Fig. 1. Schematic diagram of the SAG circuit.
five sizes being consideredare shown inTable 1. Let theproportionof ore
type A in the feed be μ, and that of type B be 1−μ, where 0≤μ≤1. Then,
letting FsfA, FsfB (t/h) be the feed flows into themill of ores types A and B,
FsfA=μFsf and FsfB=(1−μ)Fsf (Fig. 2). Let thewater feed flow to themill be
Fw (t/h).

LetmA,j,mB,j ( j=1, 2,…, 5) be the masses of ore types A and B of size
j retained in the mill, HsA, HsB be the hold-ups of ores of types A and B
and let FsdA, FsdB be the corresponding mill discharge flows. Hence, the
total ore massmj of size j is given bymj=mA,j+mB,j and the hold-ups of
ores of types A and B and the total ore hold-up are:

HsA ¼ ∑
n

j¼1
mA; j; HsB ¼ ∑

n

j¼1
mB; j; and Hs ¼ HsA þ HsB: ð1Þ

Then, if grindabilities of the incoming ore may be represented by
mixing a hard ore (e.g., of type A) and a soft ore (type B), this enlarged
model may deal with feed ores whose grindabilities change with time
in any manner bymaking μ=μ(t) be a function of time. In particular, let
the type of feed ore undergo a step change from type A to type B. Then
let Fsf be of type A— i.e., μ=1 — be present for a long enough period of
time such that all the ore inside the mill is of type A: Hs=HsA. For the
feed ore to change from type A to type B, μ must undergo a change
from 1 to 0 so the feed ore becomes Fsf=FsfB. The hold-up HsA of ore
type A will progressively diminish until it is completely ground out
and all of it has left themill trough its grate. At the same time the hold-
up HsB of ore type B will increase until a new stationary condition is
attained where all the mill solids hold-up is ore type B, i.e., Hs=HsB.

The equations governing the evolution of the masses mA,j and mB,j

are obtained by the dynamic balance of masses:

dmA; j ¼ μFsf fA; jdt þ FsrA; jdt

þ P
Hs

ΓAαj−1; jmA; j−1dt −
P
Hs

ΓAαj; jþ1mA; jdt − FsdA; jdt ð2Þ

dmB; j ¼ 1− μð ÞFsf fB; jdt þ FsrB; jdt

þ P
Hs

ΓBαj−1; jmB; j−1dt−
P
Hs

ΓBαj; jþ1mB; jdt − FsdB; jdt: ð3Þ

In Eqs. (2) and (3) the grinding of size i ore to size j is modelled by:

P
Hs

ΓAαi; jmi t=hð Þ; P
Hs

ΓBαi; jmi t=hð Þ ð4Þ

where P=mill power draft (kW) andαi,j=grinding rate from size i to size
j (t/kWh) (Amestica et al., 1996), for grindability index Γ=1. Following
Fig. 2. Mill-screen model for handling two types of ore.



Fig. 3. As feed the grindability of the feed ore undergoes a step change at t=8 (h) from
hard ore (A) to soft ore (B), the hard ore progressively disappears as it is ground out,
while the soft ore increases until it replaces the hard ore.
the general purpose of this model stated in the Introduction, it has been
considered sufficient to account only for grinding from size i to size i+1.

Themill feed flows for each size j and ore type are μFsf fA,j and (1−μ)
Fsf fB,j, and the discharge flows for each size j are

FsdA; j ¼
1− cg; j
� �

KmA;jffiffiffiffiffiffi
Hs

p ; FsdB; j ¼
1−cg; j
� �

KmB; jffiffiffiffiffiffi
Hs

p ; j ¼ 3;4 and 5 ð5Þ

where cg,j is the mill grate rejection coefficient and K adjusts the total
flow presented to the grate (Amestica et al., 1993, 1996).

The return flows of ore types A and B rejected by the screen are
FsrA,j and FsrB,j (Fig. 2) for each size j. The water hold-up Hw is given by

dHw

dt
¼ Fw − Fwd; Fwd ¼ λ0 þ λ1

H4
s

� �
Hw ð6Þ

where Fwd is the water discharge flow, and λ0 and λ1 are model fitting
parameters (Amestica et al., 1993, 1996).

Shared variables in these equations for ores type A and B are the
total ore feed flow Fsf, the power draft P and the total ore hold-up Hs.

Let the total hold-up of the mill, including water hold-up Hw, be

HmT ¼ Hs þ Hw: ð7Þ

Ore grindability is represented by a grindability index Γ in the
range [0.94, 1.06], where Γ=0.94 corresponds to hard ore, Γ=1.06 to
soft ore, and Γ=1 to normal ore.

The particle size distribution of the feed ore is represented by four
different vectors f corresponding to fine (f f), normal (fn), coarse (f c)
and very coarse (f vc) size distributions.

Thismill dynamicmodel is of the state/state-output class, resulting
from the dynamic mass and water balances. The main components of
the state vector are the ore masses of types A and B at the different
sizes. Hence, given an initial state and the model inputs, a solution
may be obtained. But, since the model in non-linear, an analytical
solution is not practical, and simulation has been used.

2.2. Measured variables, disturbances and manipulated variables

The variables assumed to be measured are: Fw=water flow added to
themill input, Fsf=fresh solids feed flow, f=feed particle size distribution,
HmT=total hold-up of the mill (solids+water), Fsr=return ore flow —

consistingmainly of pebbles— rejected by the screen, and P=mill power
draft.

The disturbances considered are: vk=white noise zero mean random
disturbance affecting measurement of sensor k, wj=white noise zero
mean random disturbance added to Eqs. (2) and (3) giving ore size j in
themill,ww=white noise zeromean randomdisturbanceadded to Eq. (6)
giving themassHw ofwater in themill, pk=randomdisturbance affecting
the feed particle size distribution. These random disturbances — which
are stochastic processes (Papoulis and Pillai, 2002)— have been added to
account for uncertainties in model and variables. In addition, the
following disturbances are considered: changes in the grindability
index Γ, changes in the feed ore particle size distribution, and changes
in the SAG circuit characteristics (represented by changes of the circuit
model parameters).

The manipulated variables of the simulator are the feed flow Fsf and
thewaterflowadded to themill, Fw. Usually there is a controller thatfixes
the ratio of ore and water flow, in this case according to Fsf/(Fsf+Fw), so
the only manipulated variable in this case is the feed ore flow Fsf.

The screen performance is represented by rejection coefficients crj
affecting the mill discharge flows of sizes j=3, 4 and 5 entering the
screen. Let the solids flow of size j (see Table 1) passing the screen be Fspj
(Fig.1). Then Fspj=(1−crj)Fsdj, where crj is the screen rejection fraction for
ore flow Fsdi of size i (i=3, 4, 5). Sizes 1 and 2 are rejected by the mill
grate, so Fsp1=0 and Fsp2=0. Then the rejected ore flows in Eqs. (2) and
(3) for each size and ore type are FsrA,j=crjFsdA,j and FsrB,j=crjFsdB,j.
The rejected ore flows FsrA and FsrB are conveyed back to the mill
input where they join the new ore feed flows FsfA and FsfB. The mesh
opening size of the screen is in this case 12.7mm (1/2”), so that the ore
size 3 is rejected by the screen (cr3=1), while ore size 5 passes the
screen (cr5=0) and a fraction cr4 of ore size 4 is rejected. The rejection
coefficient cr4 has been used as a model adjusting parameter. The
rejected flow for ore type A is then FsrA=FsrA,3+FsrA,4, where FsrA,3=
FsdA,3 and FsrA,4=cr4FsdA,4, and similarly for ore type B. It has been
assumed that water rejection by the sieve is not significant.

2.3. Adjusting the SAG circuit model to data from a real SAG circuit

The mill model was adjusted using the following nominal values
for the SAGmil operation: mass of lumps Hs1=110 (t), total mass of ore
in the pulp Hs2=46 (t), total mass of ore Hs=156 (t), mass of water
Hw=20 (t), mass of balls Hb=194 (t), equivalent porosity ɛeq=0.35,
lumps porosity ɛl=0.35, balls porosity ɛb=0.35, solids density ρs=2.7
(t/m3), ball fraction Jb=0.12, slurry density ρp=1.79 (t/m3) and solids
concentration CP=0.7 (Amestica et al., 1993, 1996). In addition, new
ore feed flow Fsf=1217 (t/h), screen rejected ore flow Fsr=134 (t/h),
and total mill ore feed flow Fs=1351 (t/h). The mill diameter is D=9.8
(m), its equivalent (cylindrical) length is L=4.6 (m), and the mill
internal volume is Vm=347 (m3). The % size distributions for the fresh
feed ff, screen rejection fr, circuit product fp, mill discharge fd, and mill
feed fs streams are given by ff=[33.0 15.0 44.0 7.9 0.1], fr=[0.0 0.0 95.6
4.4 0.0], fp=[0.0 0.0 0.0 49.9 50.1], fd=[0.0 0.0 9.5 45.5 45.1], and fs=
[29.7 13.5 49.1 7.6 0.1], for the sizes in Table 1.

2.4. Response of the SAG circuit model

The SAG circuit model was used to build the SAG circuit simulator
using SIMULINK from MATLAB. The simulator includes an option of
PID automatic control of the total mill hold-up HmT, as well as a ratio
control of the feed water flow Fw in proportion to the solids feed flow
Fsf. Using the SAG circuit simulator the response of the simulated
circuit under various operating conditions has been determined.

2.4.1. Evolution of hold-ups of different ores
With the hold-up control off, and the water ratio control set at 0.63,

the grindability index of the feed ore undergoes a large abrupt change
from ΓA=0.94 (hard ore) to ΓB=1.06 (soft ore), at t=8 (h), after the circuit
had settled down following an initial transient. Fig. 3 shows how the



Fig. 4. The control system manipulates the feed ore Fsf in order to keep the hold-up HmT

close to its set point of 130 (t) when the feed ore changes at t=8 (h) from normal size
distribution and normal grindability to hard ore with coarse size distribution and back
again to normal ore at t=16 (h).
hard ore massHsA disappears as it is ground out, while the soft oremass
HsB increases until it becomes the total solids hold-up Hs of the mill.

2.4.2. Automatic hold-up control
With the automatic control of hold-up HmT and feed water ratio

control, the feed ore changes at t=8 (h) from normal size distribution
and normal grindability to hard ore with coarse size distribution. At
t=16 (h) the feed ore changes back to normal again. As seen in Fig. 4
in order to maintain the hold-up close to its set point of 130 (t), the
control system reduces the feed ore Fsf during the period where the
hard ore is present in the SAG mill.

From the results obtained, e.g., Figs. 3 and 4, it may be concluded
that the circuit response corresponds to that of a real circuit from a
qualitative point of view, and that from a quantitative point of view is
within what might be expected of such circuits. Therefore, the
objective stated for this model in the Introduction may be considered
to have been satisfied.

3. Detection and identification of grindability using the
wavelet variance

The purpose here is to detect and identify ore grindability index Γ
in the SAG circuit shown in Fig. 1 using a method based on thewavelet
variance (Gonzalez et al., 2003, 2006) ofmeasured variables defined in
Section 2.2. Again, the case where automatic control of hold-up is
active has been considered, together with automatic ratio control of
the feed water, in order to emulate in some fashion the actions of an
operator that is manually controlling the circuit, or the case where
such controls are actually installed and working.

3.1. Detection and identification

Grindability detection is sensing that the grindability of the feed
ore has changed. Such would be the case illustrated by Fig. 4, where
the problemwould be to estimate an approximate value td for times tc
where the changes occur, such as tc=8(h) and tc=16 (h), when the ore
changes frommedium to hard and back again tomedium. A time delay
tD= td− tc may be tolerated, since the effect of the change in the mill
operation takes place progressively as the ore changes inside the mill,
as shown in Fig. 3. An important performance measure in detection is
the mean detection delay ―tD.
Identification, on the other hand, refers here to estimating the
grindability index which the ore will reach or has reached in
stationary conditions, e.g., as in time interval [8, 16] in Fig. 4.

Important performance characteristics here are: (i) percentage of
hits (correct identification) and of misses (miss-identification, includ-
ing failure to identify), and (ii) insensitivity in the identification of a
given parameter such as Γ to changes in equipment characteristics —
e.g., changes of mill grate opening, ball load, screen opening, mill
parameters affecting grinding — and to changes in some variables
such as feed ore particle size distribution.

3.2. Detection and identification methods

Fault Identification and Detection (FDI) methods (Chen and Patton,
1999) are suitable in general for identifying operating points or
detecting changes in operating points, even though no fault may be
present. FDI methods may broadly be classified in (a)Model Based FDI,
i.e., those which require a model of the plant or unit (multi-model
approach (Chen and Patton,1999)), and (b) Feature Based FDI, i.e., those
which do not. In this latter case the different operating conditions are
found by directly analyzing features of the measured variables.

The Feature Based FDI method is used here. Examples of features
extracted from measured variables are, mean values, variances, auto
correlation functions, cross correlation functions, etc., either of the
variables themselves or of transformations performed on the variables
such as Fourier transform or series, and continuous or discretewavelet
transforms.

In the present SAG circuit case the feature used is the continuous
wavelet transform (CWT) variance of measured variables (Gonzalez
et al., 2003, 2006). In this case this method is applied to measured
variables of the SAG circuit of Fig. 1 (see Section 2.2). An overall view of
such method shall be given here. Details may be found in the cited
references.

The operations in this method comprise two stages: (i) feature
extraction and (ii) feature processing.

3.2.1. Feature extraction
Let yj(Γi) be a measurement performed on the SAG circuit, e.g., Fsr(t),

when the ore grindability index is Γi(t), and let Z(Γi) be the feature
extracted from a given measurement yj(t), or a combination of the
features extracted from a set a set of measurements (e.g., Fsf(t), P(t),
Fsr(t)), when Γi is known. Feature Z(Γi) shall be called characteristic
template for grindability index Γi for a given set of measurements, and
are found off-line using experimental and historical records obtained
from the plant. Feature Sm(Γ), obtained on-line frommeasurement yj
(Γ), or combining features extracted from a set of such measure-
ments, when the grindability index Γ is unknown, shall be called
sample template. It will be used to estimate the unknown grindability
index Γk under the current operating conditions by comparisonwith
the set of characteristic templates.

When the variables exhibit a stochastic nature, as in this case (e.g.,
see Fig. 7) feature extraction from measured variables involves
expected values. This is in general difficult, and sometimes impossible,
because statistical parameters and functions (e.g., joint probability
densities) are requiredwhich are generally unavailable froma practical
point of view. However, these expected values may be estimated by
means of time averages of a single outcome of the stochastic process
(Gonzalez et al., 2003, 2006).

3.2.2. Feature processing
The sample template S(Γk), and the characteristic templates Z(Γi)

(i=1,…, m) are now processed in order to distinguish, with acceptable
error, which is the prevailing condition of the plant being analysed,
by finding to which characteristic template the sample template is
closest to, according to a given criterion. Methods that may be used to
this end are, hypothesis testing, concatenation of functions, principal



Fig. 5. Characteristic templates for feed ore flow Fsf: Z1(a, 0.94) for hard ore and coarse
particle size, Z1(a, 1.00) for normal ore, normal particle size and Z1(a, 1.06) for soft ore
and fine particle size, under normal operating conditions, and sample variance Sm1(a, Γ)
for Fsf corresponding to a given measurement when the ore in the mill is hard with
coarse particle size.

Fig. 6. Concatenated characteristic template Z(a, Γi) formed by concatenating templates
Zj(a, Γi), for an operating condition represented by Γi, for three measured variables j(Fsf,
P, Fsr), when scale a is in interval [0, γ]. Also shown is a concatenated sample variance
Sm(a, Γ).
component analysis (PCA), projection into the Fisher space, quadratic
discriminant analysis (QDA), etc. (Mardia, 1979).

3.3. Application to SAG circuit grindability index estimation

3.3.1. Feature extraction and templates
The feature used in the method originally developed by Gonzalez

et al. (2003, 2006), is the variance of the continuouswavelet transform
(CWT) of measured variables (e.g., in the SAG circuit case, Fsf(t), P(t),
Fsr(t)). The CWT of y(t,Γ) is

W a; b; Γð Þ ¼ 1ffiffiffi
a

p
Z∞
−∞

y t; Γð ÞW t − b
a

� �
dt: ð8Þ

It turns out that if y(t,Γ) may be considered a wide sense stationary
random process — at least within a time frame — then the expected
value of Eq. (8) is zero and its variance only depends on scale a. Due to
random nature of the variables in the SAG circuit, the proper way to
consider the measured variables for a given Γi is as realizations — or
outcomes — of a stochastic process y(t, Γi, ξ) where ξ accounts for
the randomness and selects one of all the possible measurements
that could have been obtained because of the random nature of the
variables (Papoulis andPillai, 2002). This implies that theCWT is random
and has an expected value and a variance E{W2(a, b, Γi, ξ)}=V(a, Γi),
where W(a, b, Γi, ξ) is the CWT of measured variable y(t, Γi, ξ) when the
grindability index is Γi. It turns out that (Gonzalez et al., 2003, 2006)
these CWTvariancesV are only functions of the real variable a and of the
parameter Γ andmay be used as characteristic templates corresponding
to operating condition determined by Γ. But V=V(a, Γi) does not account
for themean of y(t, Γi, ξ) (Gonzalez et al., 2006), whichmay be important
in the identification of Γi. Then let the characteristic template for the jth
measured variable — e.g., Fsf(t), P(t), Fsr(t) — for operating condition Γi
include such mean, i.e.,

Zj a; Γ ið Þ ¼ E W2
j a; b; Γ i; nð Þ

h i
þ E yj Γ ið Þ� �

: ð9Þ

For a single measurement yj(t, Γk) made on the plant — following
Gonzalez et al. (2006), let the sample template be defined as

Smj a; Γkð Þ ¼ 1
T

Z T

0
W2

j a; b; Γkð Þdbþ 1
T

Z T

0
yj t; Γkð Þdt: ð10Þ
It may be shown that this sample template is an unbiased
estimator of the characteristic template Zj(a, Γ) given by Eq. (9)
(Gonzalez et al., 2006).

In the case of the SAG circuit, three basic operating conditions
corresponding to three grindability indexes Γ have been chosen: (i) for
hard ore with Γ1=0.94, (ii) for medium ore with Γ2=1.00, and (iii) for
soft ore with Γ3=1.06. Then, for each of the following measured
variables indexed by j: (a) feed ore flow Fsf, (j=1), (b) power draft P,
(j=2), and (c) rejected flow Fsr, (j=3), there are three characteristic
templates Zj(a, Γi) (i=1,2,3).

Fig. 5 shows the three characteristic templates corresponding to
feed ore flow Fsf (measured variable j=1) for hard ore (Γ=0.94) and
coarse particle size, normal ore (Γ=1.00) and normal particle size, and
soft ore (Γ=1.06) and fine particle size, under normal operating
conditions, with automatic control of total hold-up HmT active and
feed water ratio control also active. Also shown is a sample variance
Sm1(a, Γ) for feed ore Fsf corresponding to a given measurement when
the unknown ore is hard (Γ=0.94) with coarse particle size. It is
apparent in this case that the operating condition corresponds to hard
ore (Γ=0.94), since Sm1 is closest to the hard ore characteristic
template. But there are cases in which this clear-cut decision is not so
easy and template processing must be resorted to, as in Gonzalez et al.
(2006).

For the case of measured variable j one way to measure the
closeness between a sample template Smj(a, Γ) and any characteristic
template Zj(Γi)=Zj(a, Γi) is to find the distance Δj between them using
the square root of the integral of the squared differences, i.e.,

Δj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

0
Smj a; Γð Þ − Zj a; Γ ið Þ� �2da

s
: ð11Þ

The problem of identifying the operating point of the plant is then
to determine for which Γi distance Δj is minimum.

3.3.2. Template processing
Following the good results reported by Gonzalez et al. (2006), the

three characteristic templates for Γi as well as the three sample
templates for the unknown Γ have been concatenated, i.e., its scales
axis a have been juxtaposed, as shown in Fig. 6. Let this concatenated
characteristic template be Z(a, Γi) and the concatenated sample template
be Sm(a, Γ) corresponding to the measured variables Fsf, P and Fsr.

Further template processing includes (i) discretisation of scales a,
(ii) dimension reduction using PCA (Mardia, 1979), (iii) projection of
the reduced dimension templates into the Fisher space (Mardia, 1979),
and decision on the Fisher space as to which characteristic template
the sample template is closest to (Gonzalez et al., 2003, 2006).

4. Results

Results have been obtained by programming both the SAG circuit
model and the grindability detection and identification method using
MATLAB and Simulink.



Table 3
Correct identification (hits) percentage of Γ using CWT, mean values, and both, for only
Fsr and for the concatenated case

Actual Γ Actual Γ

0.94 1.00 1.06 0.94 1.00 1.06

Using Fsr only Concatenation

CWT only 53.4 13.8 61.8 69.6 35.2 68.0
Mean only 64.4 32.8 67.0 60.0 20.0 60.0
CWT and Mean 62.2 34.0 67.2 100.0 100.0 100.0
4.1. Generation of templates

For each known value of the three grindability indexes Γi (i.e., 0.94,
1.00, 1.06), 100 outcomes Sm,r(Γi), r=1 to 100, of sample template
variances were generated for each of the five values of Jb in the set
{0.11, 0.12, 0.13, 0.14, and 0.15}. These Sm,r(Γi) were determined using
measurements of length T=20 (h) of the measured variables Fsf, P and
Fsr. Then characteristic template Z(Γi) has been determined by
averaging these Q=500 sample templates for a given Γi (Gonzalez
et al., 2006). The result is three characteristic templates which are
represented by three points in the Euclidean vector space R42. The
projection of these templates onto the reduced PCA of dimension 8 is
then projected to Fisher space of dimension 2 giving the characteristic
templates ZF(Γ1), ZF(Γ2), and ZF(Γ3) (Gonzalez et al., 2006).

4.2. Identification results

Fig. 8 shows squared distances from the sample template projected
into the Fisher space for Γ=0.94 to the characteristic templates
projected in that space when Γ changes from 1.00 (normal) to 0.94
(hard). The smallest distance is seen to correctly identify the unknown
Γ.

4.2.1. Identification of basic grindability indexes
In this case identification was done for cases when the actual

grindability index had the supposedly unknown values of 0.94,1.00 and
1.06. One hundred repetitions of the experiment were performed —

using data collected from the SAG circuit model of Section 2 — for each
one of the three grindability values. The hits andmisses then determine
the percentages shown in Table 2, which contains identification results
which include the effect of using both the mean value and template
concatenation. Table 2 also has the results when only one of the three
measured variables, Fsr, is used for determining characteristic templates
and sample templates. In each of such cases the same procedure for
obtaining the Fisher space as in the concatenated case is followed, but
considering the CWT variances for only one measured variable, and the
corresponding covariance matrix. It may be seen that when concatena-
tion is used there is 100% correct identification of Γ, while if only one
measurement such as Fsr is employed correct identification is at most
67.2 % (for Γ=1.06), and miss-identification attains a maximum of 34.6%
when Γ=1.00 is identified as Γ=1.06. Results using only single
measurements Fsf and P are similar to those using only Fsr.

The benefit of adding themeanvalue of themeasured variables to the
variances and sample variances may be seen in Table 3. It may be seen
that only when using both CWT and mean value together with
concatenation 100% hits is achieved. The CWT by itself only gives a
maximum of 61.8% correct identification (when Γ=1.06) without
concatenation, which increases to 68% with concatenation. The identi-
fication result for both CWT and mean is only 67.2% (when Γ=1.06)
without concatenation, but increases to 100% when concatenation is
used. Similar results are obtained for feed flow Fsf and power draft P.

4.2.2. Identification of grindabilities within a continuous range
Good results were achieved in the identification of grindability

within a range using concatenation when the circuit was operating
Table 2
Percentages of correct and mistaken identification of Γ, for normal feed particle size
distribution, using onlymeasurement Fsr and concatenated characteristic templates and
sample templates

Actual
Γ

Fsr only Identified Γ Actual
Γ

Concatenated case
Identified Γ

0.94 1.00 1.06 0.94 1.00 1.06

0.94 64.2 34.2 1.6 0.94 100 0 0
1.00 31.4 34.0 34.6 1.00 0 100 0
1.06 3.4 29.4 67.2 1.06 0 0 100
with ore having a grindability index Γ in the continuous range [0.94,
1.06]. In this case a linear interpolation procedure was used around
the cases for Γ=0.96, 1.00, and 1.06. Pairs of actual and identified Γ, i.e.
(actual Γ, Identified Γ), are (0.940, 0.940), (0.970, 0.970), (0.990, 0.997),
(1.000, 1.000), (1.010, 1.003), (1.030, 1.030), and (1.060, 1.059).

4.2.3. Sensitivity in the identification of Γ with respect to deviation from
nominal conditions

In an ideal case the identification method should be insensitive to
changes of circuit parameters when they change from the set of
nominal parameters with which the templates were determined.
However, it may be expected that there will exist some sensitivity, but
it should be relatively small. In order to test such sensitivity, several
tests were run where a set of selected parameters whose values have
been randomly chosen in each test. These parameters are cg4 and K in
Eq. (5), and λo in Eq. (6) and are randomly generated from Gaussian
distributions with the following means and relative standard devia-
tions (SD/mean %): for cg4, 0.25 and 15.0%; for K, 960 and 7.5%; and for
λo, 34 and 15.0%. One hundred tests were made to obtain Sm(Γ) when
the ore in the circuit had either grindability index 0.94, 1.00 or 1.06.
The results obtained for these random variations for normal particle
size show the method is reasonably insensitive. In fact, correct
identification percentages of grindability index Γ for normal particle
size using concatenation, were been found to be between 99.0% and
98.8%, while mistaken identification varied from 0.0% to 1.2%. The
results for intermediate and coarse feed size are similar.

4.3. Detection results

Fig. 7 shows the evolution of themeasured variables when feed ore
changes, at t=10 (h), from normal (Γ=1.0) to hard (Γ=0.94). The feed
ore flow Fsf is seen to decrease due to the action of the hold-up control
Fig. 7. Measured variables when a step change in the grindability index Γ from 1.00 to
0.94 happens at t=10 (h).



Fig. 8. Squared distances in the Fisher space between the projected sample template to
the three projected characteristic templates when Γ undergoes a step change from
normal (Γ=1.00) to hard (Γ=0.94) at t=10 (h). The dotted line is the squared distance
from the sample template to the characteristic template for grindability Γ=0.94. The
solid line and the segmented line are the squared distances from the sample template to
characteristic templates for Γ=1.00 and Γ=1.06.
system in order to keep the total hold-up close to its fixed set point.
Fig. 8 shows in the Fisher space the corresponding squared distances
from the sample template and the three characteristic templates for
hard, medium and soft ore. Mean detection delay —tD is determined
here (see Section 3.1) by averaging several test results for detection
times tD. The detection delay may be handled bymeans of a forgetting
factor λ (Ljüng, 1987; Gonzalez et al., 2006) which ponders past data
in an exponentially degreasing form. The greater λ, the greater the
mean time between false detections — which is a good feature — but
also the greater the detection time — which is undesirable. A
compromise between rapid detection and low probability of false
detection was reached by using a forgetting factor λ=0.96. Mean
detection times —tD for all possible step changes Γ between the three
basic grindability indexes are: from 1.00 to 1.06, 62 (min); from 1.06 to
1.00, 33 (min); from 1.00 to 0.94, 36 (min); from 0.94 to 1.00, 58 (min);
from 0.94 to 1.06, 78 (min); and from 1.06 to 0.94, 42 (min).

5. Conclusions

The behaviour of the dynamic model of reduced dimension
developed here has shown to be good from a qualitative point of
view, since its response is similar to that of actual SAG mill circuit.

Concatenation of the characteristic templates, as well as of the
sample templates, has resulted in important improvements in the
identification of the grindability index, as compared with the cases in
which templates for only a single measurement are used.

The detection and identification method considering the mean
value of the measured variables, in addition to the variance of their
continuous wavelet transform, has produced a considerable improve-
ment in the identification of the ore grindability in all cases. For
example, even with the help of concatenation, the correct identifica-
tion percentages of normal ore type are 35%when only CWT variances
are used, and 20% if only mean values of the measured variables are
used. However, if both are taken into account this percentage
increases to 100%.

The method was found to be reasonably insensitive to variations of
some selected parameters, as expected due to the design.

Detection of a step change of grindability of the incoming ore has
been found to take from somewhat more than 30 min to a maximum
of 78 min for an extreme ore change.

The estimation of the grindability index may serve for a super-
visory control (or an experienced operator) acting mainly on the fresh
ore feed set point, to drive the circuit to desired operating points. Such
action may be improved using measurement or estimation of other
variables, e.g., feed size, ball loading.

It should be clear that themethod developed here may be used not
only for detecting and identifying other operating conditions in a SAG
circuit, but for fault detection and identification in other plants of the
minerals industry as well as in other industries.
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